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Cholangiocarcinoma is characterized by a poor prognosis with limited treatment

and management options. Chemotherapy using gemcitabine with cisplatin is the

only available first-line therapy for patients with advanced cholangiocarcinoma,

although it offers only palliation and yields a median survival of < 1 year. Recently

there has been a resurgence of immunotherapy studies focusing on the ability of

immunotherapy to inhibit cancer growth by impacting the tumor

microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug

Administration has approved the combination of durvalumab and gemcitabine

with cisplatin as the first-line treatment of cholangiocarcinoma. However,

immunotherapy, like immune checkpoint blockade, is less effective in

cholangiocarcinoma than in other types of cancer. Although several factors

such as the exuberant desmoplastic reaction are responsible for

cholangiocarcinoma treatment res istance, exist ing l i terature on

cholangiocarcinoma cites the inflammatory and immunosuppressive

environment as the most common factor. However, mechanisms activating

the immunosuppressive tumor microenvironment contributing to

cholangiocarcinoma drug resistance are complicated. Therefore, gaining

insight into the interplay between immune cells and cholangiocarcinoma cells,

as well as the natural development and evolution of the immune tumor

microenvironment, would provide targets for therapeutic intervention and

improve therapeutic efficacy by developing multimodal and multiagent

immunotherapeutic approaches of cholangiocarcinoma to overcome the

immunosuppressive tumor microenvironment. In this review, we discuss the

role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and

reinforce the importance of inflammatory cells in the tumor microenvironment,

thereby highlighting the explanatory and therapeutic shortcomings of

immunotherapy monotherapy and proposing potentially promising

combinational immunotherapeutic strategies.
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1 Introduction

Cholangiocarcinoma (CCA) is the second most common

malignant liver cancer with a poor and short-term incurable

prognosis (1). According to their anatomical location, CCAs are

categorized as intrahepatic (iCCA), perihilar (pCCA), and distal

(dCCA), also referred to as extrahepatic CCA (eCCA), all of which

pose additional challenges for clinicians as they feature distinct

microenvironments and resistance to treatment (1), thus

necessitating different management approaches. Due to the ‘silent’

clinical characteristic of iCCA, diagnosis at an early stage remains a

challenge, and late-stage iCCA renders curative surgical resection

an unviable treatment option. Chemotherapy, using gemcitabine

and cisplatin (Gem+Cis), is the only approved treatment for

advanced CCA (2). However, most patients have poor outcomes,

and those who do respond, develop resistance to chemotherapy

over the course of treatment. Furthermore, there is no second-line

standard treatment available for effective systemic therapy for

advanced CCA. Advances in genetic profiling and classification

have helped develop a multitude of molecularly targeted agents,

many of which have entered clinical trial testing (3). Recently, the

United States Food and Drug Administration (FDA) approved

pemigatinib, an orally bioavailable inhibitor of the fibroblast

growth factor receptor (FGFR) 1/2/3, for patients with FGFR2

fusion or rearrangement (9–14% of patients) (4). However, these

agents are effective only against cancers with specific genomic

subsets (5). Therefore, other therapies targeting the remaining

CCA phenotypes and genotypes are warranted.

During the past decade, immunotherapy, particularly immune

checkpoint blockade (ICB), has achieved success in the treatment of

multiple malignancies (6). Following the TOPAZ-1 trial,

Durvalumab was approved by the FDA on September 2, 2022, to

be used in combination with Gem+Cis for the treatment of adult

patients with locally advanced or metastatic CCA (7).

Unfortunately, the varied disease subsets, desmoplastic stroma,

and the rich tumor microenvironment (TME) of CCA may

contribute to immunotherapy resistance (8). Moreover,

immunosurveillance and immune evasion between inflammatory

cells and cancer cells in the TME also contribute to immunotherapy

resistance (9). Therefore, understanding the natural development

and progression of the immune TME will provide insight into

immunotherapy for CCA. Recent research found that effector

lymphocytes, such as CD8+ cytotoxic T lymphocytes (CD8+ T

cells) more aggressively infiltrate the fibrous septa compared with

infiltration of the tumor lobules in CCA (10). As a result, ICB

therapy is largely ineffective in patients with CCA that have a

characteristically reduced effector immune cell infiltration (i.e.,

“cold tumors”). Traditional chemotherapy or radiotherapy is

thought to change the CCA immune microenvironment; some

treatments exert immunosuppressive effects, while others promote

immunostimulation (11–13), yet none of them are sufficient to

remodulate an “immune-cold” TME to an “immune-hot”.

Therefore, novel approaches and methodologies for CCA

treatments are in demand.
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The highly malignant nature of CCA is associated with complex

and dynamic interactions between tumor cells, stromal cells and the

extracellular environment (14). Due to its adhesive nature, CCA is

associated with the presence of a large number of stromal cells (15).

The stroma of CCA contains non-immune and immune cell types,

as well as capillary networks including tumor-associated fibroblasts,

tumor-associated endothelial cells and lymphocytes such as tumor-

associated macrophages (TAMs), tumor-associated neutrophils and

regulatory T lymphocytes (Tregs) (16). Stromal cells are recruited

and activated by tumor cells and, in turn, deleteriously shape tumor

behavior through the release of a wide variety of paracrine signals,

including cellular/chemokines, growth factors, morphogenesis and

proteases (17, 18).

Single-cell RNA sequencing (scRNA-seq) analysis has become a

powerful tool for revealing cellular diversity and intercellular

communication at single-cell resolution, through which different

functional sub-clusters of immune cells are identified (19). scRNA-

seq sequencing of the stroma yields key functional signatures of TME

in CCA and is paving the way for immunotherapy and cancer-related

fibroblast and extracellular matrix-directed therapies (20). scRNA-

seq has shown that the vascular-associated fibroblast subclass is

characterized by an enrichment of the microvascular system,

combined with a high level of IL-6 secretion, and subsequent

upregulation of the zeste 2 polycomb repressive complex 2 subunit

enhancer induces significant epigenetic changes in CCA cells (21).

This approach has greatly improved our understanding of tumor

pathogenesis and facilitated the screening of potential tumor

biomarkers and promising therapeutic targets. scRNA-seq has

emerged as a powerful tool for studying complex cellular

components in CCA tumor microenvironments.

Here, we review the recent advances in the role of the immune

system in CCA, based on the crosstalk between the innate/adaptive

immune system and the TME, mainly focusing on the opportunities

and challenges of future immune-based therapy in CCA.
2 The role of the immune system
in CCA

2.1 The innate immune system

Some immune cells and their associated cytokines act against

tumor proliferation while others exert pro-tumor effects, indicating

the complexity of the mechanisms underlying the immune response

and the need for further studies to optimize immunotherapy (22)

(Table 1) (23, 24) (Figure 1).

The innate immune response is the first line of defense against

cancer cells in the TME and plays a critical role in both initiating

antitumor immune responses and tumor progression (25).

Improving current immunotherapeutic approaches depends on the

understanding of the inhibitory and excitatory interactions that the

innate immune system has with the CCA microenvironment. Here,

we analyze recent discoveries in the role of various cell populations

within the innate immune system in the TME, particularly in CCA,
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with a focus onmacrophages, Kupffer cells (KCs), natural killer (NK)

cells, natural killer T cells (NKTs), dendritic cells (DCs), myeloid-

derived suppressor cells (MDSCs), and tumor-associated

neutrophils (TANs).
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2.1.1 Macrophages
Macrophages are highly plastic cells capable of transforming

into different phenotypes, including M1-like and M2-like

macrophages, which are crucial for the function of the innate
FIGURE 1

Biological role of the main immune components in the microenvironment of CCA.
TABLE 1 Role of main immune components in microenvironment and potential targets.

Innate immune
component

Type Secret cytokines/ chemokines Interaction with TME

Macrophages M1 IL-1, IL-12, CXCL10, interferon (IFN)-g, TNF-a and inducible nitric oxide synthase
(iNOS), etc.

Immunostimulation

M2 IL-4, IL-6, IL-10, IL-13, TNF-a, GM-CSF, ICAM-1, VEGF, EGF, CCL1, CCL3, CCL17,
CCL22, CCL24, etc.

immunosuppressive

Kupffer cells M1 NO, TNFa, IFNg, IL-1b, IL-6, COX-2, etc. Immunostimulation

M2 IL-4, IL-10, IL-13, TGF-b. Immunosuppressive

Natural killer cells IFN-g, TNF-a, GM-CSF, CCL3, CCL5, etc. Immunostimulation

Natural killer T cells perforin, Fas ligand, granzyme B, TNFa. Immunostimulation

Dendritic cells IL-12, CXCL9, CXCL10. Immunostimulation/
immunosuppressive

Myeloid-derived suppressor cells ARG1, iNOS, TGFb, IL-10, COX2, IDO. immunosuppressive

Tumor associated
neutrophils

N1 INFg, NETs, ICAM1, TNF-a, CXCL10, CCL7, CCL2, CCL3. etc. Immunostimulation

N2 IL-4, IL-8, IL-13, CCL2, CCL3, CCL4, CCL5, CCL8, CCL12, CCL17, CXCL1, CXCL2,
CXCL8, CXCL16. etc.

immunosuppressive

Tumor-associated embryonic substance VEGF, PGE2, TGFband IL6 (15). Endothelial nitric oxide synthase (eNOS), arginase and
IDO (16).

immunosuppressive

B lymphocytes Bregs IL-10, IL-35, TGFb, Lymphotoxin. immunosuppression

B effector
cells

IgG, IgM, IFN-y, ILs, TNFs, IFNs, Fas/FasL, TRAIL/Apo2L. Immunostimulation

T lymphocytes CTL cells perforin, granzymes, and granulysin, Fas/FasL. Immunostimulation

Th Cells IFNg, IL-2. Immunostimulation

Tregs TGF-b, IL-10, and IL-35. immunosuppression
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immune system. M1-like macrophages play a pivotal role in

proinflammatory signaling, providing a positive feedback loop in

the anti-tumor innate immune response (26), while M2-like

macrophages are involved in the inhibition of inflammation,

tissue repair and remodeling, angiogenesis, and tumor

progression (27). CCA cells can produce a significant amount of

interleukin-6 (IL-6) and transforming growth factor-beta (TGF-b)
and induce macrophage polarization towards the M2-like

phenotype via the IL6/STAT3 pathway (28). M2-like

macrophages, also known asTAMs, facilitate tumor development

and progression. In patients with iCCA, TAM-infiltrated hepatic

macrophages were activated predominantly as M2-like subsets,

which also infiltrate tumor lobules and construct a crosstalk

bridge between the innate immune response and the TME (28).

TAMs not only secrete cytokines, such as tumor necrosis factor-a
(TNF-a), IL-6, granulocyte-macrophage colony-stimulating factor

(GM-CSF), intercellular adhesion molecule 1 (ICAM-1), vascular

endothelial growth factor (VEGF), and epidermal growth factor

(EGF), but also various chemokines (CCL1, CCL 3, CCL 17, CCL

22, and CCL 24). Sun et al. reported that M2-TAMs promote iCCA

cells via epithelial-mesenchymal transition (EMT), partially via

releasing CSF2, TNF‐a, ICAM‐1, and IL‐6, subsequently

activating the AKT3/PRAS40 signal transmission (29). Thanee

et al. demonstrated that M2-TAMs correlate with CCA

extrahepatic metastases, possibly via the EMT processes (30).

They also found that the conditioned medium of M2-TAMs

promoted CCA migration. Besides metastasis, M2-TAMs also

correlate with the iCCA pathological grade and microvascular

density (15, 28). Moreover, M2-like macrophages can also attract

immune cells that are mostly immunosuppressive, such as TANs,

MDSCs, or Tregs by secreting IL4, IL8, IL10, CCL2, CCL22, and

CCL17 (31). Furthermore, macrophage‐derived Wnt ligands,

including Wnt3a and Wnt7b, promote CCA cell proliferation via

the canonical Wnt pathway (32, 33).

CCA is a lethal tumor that possesses a large number of

immunosuppressive bone marrow cells in the TME, including

TAMs and bone marrow-derived suppressor cells (34). CCA is

characterized by a prominent desmoplastic TME composed of

various cell types that support and promote tumor progression

(e.g., infiltrating immune cells and cancer-associated fibroblasts,

CAFs) and extracellular components (35). CCA cells and other

components of TME, direct macrophages to tumors by releasing

multiple factors including MCP-1/CCL2, CSF-1, and VEGF-A (36).

The recruitment and differentiation of macrophages into TAMs are

driven by specific subpopulations of CCA cells mediated by IL-13,

IL-34, and osteoactivin (15). In hilar CCA, the presence of some

macrophages expressing the angiopoietin receptor TIE2 (TEMs) is

related to a favorable prognosis (37). However, if a high number of

these immunosuppressive TAMs infiltrate the tumor, patients with

CCA display unfavorable disease-free survival and poor prognosis

(28, 29). Fortunately, this allows for the use of TAMs as therapeutic

targets. For example, the high rate of tumor infiltration with TAMs,

as observed in certain cancers like eCCA, demonstrates the

potential efficacy of TAM-targeted, synergistic immunotherapies,
Frontiers in Immunology 04
thereby enabling the development of optimized treatment (38). Xu

et al. showed that MMP19 and SIRPa could predict the ICB

response in iCCAs (37). Although increased expression of

MMP19 and SIRPa was predictive of poor prognosis for iCCAs

without postoperative immunotherapy, patients with increased

expression of SIRPa were more sensitive to immunotherapy,

while patients with increased expression of MMP19 were not

sensitive to immunotherapy (39).

Due to immunosuppression and the limiting effects of ICB,

targeting MDSCs and blocking MDSC recruitment may be an

attractive therapeutic opportunity (40). However, information

r e ga rd i ng th e pheno t ype s o f MDSCs in th e CCA

microenvironment remains limited. More importantly, the reason

for MDSC accumulation and activation in CCA compared with that

in the surrounding healthy tissues in specific patients remains

poorly understood. Therefore, the above question needs to be

addressed so that targeting the MDSCs can become a feasible

therapeutic approach to CCA.

Kupffer cells (KCs) are a subset of macrophages that combat

metastasis through the recruitment and activation of NK cells, NKT

cells, DCs, and cytotoxic molecules such as TNF-a (41). Conversely,

KCs promote cholangiocyte proliferation and carcinogenesis by

expressing increased levels of TNF-a near the iCCA lesions (42).

Therefore, CCA cells can resist attacks from immune cells through

an up-regulated production of inflammatory cytokines and

chemokines, contributing to TME remodeling (43).

2.1.2 NK cells
NK cells are a type of innate lymphoid cells that provide host

defense against tumors, in their microenvironment, through their

potent cytolytic function. Particularly in CCA, NK cells are the

predominant immune cells (44). It has also been demonstrated that

biliary epithelium can present lipid antigens to NK cells and activate

them via the non-polymorphic major histocompatibility complex

(MHC) homolog CD1d (45). NK cells are abundant in the liver

where they prevent cancer cells from invading the liver and induce

cancer cell death through a variety of cytotoxic pathways, including

particle-mediated, FasL-mediated, and TNF-mediated apoptosis (46).

Here, we discuss the role of NK cells in the innate immune response

against cancer and the new therapeutic approaches utilizingNK cells in

CCA. In iCCA, increased expression of the endogenousCXCL9 closely

correlates with prolonged survival by regulating tumor-infiltrating NK

cells and (47) augmenting anti-tumor immune surveillance (46).

Gentilini et al. (48) found that transfusions of in vitro amplified

human NK cells (SMT01) into nude mice carrying HuCCT-1

tumors significantly inhibited the growth of CCA. In vitro-activated

NK cells augment the cytotoxic efficacy of cetuximab against human

CCA cell lines (47). In a nudemice xenograftmodel of CCA, Jung et al.

demonstrated that NK cells are effective against CCA through their

characteristic cytolytic activity (49). At the same time, activation of

aberrant anti-apoptotic cascades in CCA enhances NK cell-mediated

resistance to apoptosis (50).

Further investigation of NK cells-based immunotherapy can

help determine cancer therapeutics for CCA.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1037945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1037945
2.1.3 DCs
DCs are innate immune cells primarily responsible for

recognizing and responding to foreign pathogen-associated

signals, presenting antigens for activating naïve T cells, and

shaping the acute immune response (51). Immature DCs have a

high capacity for endocytosis of lactose antigens and become

mature in response to various stimuli by binding to pattern

recognition receptors, characterized by costimulation (CD40,

CD80, and CD86) and increased surface expression of MHC

molecules. Mature DCs strongly promote immune responses (52).

Previous studies have shown that treatment with CD40 agonists in

combination with anti-PD1 antibodies significantly increases the

number of DC cells in ICC tissue and limits tumor growth (53).

DCs are also critical for the induction of both an antitumor

response (54, 55) and an immunosuppressive state (56) in the TME.

In CCA, mature DCs surrounded by CD4+ and CD8+ cells are

observed at the cancer periphery, indicating that DCs might

function as a bridge between the innate and the adaptive immune

response, which may reflect immune exclusion in the TME. Among

patients with CCA, those that exhibit mature CD83+ DCs had a

better prognosis and lower incidence of lymph node metastases

than those that are CD83− (57). In CCA, infiltration of mature

CD83+ dc was associated with the accumulation of CD4+/CD8+ T

cells in the peritumoral region. the presence of CD83+ dc was also

associated with improved patient prognosis (58). CCA cells and

their microenvironment secrete immunosuppressive cytokines,

such as transforming growth factor-b (TGF-b) and IL-10, which

inhibit the function of DCs, resulting in the reduced antitumor

activity of T cells (59). Panya et al. developed self-differentiated

monocyte-derived DCs (SD-DCs) that could express a cAMP-

dependent protein kinase type-1 alpha regulatory subunit. These

artificial DCs could significantly enhance the cytotoxic activity of

effector T cells, inducing a stronger adaptive immune response

against CCA (60). Correspondingly, the reduction of classical DCs

and TNF-a-producing proinflammatory DCs results in a defective

DC-mediated immune response in patients with iCCA (61).

Sadeghlar et al. (62). found that active DCs induced Th1 cytokine

expression in effector cells, proliferation, and tumor-specific

cytotoxicity against CCA.

Due to the dual role of anti- and pro-immune responses of DCs,

and the complicated involvement of DCs in the TME, their

applications in cancer immunotherapy in CCA still have a long

way to go.

2.1.4 TANs
TAN cells represent a subset of neutrophils that infiltrate

tumors and play a complex role in the innate immune system

(63). Through the release of different cytokines or chemokines,

TANs can either present an anti-tumorigenic phenotype mediated

by T cells called the N1-phenotype, or facilitate a pro-tumorigenic

phenotype called the N2-phenotype for tumor promotion in

different TMEs. Fridlender et al. suggested that TGF-b is the key

cytokine that defines the TAN phenotype and skews differentiation

from the N1 anti-tumorigenic phenotype to the N2 pro-

tumorigenic phenotype (64).
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In CCA, neutrophil recruitment is mainly induced by CXCL5

via PI3K-Akt and ERK1/2-MAPK pathways, thereby promoting

iCCA growth and metastasis (65). A positive correlation between

the number of TANs in patients with CCA has been reported; TAN

is a key regulator of inflammation and immune status (66). Previous

studies have also reported an association between TANs and poor

overall survival in eCCA (66) and iCCA (67), and shorter disease-

free survival (68). Though there are various advances in the field of

TANs-based cancer therapy, such as the targeting and exploitation

of N1 TANs to enhance immunotherapy for cancer treatment, data

on the immunosuppressive effects of TANs remain inconclusive

(69). Their relationship with the rest of the TME as well as the pro-

and anti-carcinogenic properties of TAN subtypes require further

investigation prior to clinical application (69). The exact property of

TANs in the CCA microenvironment remains controversial and

understanding the role of TANs as pro- or anti-tumor will help

develop strategies for cancer therapy (70).
2.2 The adaptive immune system and
crosstalk with TME

2.2.1 Tumor-infiltrating T lymphocytes
The adaptive immune system encompasses humoral and cell-

mediated responses. It is antigen specific, in terms of recruiting

certain cells under specific conditions for the targeted destruction of

cancer cells. The TME recruits a variety of tumor-infiltrating

lymphocytes (TILs) from the vasculature, most of which are white

blood cells. In the adaptive immune system, B cells and T cells

constitute the vast majority of TILs (71). This includes CD8+

cytotoxic T lymphocytes, CD4+ T helper lymphocytes, and CD4+

T regulatory cells, all of which play diverse roles in the function of

the adaptive immune system in the TME. During CCA initiation,

development, and metastasis, local imbalances of T cell subsets in

the adaptive immune system and CCA microenvironment have

attracted interest (48, 66, 72, 73). In one cohort of patients with

CCA, a higher number of infiltrating total lymphocytes, B cells,

CD4+, and CD8+ T cells was described as a favorable prognosis

marker (74). Systematic evaluation of T cell subsets may be key to

the development of effective immunotherapies.

2.2.1.1 CD8+ cytotoxic T lymphocytes

CD8+ T cells are robust immune cells that play a central role in

the adaptive immune response, controlling cancer growth within

the TME (75). More than half of resected CCAs are positive for

CD8+ TILs, of which, 30% are positive for Granzyme B, indicating

an activated and cytotoxic phenotype (68). Xia et al. (44) found that

Granzyme B+ CD8+ effector T cells were significantly associated

with overall survival in iCCA and dCCA. CD8+ T cells directly

destroy tumor cells by releasing proteins such as perforin and

granulozyme, and indirectly induce apoptosis by expressing FasL

or secreting TNF-a attached to target cell surface receptors (76).

Notably, Asahi et al. demonstrated that the accumulation of CD8+ T

cells around the outer border of the tumor also positively correlates

with an improved prognosis in postoperative patients with CCA
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(77). However, in another CCA cohort, Gu demonstrated that an

increased number of CD8+ T cells are preferentially present at the

tumor invasive front than in the intratumor area, suggesting an

immunosuppressive microenvironment inside of the tumor (67). A

recent study identified that intratumoral CD8+ T cell infiltration

can even up-regulate PD-L1 expression in affected cancer cells,

leading to adaptive immune resistance and tolerance, in CCA (78).

CD8+ T cells, which are part of the immune cells in the TME, are

common in iCCA and significantly affect the occurrence of iCCA.

CD8+ T cell infiltration is associated with better survival and lower

recurrence (79). Meanwhile, the potential use of CD8+ T cells as a

prognostic marker for CCA has also been highlighted, as a

significant increase in CD8+ T cell density is seen in

lymphoepithelial subtypes of Epstein-Barr virus-associated CCA

and is significantly associated with favorable prognosis for

iCCA (80).

2.2.1.2 CD4+ T helper lymphocytes

CCA cells induce apoptosis of CD4+ and CD8+ T cells through

the Fas/FasL pathway in tumor cells (81). CD4+ T helper

lymphocytes (Th cells) play a central role in the different stages of

adaptive immune responses. In the TME of CCA, Th cells mainly

accumulate at the tumor’s outer border margin (82) where they are

essential in helping B cells produce antibodies to inhibit tumor cell

proliferation, while CD8+ T cells phagocytose tumor cells (83).

Similar to many of the other cell types previously discussed, Th cells

have multiple heterogeneous subtypes that can confer both

protumor and antitumor effects. Based on specific cytokine

secretions, Th cells can differentiate into Th1, Th2, and Th17

cells. Th2, Th1, and Th17 cells produce IL-22, and this receptor

activation induces proliferative and antiapoptotic signals through

signal transducers and transcriptional activators (84). Generally,

Th1 cells mainly produce interferon- g (IFN-g) and IL-2 cytokines,

activate CD8+ T cells, and initiate antitumor response (85).

Th2 cells are primarily responsible for IL-4, IL-5, and IL-13

production, which is an integral part of the B cell-mediated immune

response (86). However, the Th17-derived cytokines, IL-17 and IL-

22, show both protumor and antitumor behaviors. These range

from facilitating an inflammatory response to controlling the

activation of myeloid cells and other T cells (87).

In a patient with metastatic CCA, Tran et al. successfully

inhibited lesion progression and prolonged stabilization of disease

by using adoptive transferring of mutation-specific Th cells (88).

TILs from patients with metastatic CCA contain CD4+ Th1 cells

and recognizable mutations in cancer-expressed erbb2 interacting

proteins (80). This suggests that the Th cell response can be

harnessed to mediate regression of advanced CCA (88).

Undoubtedly, Th cell-based therapies, focused on manipulating

the TME, will play an important role in CCA control and patient

management in the future (89).

2.2.1.3 CD4+ T regulatory cells

CD4+ Tregs differentiation depends on the expression of

Forkhead box P3 (FoxP3), an interaction critical towards effective

adaptive immune responses (90). Ma et al. identified the role of
Frontiers in Immunology 06
FoxP3 in tumor malignancy, as the downregulation of FoxP3

inhibits proliferation, invasiveness, and metastasis of tumor cells,

reduces IL-10 and TGF-b signaling, and blocks immune escape in

CCA (91). Similarly, CCA cells activate natural Treg-like

CD4+CD25− cells by increasing TGF-b and IL-2, thereby

compromising the immune response (92). Another study

confirmed that numerous Treg populations in the TME are

associated with lymphatic metastasis and worse overall survival in

eCCA patients, even with surgical resection (66, 93).

Therefore, a deep understanding of the pathways and

mechanisms leading to clonal enrichment of infiltrating Tregs

and exhausted CD8+ T cells in CCA will provide better strategies

to orchestrate the immune system to eradicate cancers.
3 Future direction and outlook for
CCA management

There is no systemic clinical management available for patients

with advanced CCA and disease progression following the current

standard treatment, i.e. , chemotherapy with Gem+Cis.

Additionally, the defensive functions of immune cells are

suppressed in CCA. Cytotoxic T cells and NK cells have poor

tumoral infiltration, and Tregs accumulate intratumorally.

Overexpression of PD-1, CTLA-4, and GITR also have negative

effects on TILs, bolstering immunosuppression of the tumor. Aside

from ICB therapy, other potential treatments for CCA, such as

peptide and DC-based vaccines and adoptive T cell therapies, are

currently being evaluated. Both stimulating or blocking immune

cells through immunotherapy in the TME of CCA and using these

vaccines in conjunction with other conventional therapies show

great potential (Table 2) (88, 94–107) (Figure 2).
3.1 Immunotherapy

The rapidly growing efforts for improving immunotherapy have

partly uncovered the underlying immune landscape of CCA and

paved the way for immune-oriented clinical trials. However, the

development of immunotherapy in this heterogenous and relatively

rare malignancy is consistently challenging.

3.1.1 Cell therapy for CCA
Adoptive T cell therapy is another potential treatment for CCA

that uses cytotoxic T lymphocytes, occasionally from a donor, to

more effectively infiltrate cold or immunosuppressive TMEs (108).

Tran et al. transferred mutation-specific Th1 cells with somatic

non-synonymous mutation-specific antigen-presenting cells to a

patient with metastatic CCA, resulting in a positive immune

response and a 30% reduction in tumor size (88). In a larger

cohort, the median progression-free survival (PFS) and overall

survival were significantly improved in 36 postoperative patients

with iCCA receiving an adjuvant adoptive transfer of T cells plus a

DC vaccine (94). Chimeric antigen receptor T (CAR-T) cell therapy

is another innovative strategy for managing CCA. A phase I study of
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11 patients with human epidermal growth factor receptor 2

(HER2)-positive advanced CCA (n = 9) treated with HER2-

targeted CAR-T therapy demonstrated disease control in 4/9

patients with CCA, which included a PR that lasted 4.5 months

(109). Likewise, Feng et al. successfully infused CAR-T cells

targeting epidermal growth factor receptor (EGFR) and CD133

into a patient with metastatic CCA and achieved small increases in

overall survival and cancer cell death, especially when combined

with other therapies (95). Phanthapho et al. demonstrated that A20-

2G and A20-4G CAR-T cells targeting integrin avb6 could

effectively kill CCA cell lines, indicating their potential for CCA

treatment. Allogenic gamma delta T cells, another potential

immunotherapy, were used in a patient with CCA after liver

transplantation and had similar increases in overall survival while

also boosting peripheral immune function and reducing metastasis

(96). In a 30-year-old male diagnosed with recurrent mediastinal

lymph node metastasis after liver transplantation for stage IV CCA,

the size and activity of the lymph nodes significantly decreased after

adoptive gd T cell transplantation (44).

However, larger cohorts of clinical trials are urgently needed to

verify the toxicity, safety, and efficacy of adoptive T-cell therapy

for CCA.
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3.1.2 Vaccine therapy for CCA
Three tumor antigens, such as CD247, FCGR1A, and Trap,

have been identified in CCA and are associated with a good

prognosis and antigen-presenting cell infiltration. They are also

potential antigens for the development of CCA mRNA vaccines

(110). Several vaccine-based strategies, including carcinoembryonic

antigen RNA-pulsed DCs and immunogenic peptides plus

gemcitabine, have been developed for CCA treatment, singly or in

combination (111). Antigens are expressed in most tumors, referred

to as tumor-associated antigens (TAA), which may become targets

of antigen-specific T cell responses, leading to tumor rejection.

Vaccines function as tumor rejection antigens to stimulate the

host’s adaptive immune response in the TME. Using these

techniques, various applications are undergoing active clinical

evaluation in CCA (112). The safety, toxicity, tolerance, and anti-

tumor efficacy of peptide vaccines, such as Wilms tumor 1 (WT1)

peptide vaccine (97, 113), mucin 1 (MUC1) peptide vaccine (98),

muc in 5AC (MUC5AC) pep t ide vacc ine (97 ) , and

carcinoembryonic antigen (CEA) peptide vaccine (97), were

verified in phase I clinical trials against advanced biliary tract

cancers. Furthermore, the feasibility of a personalized peptide

vaccination (PPV) was evaluated in a case report (93) and a
TABLE 2 Current immunotherapeutic strategies to treat CCA.

Immunotherapy Mode of
action

Application details

Immune checkpoint
blockade

Inhibit immune
checkpoints such
as PD-1, PD-L1,
CTLA-4, TIM3,
LAG3, IDO and
others.

Anti-PDL1: (atezolizumab, NCT03201458), anti-LAG3 (Sym022, NCT03489369).

Cell therapy Transfer of
tumor-specific
immune cells into
CCA patients.
Patient-derived
immune cells are
modified ex vivo
and retransferred
into the donor.

Th1 cells (78), Activated T-cell transfer (84), CART (85), allogenic gammadelta T cell (86), TAA-specific CTL (87),
Allogeneic NK Cell (NCT03358849), T Cells Modified With Chimeric Anti-CEA Immunoglobulin-T Cell Receptors
(IgTCR) (NCT00004178).

Vaccines Tumor-associated
antigens are
targeted to
overcome
immune
tolerance.

Antigenic peptides: WT1 (87), MUC1 (88), MUC5AC (87), CEA (87), CEA RNA-pulsed DC cancer vaccine
(NCT00004604), PPV (89), Dendritic cell-based vaccines (90), TRICOM-CEA(6D) (NCT00027534), TRICOM-CEA(6D)
(NCT00027534), .

Oncolytic virus Enhances
cytotoxicity and
inhibits tumor
growth

adenovirus (91, 92), vaccinia virus (93), measles vaccine virus (MeV) (94), herpes simplex virus (95, 96),

Combinations with
other
immunotherapies.

Inhibit multiple
immune
checkpoints such
as PD-1, PD-L1,
CTLA-4, TIM3,
LAG3, IDO and
others

nivolumab plus ipilimumab (anti-PD-1 plus anti-CTLA-4) (NCT02923934, NCT03101566) (97), XmAb20717 (anti-PD-1
plus anti-CTLA-4, NCT03517488), LY3434172 (anti-PD-1 plus anti-PD-L1, NCT03936959), Durvalumab plus
Tremelimumab (anti-PD-L1 plus anti-CTLA-4, NCT02821754), LY3321367 plus LY3300054 (anti-TIM3 plus anti-PD-L1,
NCT03099109), REGN3767 plus REGN2810 (Anti-LAG-3 plus Anti-PD1, NCT03005782), Lirilumab plus an Nivolumab
(Anti-KIR plus Anti-PD1, NCT01714739), Durvalumab plus SNDX-6352 (anti-PD-L1 plus CSF1R, NCT04301778),
INT230-6 plus anti-PD-1 and anti-CTLA-4 (NCT03058289), recombinant fowlpox-CEA(6D)/TRICOM plus sargramostim
(vaccine plus GM-CSF, NCT00028496), XmAb22841(anti-CTLA-4 plus anti-LAG-3,NCT03849469), XmAb22841 plus
Pembrolizumab (anti-PD-1 plus anti-CTLA-4 plus anti-LAG-3, NCT03849469) , NK Cell plus Pembrolizumab(anti-PD-1)(
NCT03937895).
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phase II clinical trial, which indicated a significant positive effect on

the immune response with almost nonexistent toxicity (99). DC-

based vaccines were designed due to their characteristic activation

of naïve T cells, which, in turn, will bolster acute antitumor

responses (51, 114). In vitro experiments demonstrated that when

DCs were combined with either specific tumor lysates (115) or

messenger RNA (100), the resulting induction of T lymphocyte

proliferation increases anti-tumor immune infiltration to target

CCA cells. The combination of a DC-pulsed vaccine with ex vivo

activated T cells appears promising for the treatment of biliary tract

carcinoma (116). However, this conclusion lacks in vivo data and

DC-based vaccines used in CCA have a long way to go before they

replace current therapies (117). In a recent study by Pan et al., a

CTLA4-PD-L1 chimeric protein vaccine (protein vaccine) was

constructed, which may function as a therapeutic and preventive

cancer vaccine in TAA-induced iCCA rat models (118). Hochnadel

et al. showed that in the CCA environment, the LmAIO strain can

induce Th1 immune response against tumor antigens, thus,

promoting the destruction of tolerance and epitope diffusion of

autoantigen (119). As a result, phase II, or III, clinical trials are

urgently needed to verify patient tolerance and anti-tumor efficacy

of peptide vaccines.

3.1.3 Oncolytic virus therapy for CCA
The use of an oncolytic virus is another gene therapy that is

useful against CCA, specifically targeting and killing infected tumor

cells without affecting healthy cells. Recently, some virus-based

therapies such as adenovirus (101, 102), vaccinia virus (103),

measles vaccine virus (MeV) (104), and herpes simplex virus

(105, 106) have been tested as a single modality or in
Frontiers in Immunology 08
combination in preclinical settings, exhibiting promising results

(120). Specifically, conditionally replicative adenoviruses (CRAds)

(101) and recombinant adenovirus (Adp27-jab-d), expressing p27-

jab-d (102), effectively enhanced cytotoxicity and inhibited tumor

growth in both in vitro and in vivo CCA. Adenovirus AxdAdB-3

reduced subcutaneous GBC tumor growth in nude mice compared

with placebo, while the addition of 5-fluorouracil to viral treatment

resulted in complete tumor regression in nearly 50% of treated mice

(121). Oncolytic vaccinia virus demonstrated pan-cancer-specific

lytic potency in different human and mouse CCA cell lines, showing

the highest virulence among several comparable recombinant

viruses, including vSC20, vSC65, vAng1, vTRAIL, and WT (122).

GLV-1h68, a replication-competent lysogenic vaccinia virus,

efficiently infected, replicated, and lysed three different CCA cell

lines in culture (123). This armed MeV vector (MeV P-SCD) could

efficiently replicate in three different human CCA cell lines, leading

to the expression of viral-encoded proteins and severe cell death in

two of the three cell lines studied (104). Zhu et al. (101) reported the

construction of three new CRAds agents that effectively target CCA

cells, induce strong cytotoxicity in vitro, and inhibit tumor growth

in mouse xenograft models in vivo. However, the major limitations

of adenovirus-based therapy to clinical application are its

insufficient infectivity and specificity towards tumor tissues,

halting significant progress using this treatment. Despite these

issues, other treatments, such as cancer-favoring oncolytic

vaccinia virus (CVV) therapies, may have more promising results

for uncured CCA patients (103). Slow growth and complete lysis

within CCA tumor blocks in CVV-treated nude mice in a xenograft

model demonstrate the therapeutic effect of CVV on CCA

tumors (103).
FIGURE 2

TME rationale of combination of ICB with other potential therapeutic strategies in CCA.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1037945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2023.1037945
3.1.4 ICB for CCA
Immune checkpoint molecules, such as CTLA-4 (124), PD-1/

PD-L1 (125), T cell immunoglobulin, mucin domain-containing 3

(TIM3) (126), lymphocyte activation gene 3 (LAG3) (127), and IDO

(128) are currently being assessed for their immune inhibitory

potential in the TME. PD-1/PD-L1 and CTLA-4 have attracted

attention in clinical trials. Sabbatino et al. and Gani et al. reported

that PD-L1 expression by CCA cells provides tumor cells with an

efficient immune escape mechanism, leading to poor tumor

differentiation, higher malignant tumor stage, higher levels of

apoptotic CD8+ TILs, and eventually poor patient survival (10,

129). Meanwhile, Lu et al. (130) found that PD1/PD-L1 signaling

was activated in a large group of iCCA tumor tissues and that

elevated PD1/PD-L1 signaling was positively correlated with a

malignant phenotype such as lymph node infiltration and high

TNM stage. Nakamura et al. (131) found that the subgroup with the

worst prognosis was characterized by an elevated expression of

immune checkpoint molecules such as PD-L1, based on genomic

and transcriptomic status. In addition, PD-L1 expression rates

range from 17.7 to 72.2% in different ICC cohorts, with T cell

infiltration present in most ICC samples (132). Zhou et al. observed

that CTLA-4 is over-expressed on the surface of TILs in CCA (83).

Furthermore, higher expression of both CTLA-4 at the tumor-host

interface of iCCA correlates with tumor recurrence and chemo-

resistance (74). Antagonistic targeting of CTLA-4 enhances effector

T cell proliferation, which was observed in the ex vivo stimulation of

TILs derived from CCA (83). These findings suggest that these

molecules are ideal targets for therapeutic stimulation of immune

cells in several clinical trials on CCA management (Table 3).

Although most clinical trials investigating ICB in advanced

CCA have failed to produce significant clinical outcomes, modest

but real responses in all subtypes and meaningful disease control

were recorded in CCA treated with ICB, with objective response

rates (ORRs) ranging from 5 to 20% (133). Moreover, the

advancement in biomarker-based ICB has shed light on the

complex biological heterogeneity within these tumors.

Approximately 6% of patients with eCCA have overexpression of

PD-1 and PD-L1 in the tumor area, which is linked to increased

tumor progression and metastases, particularly when accompanied

by low CD3+ or CD8+ T cell infiltration (134). Lu et al. reported that

in a cohort of Hepatitis B Virus (HBV) infected patients with CCA,

PD-1 T cells could be used as biomarkers to predict prognosis and

assess the efficiency of ICB therapy (73). Furthermore, Montal et al.

identified that the upregulation of PD-1/PD-L1 is associated with a

favorable response to ICB in eCCA (135). Fontugne et al. (136)

showed that PD-L1 expression in tumor tissue from patients with

iCCA is a biomarker to predict the efficacy of PD-1 inhibitor

therapy, while Ye et al. (73) reported a negative correlation

between CD8+ T lymphocytes and PD-L1 expression in iCCA,

with PD-L1 being a negative regulator of T lymphocytes.

Lee et al. (137) found that in Gem+Cis refractory CCA and PD-

L1 positive patients, pembrolizumab monotherapy showed durable

anti-cancer effects in approximately 10% of the study population

with a manageable overall safety profile. In addition, upregulation

of PD-L1 may promote ICC cell invasion and migration (138).
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Although recent phase I clinical trials have shown limited

overall efficacy of ICB in CCA, there have been promising aspects

of this therapy on a substantial portion of CCA tumors (139). In a

prospectively planned retrospective analysis of patients enrolled in a

multicohort clinical trial (KEYNOTE-158, NCT02628067),

pembrolizumab showed limited antitumor activity in 104

previously treated patients with advanced CCA. ORR was 5.8%,

complete response (CR) was achieved in no patients, and partial

response (PR) was achieved in six patients. KEYNOTE-028

(NCT02054806) is a non-randomized, phase Ib trial in which

pembrolizumab showed limited antitumor activity in 23

previously treated patients with advanced CCA. ORR was 13.0%,

CR was achieved in no patients, and PR was achieved in three

patients. In this report of patients with advanced CCA enrolled in

two clinical studies, patients with a typical response to

pembrolizumab monotherapy had a persistent response, all

lasting ≥ 6 months. A response duration of ≥ 24 months was

estimated in at least half of patients with a manageable safety profile

(140). Further research can help clinicians to accurately identify

patients who will maximally benefit from ICB cell therapy for CCA.

Immunotherapy used as a solitary treatment is insufficient to treat

solid tumor cancers such as CCA. Vaccines, upregulation of selected

cytokines, agonistic activation of costimulatory receptors, oncolytic

viruses, and other cellular therapies can encourage tumor inhibition,

while their combination with ICB provides an immunostimulatory

effect. As a result, there is a significant benefit of combination therapies

using molecular treatments targeting immunotolerant cells.
3.2 Combination therapy

3.2.1 Combinations with other immunotherapies
for CCA

Combinations of two or more ICBs make it possible to enhance

the function of immunotherapy across a wide spectrum of

malignancies (107). Some in-progress clinical trials further

explore the effects of the anti-PD-1/PD-L1 and anti-CTLA4

combination (Table 2). The above clinical data have indicated

that compared with monotherapy, dual or even triple ICB

synergy presents the potential to improve outcomes. However,

given the limited data, further Phase II/III clinical trials are

necessary before combination ICB therapy sees widespread use.

In addition, the combination of TIM-3, LAG-3, KIR, or several

other novel immune checkpoint inhibitors (ICI) also shows

potentially effective results (Tables 2, 3).

There is growing evidence that ICIs are effective, and these

inhibitors are now FDA-approved for a small subset of patients with

CCA, including those with tumors with deficient mismatch-repair

(dMMR) or microsatellite instability (MSI-H) and high tumor

mutational burden (TMB; ≥10 mutations/million bases) in

treatment-refractory settings (141).

However, there are no convincing data on co-inhibitory

checkpoint therapy for CCA. Further studies are desperately

needed to further assess the safety and efficacy of these

combination therapies in advanced CCA.
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3.2.2 Immunotherapy plus chemotherapy
for CCA

Sabbatino et al. showed that PD-1-expressing lymphocytes can

only properly infiltrate the fibrous septa, while tumor lobule

lymphocyte infiltration is almost nonexistent in iCCA (i.e., cold

tumors) (10). This indicates that even if PD-1 blockade could partly

overcome the tumor’s immune tolerance, the lack of cytotoxic T

lymphocyte (CTL) activity within the tumor remains a barrier to

achieving an effective anti-immune response against iCCA. The

decreased immune infiltration of iCCA tumors potentially explains

the poor efficacy of PD-1 monotherapy.

However, recent evidence suggests that standard chemotherapy

(Gem+Cis)may stimulate beneficial changes in both the tumor and the

immune system in the TME, thereby inhibiting immunosuppressive
Frontiers in Immunology 10
cells while increasing immunogenicity. Gem+Cis combination

enhances the immunogenicity and antigenicity of different tumors,

such as lung cancer, kidney cancer, colon cancer, breast cancer, and

prostate cancer, by upregulating the expression of human leukocyte

antigen (HLA) class I molecules on cancer cells (142). In CCA, Koido

et al. demonstrated that gemcitabine induces expression of WT1, PD-

L1, and calreticulinmRNAof the cancer cells (143). Recently, Sawasdee

et al. demonstrated that gemcitabine also upregulates the immune

functions of CTLs, resulting in a > 250% increase in their tumor

cytotoxic effects when compared with untreated CCA cells in vitro

(144). A Phase II clinical trial (NCT03951597) is currently testing

gemcitabine in conjunction with PD-1 antibody ICB (JS001), while

other clinical trials are investigating nivolumab or pembrolizumab plus

Gem+Cis (145). In the TOPAZ-1 trial, phase III randomized, double-
TABLE 3 Immune-related biomarkers in microenvironment and clinical molecular target in CCA.

biomarkers Site Biological significance

CTLA-4 Treg cells. Immune checkpoint molecules:
Surface protein binding to CD80 on antigen-presenting cells to inhibit cytotoxic cells.

PD-1 Immune cells. Immune checkpoint molecules:
surface protein binding to PD-L1 on cancer cells leading to immune escape.

PD-L1 Tumor cells,
immune cells.

Immune checkpoint molecules:
surface protein binding to PD-1 on immune cells leading to immune escape.

LAG3 Immune cells. Immune checkpoint molecules:
reduce T cell proliferation and cytokine secretion.

TIM-3 T cells, Treg cells,
macrophages,
DCs.

plays a key role in inhibiting Th1 responses and the expression of cytokines such as TNF and INF-g

IDO DCs,
macrophages, and
fibroblasts

suppression of CTL cells and NK cells as well as increased activity of Tregs and MDSCs.

ICOS T cells. induction and regulation of Th1, Th2, and Th17 immunity.

VEGF/VEGFR Endothelial cells. Activation of immunity by increasing the expression of endothelial cell adhesion molecules that directly interact with immune
cells for antigen recognition, rolling, adhesion and extravasation during immune responses. Inhibiting the maturation of DCs,
which suppresses immune activation.

PDGF Tumor cells. PDGF-D released by tumoral ducts attracts and activates liver fibroblasts to secrete VEGF-C/VEGF-A leading to tumor-
associated lymphangiogenesis and lymphatic invasion.

TGF-b Tumor stroma. Pro-fibrogenic cytokine.

CSF1/CSF1R Monocytes, Mo-
MDSCs,
macrophages.

supports differentiation and survival of TAMs, tumor promoting and immune suppressive. Critical drivers of immune escape in
the TME include TAMs and MDSCs.

TIE2 TAM and
Monocyte.

Distinct paracrine inducers of angiogenesis, convert T cells into Tregs and suppress tumor-specific immune responses.

FGFR Tumor cells. FGFR fusions result in constitutive tyrosine kinase activity, which in turn led to downstream signaling pathways activation, PI3K
activation enhances immune suppressor and pro-angiogenic potentials of TAMs.

EGFR Tumor cells. Remodels the TME to trigger immune escape by upregulation of PD-1, PD-L1, CTLA-4, and multiple tumor-promoting
inflammatory cytokines.

Mesothelin Tumor cells. It is an attractive target for cancer
immunotherapy because its normal expression is limited to mesothelial cells, which are dispensable.

Flt3/Flt3L Hematopoietic
stem cells /
progenitor cells

increases the number of immune cells (lymphocytes (B cells and T cells)) by activating the hematopoietic progenitors. stimulates
the development of NK cells and DC cells.

IFN‐g Activated T cells
and NK cells

critical to both innate and adaptive immunity, and functions as the primary activator of macrophages, NK cells, a master
checkpoint regulator for many cytokines.
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blind, placebo-controlled Gem+Cis combination plus durvalumab

(GC-D) was compared with Gem+Cis plus placebo (146). Based on

the recently announced increase in survival with GC-D compared with

Gem+Cis alone in TOPAZ-1 trials, ICI-based systemic therapy is

expected to be a new first-line treatment option regardless of the

TMB and MMR/MSI status (147). Compared with the Gem+Cis

group, the GC-D group had a median overall survival of 12.8

months versus 11.5 months (hazard ratio [HR], 0.80; 95% confidence

interval [CI], 0.66-0.97; p = 0.021), median PFS of 7.2 months versus

5.7 months (HR, 0.75; 95% CI, 0.64-0.89; p = 0.001), and ORR 26.7%

versus 18.7% (148). A clinically meaningful and statistically significant

survival benefit was reported in treatment-naïve patients with CCA

with reference to the combination of two-drug GC-D compared with

chemotherapy alone (149). GC-D is expected to be a new first-line

treatment option for ICI-based systemic therapy, regardless of theTMB

and MMR/MSI status (141).

Gem+Cis is the standard chemotherapy for patients with

unresectable iCCA, meanwhile, the combinational strategy of

immunotherapy with chemotherapy shows potential against iCCA.

3.2.3 Immunotherapy plus radiotherapy for CCA
Radiotherapy may drive cancer immune alteration via several

mechanisms, some of which trigger immune suppression, while

others trigger immune activation within the TME. A team led by

Sharabi and Drake from the Johns Hopkins Department of

Oncology found that combining immunotherapy and

radiotherapy increases the recruitment of CD8+ T cells against

tumoral antigens (150). Radiotherapy releases tumor antigens,

promotes regulation of immune pathways, increases tumor

antigen presentation, initiates tumor-specific cytotoxic T cells,

and enhances T cell homing (151). Ionizing radiation may

activate the release of the nuclear protein HMGB1 and adenosine

triphosphate, described as “damage-associated molecular patterns”

(DAMPs), a process that enhances the uptake of tumor-derived

antigens by antigen-presenting cells, including neoantigens, caused

by RT-driven immunogenic mutations (152).

Stereotactic Body Radiation Therapy (SBRT) is a new

radiotherapy method that delivers ablative radiation doses in a

limited number of fractions, thereby limiting some of the side effects

of traditional radiotherapy. In liver cancers, Kreidieh et al. reported

that the combination of immunotherapy and SBRT can improve

antitumor immune function by triggering type I IFNs and CD8+ T

cells and reducing MDSCs in both hepatocellular carcinoma and

CCA (153). Although late-stage iCCA with low TMB, microsatellite

stable (MSS), proficient mismatch repair (pMMR), and poor PD-L1

expression present ineffective anti-PD-1 monotherapy, the

combination of SBRT and ICB retains relative efficacy (154). Liu

et al. reported a case of a 68-year-old male with a chemotherapy-

resistant stage IV CCA primary tumor with low PD-L1 expression,

deficient CD8+ cells in the TME, high MSI, and high TMB. The

combination of anti-PD-1 immunotherapy and radiotherapy as

first-line therapy resulted in the reduction of primary liver

tumors and metastatic lymph nodes. Additionally, the

combination of radiotherapy and immunotherapy for liver and

lung lesions resulted in CR to the primary tumor and all metastases

without treatment-related adverse effects (155). Zhao et al. reported
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four cases of refractory advanced iCCA or pCCA that were

successfully controlled with anti-PD-1 antibodies after or in

combination with SBRT, meaning that patients achieved CR, PR,

or stable disease based on the Response Evaluation Criteria in Solid

Tumors (156). In addition, a recent study reported the efficacy of

SBRT combined with pembrolizumab in 79 solid tumors, including

patients with CCA. Multilocus SBRT plus pembrolizumab was well

tolerated and had acceptable toxicity, with a total ORR of 13.2%, a

median overall survival of 9.6 months, a median PFS of 3.1 months,

and a non-irradiated ORR of 26.9% (157). This indicates a potential

for combined therapies to reinforce neoantigen exposure and

enhance PD-L1 expression, providing alternative treatments to

pat ients who are non-responsive to radiotherapy or

immunotherapy alone (154).

While clinical evidence of the efficacy of immunotherapy and

radiotherapy combination treatments in CCA is limited, much of

the presented data show great promise (158).

3.2.4 Immunotherapy plus molecular target
therapy for CCA

Identification of the drivers of genetic alterations, such as FGFR

fusions, isocitrate dehydrogenase (IDH)-1 and -2 mutations, the HER

family, neurotropic tyrosine kinase receptor (NTRK) fusions, BRAF

mutations, and theWnt pathway, have contributed to the discovery of

more effective targeted therapies (3). Heterozygous mutations in the

catalytic arginine residues of IDH-1 and IDH-2 are common in CCA,

and the presence of IDH mutations appears to predict better overall

survival (159). In patients with advanced IDH-1-mutated CCA that

progressed on standard chemotherapy, treatment with ivosidenib, a

potent targeted inhibitor of mutated IDH-1, significantly improved

PFS and overall survival with a favorable safety profile, after adjusting

for crossover (5). A randomized clinical trial (NCT02989857) found

that ivosidenib waswell tolerated and resulted in a favorableOS benefit

vs placebo. The ivosidenib treatment resulted in a median overall

survival of 10.3 months in 126 patients who had advanced CCA with

IDH-1 mutations and a favorable safety profile (160). According to a

systematic review of 5393 CCA cases, approximately 13% of iCCA

cases have acquired functional mutations in the IDH-1 coding region

(161). IDH catalyzes the conversion of isocitrate to a-ketoglutarate.
Alterations in IDH, through accumulation of tumor metabolites,

induce extensive epigenetic changes that have pleiotropic effects on

differentiation, cell growth, and hypoxia signaling (162). Accumulating

evidence suggests that IDH mutations may play an important role in

altering the immune TME, manifested by inhibition of TILs, NK cells,

and cytotoxic T cells (163). FGFR fusions are observed in

approximately 5.7–14% of iCCA cases, and IDH-1 and -2 mutations

are detected in approximately 20–30% of iCCA cases. These operable

mutations were mainly found in the small ductal-type iCCA. Clinical

trials of FGFR2- and IDH-1-targeted therapies have shown promising

results (164).

CCAs harboring FGFR2 fusions have recently responded

positively to FGFR inhibitors such as pemigatinib, highlighting

their potential to be predictive biomarkers (4). However, these

agents require further evidence to substantiate their efficacy, and a

greater understanding of the ideal genomic subset of patients that

would benefit from these treatments is necessary. As a result, other
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therapies are needed for patients with iCCA who do not respond to

FGFR2 inhibitors. Recently, immunotherapy is emerging as a

backbone of cancer therapy and is combined with other targeted

agents in clinical trials. Chen et al. verified a synergistic effect of anti-

PD-1 antibody and lenvatinib in a patient with recurrent iCCA (165).

Clinical trials are ongoing to verify the efficacy of the immunotherapy

and molecular target therapy combination, with some of them

exhibiting promising results in several cancer types (Table 2).

With positive results from these trials, the combination of

immunotherapy and target-based therapy may have the potential

to transform the standard of care for CCA.

3.2.5 Immunotherapy plus antiangiogenesis
for CCA

The altered vascularity of the TME limits the circulation of blood

and cytotoxic immune cell recruitment, leading to tumor

immunosuppression and resistance to immunotherapy. Improving

vessel normalization will reverse some of these negative effects,

thereby increasing immune cell infiltration and enhancing the efficacy

of immunotherapy (166). In hepatocellular carcinoma, Shigeta et al.

reported that dual programmed death receptor-1 andVEGF receptor-2

blockade, when administered in combination with various murine

models, promote vascular normalization and enhance antitumor

immune responses (167). Initial clinical data also support synergistic

antitumor activity using the combinational treatmentmodality.Aphase

I clinical trial of dual blockade of CTLA-4 (ipilimumab) plus VEGF

(bevacizumab) showed increased tumor antigen recognition, tumor-

associatedendothelial activation,and infiltrationofTcells inmelanomas

(168). Another clinical study revealed that atezolizumab (an anti-PD-L1

antibody) combined with bevacizumab increased the number of

intratumoral CD8+ T cells and antigen-specific T cell migration (169).

Over 100 phase I/II clinical trials are currently testing combinations of

anti-angiogenics with immunotherapy (170).

Traditionally, the increase in angiogenesis observed in CCA

contributes to its abysmal survival rate after metastasis (171). The

therapeutic potential of anti-angiogenesis was recently verified at

various stages of development in CCA (3). IMbrave 151 is a

randomized, double-blind, placebo-controlled, multicenter,

international phase II study on atezolizumab (PD-L1 inhibitor) in

combination with chemotherapy (Gem+Cis) and bevacizumab (anti-

VEGFmonoclonal antibody) as first-line therapy for advanced CCA.

It is the first randomized study to evaluate the combination of PD-L1

inhibitor/anti-VEGF antibody to block the chemotherapy center of

CCA (172) . A combinat ion of ant i-angiogenesis and

immunotherapeutic interventions that simultaneously perturb both

processes may present promising strategies in CCA.
4 Discussion

Though considerable novel therapeutic strategies have been

assessed, only a limited number of studies have shown promise

for CCA therapy due to the intensive recruitment of innate and

adaptive immunosuppressive cells, a functional component central
Frontiers in Immunology 12
to tumorigenesis and tumor progression, particularly in CCA

featuring an exuberant desmoplastic reaction. Due to

heterogeneity with different gene expression profiles for immune

checkpoint pathways (173), the effects of immunotherapy may be

limited to small numbers of patients.

Therefore, it is imperative to capture the heterogeneity of the

TME among each disease subtype to gain a mechanistic

understanding of how each immune cell interacts and functions.

It is also critical to define the extent of cellular and molecular

heterogeneity of the TME surrounding and infiltrating CCA on

treatment outcome and disease progression. High-throughput

technologies might provide a considerable amount of information

regarding the genetic mechanisms of heterogeneity in CCA (174).

More than 31 studies have been registered on ClinicalTrial.gov

to evaluate diverse immunotherapies in CCA patients, yet more

preclinical and randomized clinical studies are needed to test

immunotherapy in conjunction with other conventional or novel

treatments such as chemotherapy, radiotherapy, molecular target

therapy, anti-angiogenesis, and anti-lymphangiogenesis to

overcome the immunosuppression of CCA. Moreover, with an

enhanced understanding of the driver genetic mutations in each

CCA subtype, it is critical to identify predictive biomarkers of

effective therapy to stratify patients with CCA at the level of disease

subtype, genetic drivers, and TME in future trials.
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