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Research into the characteristic
molecules significantly affecting
liver cancer immunotherapy

Junhong Chen, Hengwei Jin, Hao Zhou, Xufei Hei and Kai Liu*

Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of
Jilin University, Changchun, China
Background: The past decade has witnessed unprecedented scientific

breakthroughs, including immunotherapy, which has great potential in clinical

applications for liver cancer.

Methods: Public data were obtained from The Cancer Genome Atlas (TCGA) and

International Cancer Genome Consortium (ICGC) databases and analyzed with R

software.

Results: The LASSO and SVM-RFE machine learning algorithms identified 16

differentially expressed genes (DEGs) related to immunotherapy, namely, GNG8,

MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180, POU3F1, SAG,

POU2AF1, IGFBPL1, CDCA7, ZNF492, ZDHHC22, and SFRP2. Moreover, a logistic

model (CombinedScore) was established based on these DEGs, showing an

excellent prediction performance for liver cancer immunotherapy. Patients with a

low CombinedScoremight respond better to immunotherapy. Gene Set Enrichment

Analysis showed that many metabolism pathways were activated in patients with a

high CombinedScore, including butanoate metabolism, bile acid metabolism, fatty

acid metabolism, glycine serine and threonine metabolism, and propanoate

metabolism. Our comprehensive analysis showed that the CombinedScore was

negatively correlated with the levels of most tumor-infiltrating immune cells and the

activities of key steps of cancer immunity cycles. Continually, the CombinedScore

was negatively associated with the expression of most immune checkpoints and

immunotherapy response-related pathways. Moreover, patients with a high and a

low CombinedScore exhibited diverse genomic features. Furthermore, we found

that CDCA7 was significantly correlated with patient survival. Further analysis

showed that CDCA7 was positively associated with M0 macrophages and

negatively associated with M2 macrophages, suggesting that CDCA7 could

influence the progression of liver cancer cells by affecting macrophage

polarization. Next, single-cell analysis showed that CDCA7 was mainly expressed

in prolif T cells. Immunohistochemical results confirmed that the staining intensity of

CDCA7 was prominently increased in the nucleus in primary liver cancer tissues

compared to adjacent non-tumor tissues.

Conclusions:Our results provide novel insights into the DEGs and factors affecting

liver cancer immunotherapy. Meanwhile, CDCA7 was identified as a potential

therapeutic target in this patient population.
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Introduction

Liver cancer is a common digestive malignancy, responsible for

nearly 8 million new cases annually (1). Many factors have been

established to play a role in liver cancer occurrence, such as genomic

differences, lifestyle, hepatitis virus, and fat, accounting for the

gradual increase in incidence over the years. In some cases, patients

with primary liver cancer can benefit from surgery in terms of long-

term survival (1). Nevertheless, only 10% of liver cancer patients are

indicated for surgical resection (2). For patients with advanced

disease, chemotherapy, local ablation, and biological therapies are

the main therapeutic modalities (3). Notwithstanding the fact that

significant strides have been made in scientific research in recent

years, mainstream treatment options exhibit limited efficacy. For

instance, long-term use of sorafenib often leads to drug resistance

and side effects that limit the drug’s benefits.

It is widely acknowledged that the human immune system

normally recognizes and destroys foreign cells, including cancer

cells. In the tumor microenvironment (TME), tumor fragment

peptides are presented to major histocompatibility complex (MHC)

molecules by antigen-presenting cells, thereby starting the killing

process (4). However, multidrug resistance to chemotherapy has

emerged as a significant challenge. A previous study showed that

stem cells could be targeted by immunotherapy to combat resistance

to common chemotherapies (5). Furthermore, sorafenib can prevent

immunosuppression, increasing the effect of immunotherapy, like

PD-1/L1 inhibitor therapy (6). Consequently, the combination of

immunotherapy and other common therapies seems promising. Zhao

et al. observed a synergistic effect through the combination of

immunotherapy and common drugs for liver cancer (7). Moreover,

current evidence suggests that PD-1/L1 inhibitors are correlated with

a decrease in hepatitis B and C infections (8). Given that virus

infection can induce liver cancer recurrence, therapy targeting PD-

1/L1 can reduce relapses (8). Nivolumab, a PD-1 inhibitor, has now

been approved by the FDA for treating multiple solid cancers,

including liver cancer, and has yielded promising results (9).

Meanwhile, the combination of ipilimumab (a CTLA-4 inhibitor)

and nivolumab has been used in a clinical trial of liver cancer (10).

Overall, immunotherapy has great potential for liver cancer

treatment. Thus, exploring the biological molecules and

mechanisms affecting liver cancer immunotherapy is essential.

Bioinformatics has become a very “hot” cross-disciplinary field

for modern researchers, providing the framework for research in drug

discovery, assessment, and development (11). Based on open-access

data and bioinformatics algorithms, we systematically investigated the

underlying molecules affecting liver cancer immunotherapy.

Meanwhile, a CombinedScore was established based on the

identified molecules, which showed an excellent prediction ability

for the patient’s response to immunotherapy. A significant difference

in immunotherapy response was observed in patients with high and

low CombinedScore, and the underlying biological differences were

identified between these two groups.
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Methods

Data collection

Complete next-generation sequencing information and clinical

parameters of 371 patients with HCC were obtained from The Cancer

Genome Atlas (TCGA) data portal (https://gdc-portal.nci.nih.gov/).

RNA-seq data and clinical information of external validation cohorts

(ICGC-FR and-JP) samples were obtained from the ICGC portal

(https://dcc.icgc.org/). Patients with complete expression profiles and

corresponding clinical information were included in our analysis. The

“Sva” package in R software combined data and reduced batch effects.

Baseline information on enrolled patients is provided in

Supplementary File 1.
Evaluation of the immunotherapy response

Evaluation of liver cancer immunotherapy was performed

through the Tumor Immune Dysfunction and Exclusion (TIDE)

website (http://tide.dfci.harvard.edu/) (12). Briefly, the normalized

gene expression profile was the input file. The “cancer type”

parameter was set as “Other”. The “previous immunotherapy”

parameter was set as “No”. Based on TIDE analysis, patients were

assigned a TIDE score according to gene expression profile, with a

score < 0 defined as immunotherapy responders, and patients with a

TIDE score > 0 considered as non-responders. In addition, the

submap algorithm was applied to evaluate the patient’s response to

immunotherapy according to the data set of 47 patients with

melanoma (13), performed using the Submap module in

GenePattern (https://cloud.genepattern.org/).
Identification of differentially expressed
genes between responders and
non-responders

Differentially expressed genes (DEGs) between responders and

non-responders were screened by the “limma” R package based on the

criteria |log2-fold change (FC)| > 1 and false discovery rate (FDR)

< 0.05.
Optimal variable identification by machine
learning algorithms

Two machine learning algorithms, SVM-RFE (Support Vector

Machines-Recursive Feature Elimination) and LASSO (Least

Absolute Shrinkage and Selection Operator), were utilized to screen

the optimal molecule variables between liver cancer immunotherapy

responders and non-responders (14). The glm function in R software

was utilized for logistic model construction.
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Biological exploration

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were conducted using the

“clusterProfiler” package and visualized by the “circlize” package (15).

Gene Set Enrichment Analysis (GSEA) was utilized to identify biological

differences between two specific groups. Chromosomal number

variation (CNV) levels were obtained from the TCGA database.
Estimation of immunological characteristics
in the TME

Six methods, namely, TIMER, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT, and CIBERSORT-ABS, were applied to assess the levels

of tumor-infiltrating immune cells (TIICs). We calculated the activity

of seven critical steps of cancer immunity cycles with the ssGSEA

method (16). We collected 46 key immune checkpoints (PD-1, PD-

L1, CTLA-4, etc.) and evaluated their relationship with the

CombinedScore. T-cell inflamed score (TIS) reflecting pre-existing

anti-cancer immunity in the TME could predict the response to

immune checkpoint blockade (17).
Single-cell analysis

The evaluation of specific genes at the single-cell level was

conducted based on the Tumor Immune Single-cell Hub website

(http://tisch.comp-genomics.org/home/) (18).
Immunohistochemistry staining

Six paired paraffin-embedded primary liver cancer tissues and

corresponding adjacent non-tumor tissues were collected at The First

Hospital of Jilin University. Immunohistochemistry (IHC) staining

was conducted to assess the expression of CDCA7 of the primary liver

cancer tissues compared with the corresponding adjacent non-tumor

tissues. Briefly, slide-mounted sections were brought to room

temperature, dried for 30 min, and then heated at 105°C for 10 min

in a citric acid buffer (0.01 M) for antigen retrieval. Hydrogen

peroxide (3%) was utilized to inactivate the endogenous enzyme at

room temperature for 10 min. Following the blocking step by bovine

serum albumin, the primary antibodies against CDCA7 (1:200;

Rabbit# abs140624, absin) were applied to incubate the slices

overnight at 4°C. After incubation with the secondary antibody at

37°C for 30 min, horseradish peroxidase and diaminobenzidine were

used as chromoplast to visualize the immunohistochemical reaction.

The slices were re-stained with hematoxylin and sealed with neutral

gum. Finally, they were observed with an upright microscope from

Leica (Germany) at ×100 and ×400 magnification, respectively.
Statistical analysis

All statistical analyses were performed in R software. Kaplan–

Meier (KM) survival curve was used to compare the prognosis
Frontiers in Immunology 03
between the two groups. According to the data distribution, Student

t-tests and Mann–Whitney U tests were applied. The receiver

operating characteristic (ROC) curve was utilized to assess the

prediction performance of identified variables. A p-value < 0.05 was

statistically significant.
Results

DEGs associated with response
to immunotherapy

The flowchart of the whole study is shown in Figure S1. First, a

TIDE analysis was performed, and each patient was assigned a TIDE

score, with scores of <0 and >0 defined as immunotherapy responders

and non-responders, respectively (Figure 1A). KM survival analysis

revealed that responders had a superior OS compared to non-

responders (log-rank test, p = 0.041) (Figure 1B). Next, 569 DEGs

were identified between responders and non-responders with the

following cutoff criteria: |log2FC| > 1 and FDR < 0.05 (Figure 1C). We

then conducted a functional enrichment analysis to explore the

potential biological functions of these DEGs. Significant enrichment

in biological processes like passive transmembrane transporter

activity and channel activity was found (Figure S2). Additionally,

KEGG analysis indicated that these DEGs were significantly enriched

in cancer-related pathways, including glutamatergic synapse,

neuroactive ligand−receptor interaction, and cell adhesion

molecules (Figure S3). Subsequently, two distinct algorithms,

LASSO and SVM-RFE, were utilized to screen the optimal

immunotherapy variables. Thirty feature genes were obtained based

on the LASSO algorithm to narrow the range of DEGs (Figures 1D,

E). Meanwhile, we performed the SVM-RFE algorithm on a set of 147

feature genes from the top 200 DEGs based on feature value ranks

(Figure 1F). After intersecting with genes obtained by the LASSO and

SVM-RFE algorithms, 16 candidate genes were identified (GNG8,

MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180,

POU3F1, SAG, POU2AF1, IGFBPL1, CDCA7, ZNF492, ZDHHC22,

and SFRP2), which were defined as candidate DEGs that determine

response to immunotherapy for LIHC (Figures 1G, H).
Performance of differentially expressed
genes and logistic model

We next compared the difference in these DEGs between

immunotherapy responders and non-responders. Results indicated

that all DEGs associated with response to immunotherapy, including

GNG8, MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1,

C14orf180, POU3F1, SAG, POU2AF1, IGFBPL1, CDCA7, ZNF492,

ZDHHC22, and SFRP2, were upregulated in the immunotherapy

non-responders (Figure 2A). Results of ROC curves showed a good

performance for the above DEGs in predicting immunotherapy

response (Figures 2B–Q; GNG8, AUC value = 0.836; MYH1, AUC

value = 0.721; CHRNA3, AUC value = 0.726; DPEP1, AUC value =

0.870; PRSS35, AUC value = 0.868; CKMT1B, AUC value = 0.746;

CNKSR1, AUC value = 0.851; C14orf180, AUC value = 0.709;

POU3F1, AUC value = 0.808; SAG, AUC value = 0.740; POU2AF1,
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AUC value = 0.835; IGFBPL1, AUC value = 0.788; CDCA7, AUC

value = 0.865; ZNF492, AUC value = 0.703; ZDHHC22, AUC value =

0.683; SFRP2, AUC value =0.683). Moreover, a logistic model was

constructed as follows: CombinedScore = GNG8 *−10.78483 +

MYH1 *−13.871063 + CHRNA3 *7.145731 + DPEP1 *1.633124 +

PRSS35*1.512479 + CKMT1B *−25.128123 + CNKSR1 *−4.046955 +

C14orf180 *−11.320222 + POU3F1 *−3.030164 + SAG *−153.590288

+ POU2AF1 *2.342797 + IGFBPL1 *−2.818206 + CDCA7 *−1.219284

+ ZNF492 *−14.944845 + ZDHHC22 *−98.522042 + SFRP2 *

−8.299996. The model yielded an excellent performance in

predicting the response to immunotherapy (Figure 2R, AUC value

= 0.996). Principal component analysis of the 16 DEGs could

effectively distinguish between immunotherapy responders and

non-responders (Figure 2S). Meanwhile, we found that the

responders had a higher CombinedScore (Figure 2T).
The calculated CombinedScore is associated
with a higher immunotherapy response

We examined the relationship between clinical and pathological

characteristics and the CombinedScore and found significant

differences in clinical parameters, including age, gender, and stage

(Figures 3A–D). Moreover, we found that the CombinedScore was

negatively correlated with the TIDE score, dysfunction score, and

exclusion score (Figures 3E–G). Considering the difference between
Frontiers in Immunology 04
patients with a high and low CombinedScore for immunotherapy, we

compared the key immune checkpoints among those patients.

Interestingly, the results indicated that all immune checkpoint

genes (PD-1, PD-L1, CTLA-4, etc.) were significantly upregulated

in patients with a low CombinedScore (Figure 4A). Furthermore, the

CombinedScore was negatively correlated with the expression of all

immune checkpoints and the scores of various immunotherapy

response-related pathways, including the IFN-g signature, APM

signal, and base excision repair (Figures 4B, C). Moreover, the

results of the SubMap algorithm revealed that the patients with a

low CombinedScore responded better to both PD-1 and CTLA4

blockades (Figure 4D).
Validation of the CombinedScore in the
ICGC cohort

Next, the ICGC cohort was used to validate our results. The

ICGC-FR and ICGC-JP were selected, and a significant batch effect

was observed. Using the “sva” package in the R software, we

performed a combination of data and significantly reduced the

batch effect (Figures 5A, B). In the combined ICGC cohort, we

calculated the CombinedScore for validation. A negative correlation

was found between the CombinedScore and the TIDE score,

dysfunction score, and exclusion score in the combined ICGC

(Figures 5C–E). Moreover, all immune checkpoint genes were
B

C D E

F G H

A

FIGURE 1

Identification of DEGs of liver cancer immunotherapy. (A) TIDE analysis was performed to evaluate the response to immunotherapy in liver cancer
patients, with TIDE scores <0 and >0 defining immunotherapy and non-responders, respectively. (B) Kaplan–Meier curves between responders and non-
responders. (C) The volcano plot of DEGs between responders and non-responders. (D, E) LASSO algorithm. (F) SVM-RFE algorithm. (G, H) Sixteen DEGs
of immunotherapy were identified, namely, GNG8, MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180, POU3F1, SAG, POU2AF1, IGFBPL1,
CDCA7, ZNF492, ZDHHC22, and SFRP2.
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significantly upregulated in patients with a low CombinedScore

(Figure S4A). Furthermore, the CombinedScore was negatively

related to the expression of key immune checkpoints and the scores

of various immunotherapy response-related pathways, like the IFN-g
signature, APM signal, and base excision repair (Figures S4B, C).

Meanwhile, in the ICGC cohort, we found that the patients with a low

CombinedScore were more sensitive to PD-1 and CTLA4 blockades

(Figure S4D).
Calculated CombinedScore is associated
with liver cancer immune microenvironment

It is well established that a complex immune microenvironment

can affect the response to immunotherapy in LIHC patients. We

adopted several immune assessment algorithms to investigate the

relationship between the CombinedScore and the TME. Interestingly,
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the ESTIMATE algorithm revealed that the immune score, stromal

score, and ESTIMATE score were significantly lower in the high-score

group than in the low-score group (Figures 6A–C). The high-score

group had higher tumor purity (Figure 6D). We employed six

a l gor i thms (TIMER, CIBERSORT, CIBERSORT-ABS ,

QUANTISEQ, MCPCOUNTER, and EPIC) to estimate the levels of

TIICs. It was found that higher infiltration levels of numerous TIICs

(including CD8+ T cells, CD4+ T cells, NK cells, macrophages, and

DCs) were concentrated in the low-score group (Figure 6E).

Spearman correlation analysis further suggested that most

recognized TIICs were negat ive ly corre lated with the

CombinedScore (Figure 6F). Furthermore, there were significant

negative correlations between the CombinedScore and the activities

of the anti-cancer immunity cycles, such as the release of cancer cell

antigens, anti-cancer immune priming and activation, and immune

cell trafficking (Figure S5). Consistently, these findings indicated that

anti-cancer activity was higher in patients with lower CombinedScore.
B C D E F

G H I J K

L M N O P

Q R S T

A

FIGURE 2

Evaluation of the performance of DEGs. (A) Expression level of characteristic genes identified in immunotherapy responders and non-responders. (B–Q)
ROC curves were utilized to evaluate the prediction ability of characteristic genes in patients’ immunotherapy response. (R) The ROC curve of
CombinedScore, which was calculated based on the identified characteristic molecules. (S) Principal component analysis of the identified genes on
patients’ immunotherapy response. (T) The CombinedScore difference in immunotherapy responders and non-responders. *** represents p < 0.001.
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Biological difference

Current evidence suggests that biological differences can lead to

diverse treatment outcomes. GSEA indicated that in patients with a high

CombinedScore, many metabolism pathways were activated, including

butanoate metabolism, fatty acid metabolism, glycine serine and

threonine metabolism, primary bile acid biosynthesis, and propanoate

metabolism (Figure 6G). For patients with a low CombinedScore, cell

adhesion molecules (cams), cytokine–receptor interaction, ECM–

receptor interaction, hematopoietic cell lineage, and neuroactive

ligand–receptor interaction were enriched (Figure 6H). To further

explore genomic differences, we quantified the percentage of copy
Frontiers in Immunology 06
number and the corresponding GISTIC score of TCGA-LIHC

patients (Figures 7A, B). Patients with a low CombinedScore had a

higher level of frequency of amplification at chromosome 20q and 22q

sites and a higher deletion frequency at the 3p, 4p, 4q, 5p, 5q, 7q, 11p,

13q, 14q,15q,16p, 16q, 17p, 19p, and 22q sites (Figure 7C). Moreover,

there are some genomic differences between patients with a high- and

low CombinedScore in SCNA level (Figure 7D).
CDCA7 is associated with patient survival

Univariate Cox and KM survival analyses were conducted based

on the identified DEGs, and CDCA7 was significantly correlated with
B C D

E F G

A

FIGURE 3

The calculated CombinedScore is associated with clinicopathological features. (A) Relationship of the CombinedScore and clinicopathological features in
the TCGA-LIHC cohort. (B–D) Differences in clinicopathological features, including gender, age, and stage between high- and low-CombinedScore
groups. (E–G) The CombinedScore had a negative correlation with TIDE score, dysfunction score, and exclusion score. ** represents p < 0.01;
*** represents p < 0.001; NS represents not significant.
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patient survival (Figures 8A–D). The correlation analysis indicated

that the expression of CDCA7 was positively correlated with Tregs,

follicular helper T cells, activated CD4+ memory T cells, resting

dendritic cells, and memory B cells, and negatively correlated with

resting NK cells, activated NK cells, monocytes, and resting mast cells

(Figure 8E). We explored the correlation between CDCA7 and

macrophages. Moreover, the result of the CIBERSORT algorithm

showed that CDCA7 was positively correlated with M0 macrophages

but negatively correlated with M2 macrophages (Figure 8E).
Frontiers in Immunology 07
Furthermore, the correlation analysis showed that the

CombinedScore was positively correlated with M2 macrophages

and negatively associated with M0 macrophages (Figures 8F, G).

Accordingly, CDCA7 was used for further exploration. Single-cell

analysis showed that CDCA7 was expressed mainly in prolif T cells

(Figure 8H). Furthermore, our immunohistochemical results

confirmed that the staining intensity of CDCA7 was prominently

increased in the nucleus in primary liver cancer tissues compared to

adjacent non-tumor tissues (Figures 9A–D).
B

C

D

A

FIGURE 4

The calculated CombinedScore is associated with patient immunotherapy. (A) The key immune checkpoint (PD-1, PD-L1, PD-L2, CTLA-4, etc.)
expression in patients with high- and low-CombinedScore in the TCGA-LIHC cohort. (B) The correlations between the CombinedScore and the
expression of immune checkpoints. (C) The correlations between the CombinedScore and scores of immunotherapy-predicted pathways. (D) Submap
algorithm was conducted to evaluate sensitivity to PD-1 and CTLA-4 blockades in patients with a high- and low-CombinedScore. * represents p < 0.05;
** represents p < 0.01; *** represents p < 0.001.
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Discussion

Liver cancer is the leading cause of cancer-related deaths globally

and ranks fifth in the United States (1). The incidence of liver disease

in developing countries is higher than in developed countries, making

liver cancer one of the deadliest cancers (19). Various dietary

exposures, genomic differences, lifestyle, hepatitis virus, and fat are

risk factors for liver cancer (20). Current evidence suggests that liver

cancer is associated with a poor prognosis, with only 5% to 15% of

patients indicated for surgical resection with early-stage disease (21).

Consequently, much emphasis has been placed on identifying new

treatment options. Interestingly, it is widely believed that combining

drugs and altering drug administration/delivery methods can

improve malignant tumor outcomes (22). The death of cancer cells

is usually mediated by the immune system. MHC molecules of class I

and II receive tumor-fragmented peptides during this process (23).

Additionally, tumor progression can be prevented by targeting tumor

growth biomarkers and connective tissue formation (24). There is no

doubt that immunotherapy has great potential for clinical application

in liver cancer patients.

Here, we performed a TIDE analysis to evaluate the response rate

to immunotherapy in LIHC patients. Based on LASSO logistic

regression and SVM-RFE algorithms, we identified GNG8, MYH1,

CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180,

POU3F1, SAG, POU2AF1, IGFBPL1, CDCA7, ZNF492,

ZDHHC22, and SFRP2 as DEGs of liver cancer immunotherapy.

During clinical practice, detecting the relative expression of these

characteristic genes could help clinicians predict the response to liver

cancer immunotherapy, guiding individualized therapy. We then
Frontiers in Immunology 08
constructed a logistic model based on DEGs for immunotherapy,

which was also verified in the combined ICGC cohort. Notably, the

complex interaction between the TME and tumor cells significantly

affects immune escape and immunotherapeutic efficacy (25).

Therefore, understanding the TME status and the proportion of

immune cell infiltration might contribute to optimizing treatment

strategies and assessing tumor prognosis.

We investigated the underlying players of the CombinedScore in

terms of TME features. Patients with a lower CombinedScore had

higher ESTIMATE, immune, and stromal scores and lower tumor

purity. The results of six different immune filtration platforms

revealed that patients with a lower CombinedScore had relatively

high innate and adaptive TIIC infiltration, while patients with a

higher CombinedScore exhibited relatively low TIIC infiltration. As a

result, patients with a lower CombinedScore exhibited higher activity

of preexisting antitumor immunity in TME.

Interestingly, the results of the TIDE algorithm suggested that the

CombinedScore was negatively correlated with the TIDE score and

dysfunction score. Indeed, the TIDE score integrated T-cell

dysfunction and removal characteristics and simulated tumor-

immune escape with different levels of TIICs (26). In many solid

tumors, although TIICs significantly infiltrate the tumors, T-cell

dysfunction is observed with higher tumor infiltration of

macrophages (M2) and the overexpression of many inhibitory

immune checkpoints, which could weaken the ability of TIICs to

kill tumor cells and promote the growth and progression of tumors,

resulting in tumor invasion and metastasis (26, 27). This finding was

consistent to a certain extent with our results. We found that the

CombinedScore was negatively related to the scores of several
B

C D E

A

FIGURE 5

External validation in the ICGC cohort. (A) ICGC-FR and ICGC-JP were selected for validation. (B) The “Sva” package was used for data combination
(ICGC-FR and ICGC-JP). (C–E) The CombinedScore had a negative correlation with TIDE score, dysfunction score, and exclusion score in the combined
ICGC cohort.
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immunotherapy-predicted signatures and steps of the cancer-

immunity cycle.

Furthermore, our study confirmed that the CombinedScore had a

negative relationship with the expression of key immune checkpoints,

showing a higher expression in the low CombinedScore group. These

results emphasized that although patients with a low CombinedScore

had more TIICs in the TME, its immune cell dysfunction and

immune escape were also stronger, which could weaken the ability

of immune cells to kill tumor cells, consistent with the literature. Due

to the higher immunosuppression and lower immunoreactivity in the

TME, such patients were often more suitable for immune checkpoint
Frontiers in Immunology 09
inhibitor therapy (28). We also confirmed that the low

CombinedScore group may respond better to immune checkpoint

inhibitor treatment using the SubMAP algorithm.

We then performed GSEA to investigate the significant pathways

differentially activated between high- and low-CombinedScore

groups. GSEA showed that upregulated pathways included

butanoate metabolism, fatty acid metabolism, glycine serine and

threonine metabolism, primary bile acid biosynthesis, and

propanoate metabolism. In most tumors, lipid metabolism is

abnormally activated, which allows them to produce, prolong, and

desaturate fatty acids to fuel their growth (29). An alteration in cancer
B C D

E

F G

H

A

FIGURE 6

Immune microenvironment analysis. (A–D) Comparisons of the stromal score, immune score, ESTIMATE score, and tumor purity in high- and low-
CombinedScore groups. (E) Heatmap showing immune cell infiltration levels in high- and low-CombinedScore groups by six immune infiltration
algorithms (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, and EPIC) was used to quantify the immune microenvironment of liver
cancer patients. (F) Correlation analysis between the abundance of immune cells infiltrating from six immune infiltration algorithms and the
CombinedScore. (G, H) Results of the GSEA in high- and low-CombinedScore groups. *** represents p < 0.001.
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cell energy metabolism influences immune responses in the TME,

which promote tumor growth (30). It has been shown that PIWIL1

enhances energy production by regulating fatty acid metabolism and

inhibits liver cancer progression (31). While elucidating the results of

logistic modeling, we also discussed the roles of individual

characteristic molecules of immunotherapy, specifically in

tumor immunomodulation.

Interestingly, we found that CDCA7 exhibited a negative

association with tumor prognosis. A previous study showed that

CDCA7 was highly expressed in HCC, which could facilitate cell

proliferation and invasion of HCC by recruiting CEBPB to elevate the
Frontiers in Immunology 10
expression of EZH2 (32). Cai et al. also demonstrated that the

downregulation of CDCA7 suppressed EZH2 expression to arrest

angiogenesis (33). Moreover, the target gene of Myc CDCA7 is

reportedly overexpressed in human cancer and promotes tumor

transformation (34, 35). Li et al. indicated that CDCA7 was highly

involved in EMT by regulating the expression of Smad4 and Smad7 in

the TGF-b signaling pathway (36). Thereafter, we focused on

analyzing the specific association between CDCA7 and immunocyte

infiltration and found that CDCA7 was negatively correlated with M2

macrophages and positively correlated with M0 macrophages. Our

findings suggested that CDCA7 could influence liver cancer cell
B

C

D

A

FIGURE 7

Genomic burden. (A, B) The copy number burden of TCGA-LIHC patients in percentage and GISTIC score level. (C) The genomic difference between
patients with high- and low-CombinedScore in amplification frequency and deletion frequency levels. (D) The genomic difference between patients with
a high- and low CombinedScore in SCNA level. * represents p < 0.05.
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progression by affecting macrophage polarization, providing a

theoretical basis for liver cancer immunotherapy. Future studies are

warranted to validate the effects of CDCA7 on tumor biology and

macrophage polarization in biological experiments such as cell

culture and mouse models.

In summary, based on high-quality data and analysis, our findings

provide a foothold for future studies in liver cancer immunotherapy.
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We developed and validated a well-grounded logistic model

according to TIDE results in LIHC, which could effectively predict

the immunotherapy response of liver cancer patients. Meanwhile,

several limitations and shortcomings were found in this study. First,

the findings of our study may be affected to a certain extent by racial

bias, given the low proportion of Asians and Africans in the enrolled

samples. Furthermore, in some cases, clinical information was
B
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FIGURE 8

CDCA7 is associated with patients’ survival. (A) Univariate Cox analysis of the characteristic molecules. (B–D) KM survival curves of CDCA7, POU3F1, and
PRSS35. (E) Correlation of immune cell infiltration levels with group infiltration levels using the CIBERSORT algorithm. (F, G) Correlation of
CombinedScore infiltration levels with M0 and M2 macrophage. (H) Single-cell analysis of CDCA7 in liver cancer. * represents p < 0.05; ** represents p <
0.01; *** represents p < 0.001.
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incomplete, such as information on M-stage for a large percentage of

patients. Finally, it should be borne in mind that the immunotherapy

response predicted by TIDE was determined by a bioinformatics

algorithm, which exhibits a limited ability to reflect real-world

situations. More robust conclusions are expected from studies

analyzing the genomic data of LIHC patients treated with

immunotherapy in the future.
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SUPPLEMENTARY FIGURE 1

The whole flow chart of the study.

SUPPLEMENTARY FIGURE 2

GO enrichment analyses of DEGs.
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FIGURE 9

Representative immunohistochemical staining of CDCA7 in primary liver cancer tissues and corresponding adjacent non-tumor tissues. (A) The
expression of CDCA7 in primary liver cancer tissues (×100). (B) The expression of CDCA7 in corresponding adjacent non-tumor tissues (×100). (C) The
expression of CDCA7 in primary liver cancer tissues (×400). (D) The expression of CDCA7 in corresponding adjacent non-tumor tissues (×400).
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SUPPLEMENTARY FIGURE 3

KEGG enrichment analyses of DEGs.

SUPPLEMENTARY FIGURE 4

(A) Expression of key immune checkpoints (PD-1, PD-L1, PD-L2, CTLA-4, etc.)
in patients with a high- and low-CombinedScore in the combined ICGC cohort;

(B) Correlations between the CombinedScore and expression of immune
checkpoints in the combined ICGC cohort; (C) Correlations between the
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CombinedScore and immunotherapy predicted pathways scores in the
combined ICGC cohort; (D) Submap algorithm was conducted to evaluate

the sensitivity to PD-1 and CTLA-4 blockades in patients with a high- and low-
CombinedScore in the combined ICGC cohort.

SUPPLEMENTARY FIGURE 5

Correlation analysis between CombinedScore and the activities of the

anticancer immunity cycles.
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