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Pulmonary fibrosis is an irreversible disease, and its mechanism is unclear. The lung

is a vital organ connecting the respiratory tract and the outside world. The changes

in lung microbiota affect the progress of lung fibrosis. The latest research showed

that lung microbiota differs in healthy people, including idiopathic pulmonary

fibrosis (IPF) and acute exacerbation-idiopathic pulmonary fibrosis (AE-IPF). How

to regulate the lung microbiota and whether the potential regulatory mechanism

can become a necessary targeted treatment of IPF are unclear. Some studies

showed that immune response and lung microbiota balance and maintain lung

homeostasis. However, unbalanced lung homeostasis stimulates the immune

response. The subsequent biological effects are closely related to lung fibrosis.

Core fucosylation (CF), a significant protein functional modification, affects the

lung microbiota. CF regulates immune protein modifications by regulating key

inflammatory factors and signaling pathways generated after immune response.

The treatment of immune regulation, such as antibiotic treatment, vitamin D

supplementation, and exosome micro-RNAs, has achieved an initial effect in

clearing the inflammatory storm induced by an immune response. Based on the

above, the highlight of this review is clarifying the relationship between pulmonary

microbiota and immune regulation and identifying the correlation between the

two, the impact on pulmonary fibrosis, and potential therapeutic targets.

KEYWORDS

lung microbiota, immune regulation, microecology, lung fibrosis, IPF – idiopathic
pulmonary fibrosis
Abbreviations: ILD, interstitial lung disease; ECM, extracellular matrix; IPF, idiopathic pulmonary fibrosis; AE-

IPF, acute exacerbation-idiopathic pulmonary fibrosis; AEC, alveolar epithelial cells; ADCC, antibody-

dependent cell-mediated cytotoxicity; SPA, Staphylococcal protein A; TCR, T cell receptor.
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1 Introduction

With the development of the study on the pathological mechanism of

interstitial lung disease (ILD), basic medical research is paying more and

more attention to the pulmonary microbiota and immune regulation

mechanism of lung fibrosis. The influence of immune regulation on the

lung microbiota may be the core event of the progression of pulmonary

fibrosis (1, 2). Previous research has found that abnormal intestinal

microbiotas destroy the immune barrier and participate in immune-related

diseases in terms of different strains, the proportion of flora, and

opportunistic pathogenic bacteria. The occurrence and development of

human diseases are closely related. The lungs and intestines are connected

with the external environment, and there are colonized microbiota and

opportunistic pathogenic microorganisms in the microbiota.

Bronchoalveolar lavage fluid (BALF) metagenomics has confirmed

different bacterial structures in other states of ILD. Meanwhile, various

pathogenic bacteria seriously affect the progress and prognosis of lungfibrosis

(3, 4). Previous studies have shown that intestinal microbiota and immune

regulation are inseparable. A stable microbiota is vital to maintaining an

immune balance. Once the lung microbiota is unbalanced, it will result in

aberrant immunological signal transduction. On the one hand, the above

biological effects will cause the reproduction of pathogenic bacteria in a

vicious cycle, further damage the pulmonary microbiota, and participate in

the occurrence and development of lung fibrosis (5, 6). On the other hand,

the unbalanced microbiota will cause the antigen-presenting cell (mainly

macrophage), B cell, T cell, and natural killer cell to participate in pathological

biological effects. The cells mentioned above are immune executors, further

activating the signal pathway related to pulmonary fibrosis, causing the

polarization state of macrophages in the lung stroma to change and

the transformation of intrinsic fibroblasts into myofibroblasts, aggravating

the progress of IPF. In the process of protein participating in immune

regulatory response, more than 50% of the proteins are glycoproteins These

proteins are involved in lung fibrosis while performing the body’s immune

regulation. The literature has reported that core fucosylation (CF), a critical

functional glycoprotein modification, regulates pathological immunity. And

CF becomes a crucial link in myofibroblast accumulation and extracellular

matrix deposition (ECM) in the lung stroma by regulating the activation of

multiple signal pathways (7–9). Because of the above, the current means to

remodel the lung microbiota includes antibiotic therapy, Vitamin D

supplementation, and micro-RNA. To a certain extent, although some

patients with AE-IPF benefit, the lesion of IPF still cannot be reversed.

Therefore, it is reasonable to speculate that the future modification of CF

between immune regulation and lung microbiota may become a possible

new strategy for treating IPF. In this review, we review three points. 1. The

difference of lung microbiota in different pathophysiological states of

pulmonary fibrosis. 2. The immune response to abnormal lung

microbiota. 3. Based on immune regulation after microecological

imbalance, current therapeutic direction.
2 Pulmonary microbiota

2.1 Pulmonary microbiota in healthy people

The limitations of traditional pathogenic microbial techniques,

previous studies thought that patients’’ lungs were sterile. However,

with the development of high-throughput sequencing technology,
Frontiers in Immunology 02
more and more researchers found that the pulmonary microbiota

consisted of various flora distributions in pulmonary microbiota. In

ordinary healthy people, lung microbiota originate from the upper

respiratory tract due to the continuity of airway anatomy (10). As

usual, lung colonization is lipophilic microorganisms, including

propionibacterium, Staphylococcus, and Corynebacterium (1). On

the other hand, a study reported that lung microbiota was not entirely

similar to the upper respiratory tract. Dickson et al. found

Tropheryma Whipple, the bacteria not found in the upper

respiratory tract (2). Therefore, it breaks the traditional opinion

that the upper respiratory tract is the only source of

microorganisms in the lower respiratory tract. Besides, we found

that respiratory tract microbes may be various in different

populations, such as newborns (11). Biological colonization also has

specific differences because of other delivery methods (12). In natural

childbirth, the pulmonary mucosa microbial species in the skin, oral,

pharynx, and intestinal tract were similar to those in the mother’s

vaginal microorganisms (13). However, the microbial community in

a cesarean fetus was more identical to the organisms in its

mother’ s skin and environment (14, 15). To be summarized, the

microbiotas in the healthy lung have some variations in different

anatomical localization.
2.2 Pulmonary microbiota in IPF

Candida, Neisseria, Actinomycetes, and other series were first

found in BALF and extracted from 17 patients with stable idiopathic

pulmonary fibrosis (IPF). Another Japanese study proved that the

most prevalent lung phyla were Firmicutes, Proteobacteria, and

Bacteroidetes. Meanwhile, decreased microbial diversity was in 8

AE-IPF patients in the deterioration group. Additionally, decreased

abundance of Firmicutes, Streptococcaceae, and Veillonellaceae were

significantly associated with the progression of ILD (16). In 2019, a

study reported that the lung microbiota of IPF in bleomycin-induced

mice and their bacterial abundance was higher. The Haemophilus,

Candida, Neisseria, and Weberia of IPF were more abundant via the

dysregulated microbiota. Besides, these dysregulated microorganisms

could stimulate persistent alveolar damage and cause the progression

of ILD. In turn, interleukin-17B (IL-17B) production demonstrates

that dysregulated lung commensal bacteria drive IL-17B production

to promote pulmonary inflammation and fibrosis through their outer

membrane vesicles (17).

On the other hand, some studies found lung microbiota related to

gene polymorphism. For instance, mucin gene promoter

polymorphism of rs35705950 increases the survival rate of IPF.

Furthermore, the gene polymorphism could enhance the immune

tolerance of pathological microbiotas and regulate the protein post-

translational modification (18). Something deserves attention, and

there are also significant differences in oral bacteria among IPF

patients. This phenomenon indicates microbial selection in the

lower respiratory tract is in the process of pulmonary fibrosis. It is

also unclear whether the oral pathogenic bacteria is close to the

pulmonary microbiota (19). Therefore, a larger sample size is needed

to confirm the change in bacterial abundance and the selection of

dominant flora in pulmonary microbiota in IPF.
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2.3 Pulmonary microbiota in AE-IPF

AE-IPF refers to the occurrence of new diffuse alveolar injury,

which leads to the progressive aggravation of restrictive ventilation

dysfunction. We cannot avoid the poor prognosis of IPF, but we

should actively look for the causes of AE-IPF (20, 21). The

mechanism of AE is unclear, but it is clear that infection is involved

in lung fibrosis. Pathogenic microorganisms participate in AE-IPF.

These are also essential members of the lung microbiota. For instance,

staphylococcal could cause acute alveolar damage. It ruins the

biological characteristics of pulmonary microstructure. Aspergillus

could result in non-necrotic granulomatous lesions.

On the other hand, it accelerates the inflammatory cytokines

recruitment in the exudative stage. A prospective study showed that

among 65 patients with IPF, FVC decreased by more than 10% in 22

patients. AE-IPF was rated as the diagnosis of 22 patients. After observing

the bacterial load, structure, and composition in BALF patients with AE-

IPF. It found that the bacterial load of AE-IPF was much higher than that

of IPF; however, there was no significant difference in bacterial structure

and composition (22). The reduction of bacterial diversity could activate

the immune regulation of lung microbiota and indirectly lead to new

diffuse lung injury (23). Therefore, the increase in bacterial load is closely

related to acute progression and high mortality of AE-IPF (24, 25). In a

case-control study in Korea, 18 patients with AE-IPF had a higher

bacterial load in BALF than 14 patients with stable IPF. However, at the

operational taxon level of BALF, Campylobacter and P. Elongatum

increased significantly in AE-IPF, while P. veronicas decreased
Frontiers in Immunology 03
significantly. The results of this study are inconsistent with the

previous literature (26). Therefore, we further reasoned that this result

might be due to the following reasons: First, the sample size is too small.

The second reason, some IPF patients in this study received anti-infection

treatment. The third reason, the study lacked oropharyngeal specimens

as controls. To be summarized, in the future acquisition of clinical BALF,

we need to seriously consider the bronchial sampling route, the target

lobe of lavage, and the loss of negative control, which will indirectly affect

the highly sensitive flora sequencing. In particular, AE-IPF, a disease with

many confounding factors, high heterogeneity, and unknown underlying

disorders, should be interpreted with more caution. (Figure 1)
3 Immune response to abnormal lung
microbiota

3.1 Innate immunity response to abnormal
microbiota

In a broad sense, the change in microbial abundance refers to the

evolution of microbial structure, proportion, and colony (27). On the

level of chivalry, the change of microbial abundance mainly consists

of the reduced dominant flora, inverted microbial ratio, opportunistic

pathogenic bacteria multiplying, and unbalanced microbiota (28).

Innate immunity is the immunological guardian because of the

abnormal microbial abundance change (29). In the first step, the
FIGURE 1

The picture depicted the different pulmonary microbiota in various state of ILD.
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macrophage was the significant mediated cell in natural

immunological response (30). For instance, a previous study

reported that the function of macrophages could be ruined when

aspergillus is pathogenic (31).

Furthermore, the abnormally aspergillus proliferation could

re lease some inflammatory medium, including matr ix

metalloproteinases-3(MMP-3) and matrix metalloproteinases-9

(MMP-9), which represses mitochondrial respiration and oxidative

stress and produce overloaded oxygen free radical (32, 33). Thirdly,

MMP-9 is related to the upregulated TGF-b pathway in fibroblasts,

which activates this pathological fibrosis (34). Finally, it ruins antigen-

presenting function and formats the pathological foundation of lung

fibrosis (35). On the other hand, macrophage polarization also

participates a critical role in innate immunity in the process of

pulmonary fibrosis (36). For instance, fungi other than aspergilli,

such as schizophyllum, could induce allergic bronchopulmonary

mycosis (ABPM). And it stimulated the pre-stage lesion of

pulmonary fibrosis (37). Further consideration, the biological

characteristics of fungi could destroy the structure of the dominant

flora in the lung and then produce some inflammatory chemokines

(such as CCL17, IL-13, and M-CSF) (38), which accelerated the

pathological injury of macrophage polarization and recruited the

stronger inflammatory storm in the involved lung (39). Therefore,

microbial abundance change could take some pathological effect on

the innate immunological response, mainly influencing antigen

presenting process and macrophage polarization (40).
3.2 Specific immunity response to abnormal
lung microbiota

As usual, the specific immunity could divide into cellular and

humoral. However, the two others are closely linked and share some

pathological signal transduction. The abnormal pulmonary

microbiota often could influence the B cell function and TH-B cell

interaction (3). For instance, a previous study reported that the over-

loaded Haemophilus would increase the recruitment chemotaxis of

neutrophils. And further recruit more chemokines to exudative

lesions in the early stage of lung fibrosis (41). Recently, a study

found that the release of neutrophil elastase is an essential link in

cystic pulmonary fibrosis. Because neutrophil elastase could destroy

the pulmonary capillary barrier and activate the B cell immune

response (4, 42), the abnormal pulmonary microbiota can lead to

Staphylococcus becoming an opportunistic pathogen (43).

Staphylococcal protein A (SPA) is a surface protein of

staphylococcal, which combines with mucin of the cell wall. It

binds to the Fc segment of IgG in humans and mammals (44). SPA

affects innate cellular immunity because it has anti-phagocytosis. SPA

also hinders the specific binding of antigens and antibodies because

SPA is the carrier of Staphylococcus. Because SPA indirectly weakens

the neutralization and clearance of the antibody to the particular

antigen (45, 46). On the other side, Staphyolysin could constrict small

blood vessels, cause local ischemia and necrosis, and cause smooth

muscle spasms (47). For instance, a-hemolysin is an exotoxin, which

can result in the collapse and necrosis of capillaries. It is the

pathological foundation of angiogenesis in lung fibrosis (48).

Thereby, the over-loaded Haemophilus or the opportunistic
Frontiers in Immunology 04
pathogenic Staphylococcus may play a critical role in affecting

cellular immunity. Antibody-dependent cell-mediated cytotoxicity

(ADCC) involves many immunological regulation (49). ADCC is

also an integral approach to cellular apoptosis. And participate in the

alveolitis of the denaturation phase in lung fibrosis (50). First is the

inflammatory cytokines released by the M2 and NK cells. However,

M2 cells are a large family, and different subtypes of M2 affect

immune response (51). Previous studies reported that fungi or

aspergillus could influence the differentiation of macrophages.

Then, unbalanced microbiota leads to the auto-immune disorder of

lung fibrosis. As the secreting IL-4, IL-10, and PDGFA (52). Finally, it

results in the over-killing effect of ADCC, which induces the beginning of

lung fibrosis. On the other hand, the function of NK cells depends on the

regulation of chemokines, and the appropriate level of chemokines may

alleviate diffuse alveolar damage (53). However, an unbalanced

pulmonary microbiota is the ideal culture medium for chemokines,

such as MMP-13, IL-10, and CCL22 (54, 55). In this case, the over-

expression of chemokines could enhance the ADCC and promote the

persistent injury of the pulmonary lesion in lung fibrosis. To be

summarized, the unbalanced flora structure or pathogenic colony

might be a significant step for adaptive immune response in lung fibrosis.
4 Immune regulation

4.1 CF as the primary immune regulation

Firstly, fucosylation is the modification of protein post-

translation and includes two aspects. 0-glycosyl type took the

hydroxyl groups of serine, threonine, hydroxylysine, and

hydroxyproline as the connecting points. With the phenol amino

group of asparthalamide and the N-terminal amino acid a - Amino

and lysine or arginine w - The amino group is the connecting point,

forming the N-glycosyl type. In the second place, N-glycan

fucosylation is equipped with stable physicochemical properties.

And might be considered the ideal targeted direction of IPF therapy.

Thirdly, CF is the targeted measure to regulate many immunological

responses in protein post-translation. CF is catalyzed by

fucosyltransferase 8 (Fut8). CF is the significant fucosylation

pattern on the surface of glycoproteins (56). In detail, Fut8

transfers the guanosine diphosphate-fucose (GDP-Fucose) to the

sixth carbon atom on the N-acetylglucosamine (GlcNAc) of the N-

glycan, forming an a-1, 6-glycosidic bond which called as CF (57). It
is reasonable to propose that CF could affect the glycosidic linkage

flexibility and conformation of proteins, resulting in modification of

protein interactions or assembly. CF participates in many

immunological responses, especially in senescent alveolar

epithelial cells (AECs) (58). The senescent AECs have the

potential to differentiate the myofibroblast, which is the initiator

of extracellular matrix accumulation, consequently, the formation of

the basis of pulmonary fibrosis (59). Previous studies reported that

Fut8 gene knockout dramatically impacts the function of

glycoproteins, which exerts an enormous part on immune

responses. To be summarized, antigen-presenting cell expression

(mainly macrophage), cell transduction, and antibody-dependent

cell-mediated cytotoxicity (ADCC) were closely related to CF

(60, 61).
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4.2 CF regulates macrophage polarization

The macrophage and dendritic cells are the primary antigen-

presenting cell; the antigen-presenting cell plays a significant role in

immunological response. On the other hand, the CF regulates the

macrophage, particularly macrophage polarization (62). Firstly, the

macrophages could be classified into classically activated

macrophages (M1) and alternatively activated macrophages (M2)

(63). M2 could differentiate into four subtypes, including M2a, M2b,

M2c, and M2d. Every subtype of M2 plays a role in lung fibrosis (64).

Secondly, as the post-translational glycoprotein modification, CF

affects macrophage polarization, which is the core step of lung

fibrosis, especially on the N-glycans of the surface glycoproteins

(65). Meanwhile, macrophage polarization needs glycoproteins to

recognize signal information (66). Monocyte-derived macrophages

secrete macrophage colony-stimulating factor (M-CSF) in an

autocrine manner. Monocyte-derived macrophages also produce

Platelet-derived growth factor subunit A (PDGFA) and matrix

metallopeptidase 13 (MMP13). All of them could stimulate lung

fibrosis (5, 6). Thirdly, alveolar and monocyte-derived macrophages

can be polarized into the M2 phenotype (67). M2 macrophages

produce tissue growth factor-b1 (TGF-b1), inducing the

differentiation of fibroblasts into myofibroblasts (68). Fourth, M2a

cells can promote the Production of interleukin-13 (IL-13) and

several other chemokines, such as C-C motif chemokine ligand 17
Frontiers in Immunology 05
(CCL17), CCL18, and CCL22, which is the foundation of pulmonary

inflammatory injury (69). M2a also execute clearing by phagocytosis;

they actively participate in extracellular matrix (ECM) remodeling

and angiogenesis. All the steps are the premise of pulmonary fibrosis

(70). Conversely, the M2c could initiate the overexpression of IL-4

and IL-10 under persistent inflammatory factor stimulation (71).

Finally, M2 can also depolarize to M0 macrophages or exhibit the

opposite phenotypes by repolarizing. Macrophage polarization

depends on the cytokines in the specific pulmonary microbiota

(72). Because different lung microbiota possess various bacterial

loads, structures, and tolerance. Diverse microbiota may cause

various immunological cytokine secretions. Therefore, CF may have

the potential approach to solve the abnormal repair of macrophage

polarization in certain lung microbiota. (Figure 2)
4.3 CF regulates the TH-B cell interaction

Firstly, CF regulates the pre-B cell receptor (pre-BCRs). The

functional pre-BCR complex consists of a constant region of the

heavy chain (UHC), immunoglobulin (Ig), and surrogate light chain

(SLC) (73). Loss of CF could influence the pre-BCR assembly and

reduce the binding affinity between the targeted antigen (Ags) and

pre-BCR (74). Secondly, pre-B cells differentiate into mature B-cells

upon B cell activation. B-cell recognizes both soluble and membrane-
FIGURE 2

The picture depicted the core fucosylation regulating macrophage polarization on lung fibrosis pathology.
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associated antigens (Ags) by BCRs with the help of antigen-presenting

cells (7), and B-cells immediately respond to external stimulation (8).

After recognizing Ags, BCRs on B-cells could trigger signal

transduction that eventually induced B-cell activation and antibody

(Abs) production. Loss of CF reduced the lipid raft formation of B

cells and alleviated the overexpression of BCRs recognition (9).

Thirdly, B cells could process and present the Ags peptide with the

help of major histocompatibility complex class II (MHC-II). Then,

the peptide-loaded MHC-II complex (pMHC-II) on B cells could be

recognized by Ag-specific armed T-help cell (TH cell) via T cell

receptor (TCR) (75). Lastly, During the TH-B interaction, activated

TH cells produce cytokines for the B lymphocyte’ s clonal expansion

and differentiate into Ab-secreting cells. Therefore, the appropriate

TH-B exchange would take a protective effect (76). However, excessive

TH-B exchange may take pathological effects, especially the lung

fibrosis possesses persistent severe inflammatory response storm

(SIRS) (77). For instance, CF could promote the recruitment of

TCR to the synapse and enhance TCR internalization, enhancing

the immune response and boosting apoptosis, inducing the necrosis

of AECs (78). As we know, the senescent AECs are the origins of

diffused alveolitis damage and the foundation of lung fibrosis. To be

summarized, the knockdown of the Fut8 may be the potential
Frontiers in Immunology 06
targeted option to solve the hyperactivity of TH-B interaction

because Fut8 could down-regulate CF expression (79, 80). (Figure 3)
4.4 CF on regulating the induction of ADCC

Firstly, CF occurs typically in human immunoglobulin G (IgGs)

and plays a significant role in IgG function. As we know, IgG

participates in the ADCC and mediates apoptosis in cellular death

(81). Secondly, a previous study proved that each IgG molecule has a

highly conserved N-glycan at Asparagine (Asn) in the heavy chain2/

heavy chain 3 (CH2/CH3) domain. “““““. The highly conserved N-

glycan plays a crucial role in sustaining the conformation of the Fc

domain of IgGs (82). Thirdly, multiple sugar chain moieties extend

from Fc domains toward each other into the IgG interchain region

and stabilize the IgG framework (83). On the other hand, CF N-

glycans attached to the Fc region are a critical determinant of ADCC,

as the deletion of core fucose from the Fc region enhances its binding

affinity to the fragment crystallizable receptor” (FcgRs) and

significantly improves ADCC (84). The de-fucosylated IgG-Fc

domain enhanced the induction of ADCC about 50~100-fold (85,

86). Therefore, future studies could take CF as the artificial
FIGURE 3

The picture depicts the core fucosylation regulates ADCC and lymphocyte information transduction about lung fibrosis.
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intervention of the ADCC approach (87). Furthermore, de-

fucosylated modification may alleviate the abnormal apoptosis by

natural killer cells (NK cells), which indirectly relieves the aberrant

immunological response of fibrotic pathology (88). In future studies,

regulating the balance between CF and de-core fucosylation in lung

fibrosis might be a new potential targeted therapy. (Figure 3)
5 Potential targeted therapy based on
the relationship between lung
microbiota and immune regulation

5.1 Antibiotic therapy

It remains unclear whether bacterial superinfection ILD directly

triggers fibrosis in individuals with underlying ILD. However, the

clinical report demonstrated that infections accelerate the

deterioration of lung fibrosis, and antibiotic treatment reduces

mortality in these patients (89, 90). Something deserves our

attention. A previous study found that macrolides, such as

erythromycin, clarithromycin, and azithromycin, are antibiotic

compounds. They are effective against Gram-positive and Gram-

negative bacteria. Including streptococci, Haemophilus,

staphylococci, mycoplasma, mycobacteria, and chlamydia (91).

Apart from their established antibacterial effects, there is growing

evidence for an immune-regulating effect of macrolides (92). Firstly,

the dual effect of macrolides on bacteria and host immune cells (93).

Macrolides inhibit bacterial protein translation by interfering with the

ribosome subunit. They reduce biofilm production and bacterial

adherence (94). Secondly, an immunomodulatory effect is achieved

via lowering the Production of inflammatory cytokines, such as

tumor necrosis factor (TNF), interleukin-1 (IL-1), and nitric oxide

(NO) (95, 96).

Conversely, macrolides could increase IL-10 as an anti-

inflammatory cytokine (97). IL-10 is one of the most important

anti-inflammatory cytokines produced by T or B regulatory cells

(16). IL-10 is central in protecting host tissue during infection by

inhibiting the synthesis of interferon-gamma (IFN-g) synthesis by

both T cells and NK cells (98). Therefore, the macrolides might

become a potential targeted option. When abnormal pulmonary

microbiota mainly includes Gram-positive and Gram-negative

bacteria. However, when fungi cause microecological lung disorder,

antifungal treatment is still controversial because it lacks the support

of basic experiments.
5.2 Vitamin D supplementation

The latest study reported that Vitamin D3 could alleviate lung

fibrosis in mice in mouse pneumoconiosis (99). In detail, the original

research demonstrated that Vitamin D3 could regulate macrophage

polarization, which is the crucial step of immune response in injured

AECs. Firstly, CD68 and Mrc1 represent two different identities of the

classical macrophage classification of M1 and M2 (100). Secondly,

single-cell RNA-sequencing data suggested that the Mrc1 expression

increased in alveolar macrophages after 9-month coal dust particle
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stimulations (101). The original study proved that vitamin D3

supplementation could inhibit the over-activated M2 through

immune fluorescence staining and regulate the TGF-b pathway

(102). As we know, the TGF-b pathway plays a critical role in lung

inflammation and is a recognized indicator of fibrosis. To be

summarized, Vitamin D exerts its beneficial effects on many

macrophage components, such as modulating phagocytic activity

and cytokine production. Significantly, Vitamin D could alleviate

the inflammatory injury of macrophage polarization (103). Thereby,

in future studies, vitamin D supplementation might be a clinical

strategy to solve the disorder of lung fibrosis.
5.3 Exosomal miRNAs

Firstly, exosomes are cell-secreted, nanosized, bi-lipid vesicles

continuously secreted from various cells. AECs, inflammatory cells,

and fibroblasts could be the secreted cell (99–101). In the second

place, exosomes contribute to biological processes by transporting

various bioactive molecules, such as miRNAs, proteins, and lipids.

These bioinformatic performers could execute different functions

during the pathophysiological mechanism of IPF (104). For

instance, the exosomes regulate angiogenic pathways by transferring

miRNAs. Furtherly alleviate the collapse and destruction of

pulmonary capillaries in IPF patients (105–107). Thirdly, exosomes

could promote the polarization of macrophages when the lung

microbiota changes. For example, M2 as the executor, responded to

unrelenting lung injury. However, the overreaction of M2 under the

influence of chemotactic factors could start the waterfall effect of the

inflammatory storm. It indirectly accelerates the inflammatory

exudation at the early stage of lung fibrosis. Oppositely, the

exosome could hind the secretion of inflammatory chemotactic

factors, including IL-13 and CCL-27 (67–69). Hence, future

research focuses on the relationship between the immune

regulation of IPF and microRNA secreted from the exosomes.

In 2021, an original Chinese study reported that exosomes could

treat pulmonary fibrosis in mice via the therapeutic function of

microRNA-29 (miR-29). And microRNA-29 could alleviate the

occurrence of pulmonary fibrosis by downregulating the TGF-b/
Smad3 signaling pathway in lung fibrosis mice (104). In this case,

exosomal miRNAs started as the potential therapeutic option for end-

stage pulmonary fibrosis. Firstly, miRNAs are a class of highly

conserved endogenous small non-coding RNAs widely distributed

in animals, which regulate cell differentiation, proliferation, and

apoptosis by degrading the target mRNAs or inhibiting translation

to regulate gene expression (105, 106). In other words, the miRNA

plays a significant role in regulating the immunological function and

protein expression (107). Secondly, evidence suggests that miRNAs

are not randomly integrated into exosomes. MiRNAs are more

prevalent in exosomes than in the cells from which they originate

(108). Thirdly, introduce the function in detail. As we know, Alveolar

epithelial cell type II (AEC-II) apoptosis is a critical determinant in

the initiation and development of lung fibrosis (109). miRNA-30a is

downregulated in a murine bleomycin-induced lung fibrosis

model (110).

Furthermore, miRNA-30a overexpression has been proven to

inhibit AEC-II apoptosis by dampening mitochondrial fission
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through dynamin-related protein (111). In contrast, TGF-b, as the

classic pathogenic pathway, also could inhibit the expression of

miRNA-29c and Fac receptors, causing AEC-II apoptosis and

fibrosis (112). Fourthly, miRNA was closely related to inflammatory

storms and autophagy (113). The inflammatory battery is associated

with the onset of lung fibrosis. For instance, miRNA-506 was shown

to target the 3’-UTR of nuclear factor-kB (NF-kB)/p65 to reduce its

expression, and p65 Inhibition significantly reduced lung fibrosis and

inflammation (114). Thus, miRNA-506 may regulate the

inflammatory response in pulmonary fibrosis.

On the other hand, FOXO3a is one of the targets of miRNA-96;

miRNA-96 expression is reduced in carbon black nanoparticle

(CBNP) induced injured epithelial cells, which is accompanied by a

significant increase in the expression of a-smooth muscle actin (a-
SMA) (115). These effects were suppressed following miRNA-96

transfection, suggesting that miRNA-96 silencing can lead to an

upregulation of FOXO3a, thereby stimulating pulmonary ECM.

Nevertheless, miRNA-21 expression was significantly elevated in a

nano-nickel-induced murine lung injury model, and fibrosis and

miRNA-21 silencing inhibited TGF-b1 signaling and alleviated lung

fibrosis (116). Regarding autophagy, autophagic cell death, also

known as type-II programmed cell death, is a biological

phenomenon that promotes eukaryotic cell regeneration (117).

Previous studies suggested the downregulated expression of

miRNA-326 in the fibrotic lung tissue of mice.

In contrast, miRNA-326 upregulation could alleviate silica-

induced lung fibrosis in vivo research (118). In other words, the

overexpression of miRNA-326 can inhibit silica-induced lung fibrosis

by inhibiting inflammation and promoting autophagy by targeting

TNFSF14 and PTBP1. Fifthly, miRNA also plays a significant role in

proliferation and differentiation (119). In pulmonary fibrosis,

fibroblasts differentiate into myofibroblasts, which may secrete a

more incredible amount of ECM and collagen components than

fibroblasts, aggravating lung fibrosis (120). For instance, the

downregulated miRNA−7 expression is in polymyositis−associated

interstitial lung diseases (PM-ILD) (121).

Meanwhile, another study revealed that miRNA−7 attenuated the

proliferation and differentiation of fibroblasts by inhibiting SMAD2

expression (122). However, other miRNA molecules, such as miRNA

−30, miRNA −101, and miRNA −344, can inhibit fibrosis by

suppressing fibroblast proliferation, whereas miRNA−328 and

miRNA −420 exert the opposite effect and stimulate the

pathogenesis of lung fibrosis (123). Therefore, miRNA has the

potential to apply to pulmonary fibrosis treatment. To be

summarized, the miRNAs in exosomes come from a wide range of

sources. Exosomes are nanoscopic particles that are still difficult to

detect and isolate (124). Although the exosome isolation and

identification techniques continuously evolve, there is a lack of

standardization. Hence, reproducible methodology to quantify

specific exosomes in clinical samples is still challenging.
5.4 3D Models of IPF and drug discovery

Despite significant research, effective therapies for IPF face

challenges due to the lack of in vitro models to mimic disease

pathophysiology. In this case, lung 3D cultures, including precision-
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cut lung slices (PCLS) and hydrogels, have emerged as valuable tools for

drug discovery of IPF (125–127). For instance, a new study

demonstrated PCLS maintains the native lung microbiota and is a

relevant in vitro model to study lung fibrosis and drug testing in a

diseased tissue condition (128). We hope that more prospective studies

will be conducted to evaluate the efficacy and safety of PCLS in treating

IPF. On the other hand, hydrogels are water-swollen crosslinked

networks of polymers and offer another in vitro model to study IPF.

Hydrogels can be customized to model normal or diseased microbiotas

by altering biomaterials and crosslinking mechanisms (129). Although

lung 3D technology is still in phase 1 of the clinical trial, more original

research might open potential therapeutic options for IPF.
6 Highlight and limitation

The highlights in this article included three points as follows.

Firstly, our manuscript is the first review to clarify the relationship

between pulmonary microbiota and immune regulation. Secondly, we

revised the difference in lung microbiota in different states in ILD. We

also reviewed that core fucosylation is critical in immune regulation

during lung microbiota disorder. Thirdly, we summarized potential

targeted therapy based on the relationship between pulmonary

microbiota and immune regulation. However, in terms of possible

treatment, microRNA is still a challenge in the clinical application of

lung fibrosis because there is no standardized method to acquire

microRNA. In patients with pulmonary fibrosis, there is no dose-

response study of vitamin D supplementation regulating pulmonary

microbiota. In future studies, further research to investigate the

potential treatments based on the precise relationship between lung

microbiota and immune regulation. To better clarify the prospects for

their future clinical application in this field.
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