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Background: Regarding the global coronavirus disease 2019 (COVID)-19

pandemic, kidney clear cell carcinoma (KIRC) has acquired a higher infection

probability and may induce fatal complications and death following COVID-19

infection. However, effective treatment strategies remain unavailable. Berberine

exhibits significant antiviral and antitumour effects. Thus, this study aimed to

provide a promising and reliable therapeutic strategy for clinical decision-making

by exploring the therapeutic mechanism of berberine against KIRC/COVID-19.

Methods: Based on large-scale data analysis, the target genes, clinical risk, and

immune and pharmacological mechanisms of berberine against KIRC/COVID-19

were systematically investigated.

Results: In total, 1,038 and 12,992 differentially expressed genes (DEGs) of

COVID-19 and KIRC, respectively, were verified from Gene Expression

Omnibus and The Cancer Genome Atlas databases, respectively, and 489

berberine target genes were obtained from official websites. After intersecting,

26 genes were considered potential berberine therapeutic targets for KIRC/

COVID-19. Berberine mechanism of action against KIRC/COVID-19 was

revealed by protein-protein interaction, gene ontology, and Kyoto

Encyclopedia of Genes and Genomes with terms including protein interaction,

cell proliferation, viral carcinogenesis, and the PI3K/Akt signalling pathway. In

COVID-19 patients, ACOX1, LRRK2, MMP8, SLC1A3, CPT1A, H2AC11, H4C8, and

SLC1A3 were closely related to disease severity, and the general survival of KIRC

patients was closely related to ACOX1, APP, CPT1A, PLK1, and TYMS. Additionally,

the risk signature accurately and sensitively depicted the overall survival and

patient survival status for KIRC. Numerous neutrophils were enriched in the

immune system of COVID-19 patients, and the lives of KIRC patients were

endangered due to significant immune cell infiltration. Molecular docking

studies indicated that berberine binds strongly to target proteins.
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Conclusion: This study demonstrated berberine as a potential treatment option

in pharmacological, immunological, and clinical practice. Moreover, its

therapeutic effects may provide potential and reliable treatment options for

patients with KIRC/COVID-19.
KEYWORDS

coronavirus disease 2019, kidney clear cell carcinoma, berberine, immune mechanism,
molecular docking
1 Introduction

Since its discovery in December 2019, severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has spread and levied

significant damage to the economies, quality of life, and

psychological health of individuals. As of 11 August 2022, the

World Health Organization (WHO) (https://covid19.who.int/)

reported a 24-hour-emergence of 866,828 new COVID-19 cases, a

580 million increase in the total number of COVID-19 patients

worldwide and 6.4 million COVID-19-induced deaths. Despite the

rapid development of vaccines and population-wide immunisation

campaigns (1, 2), the global epidemiological scenario remains

critical owing to significant infectivity, SARS-CoV-2 mutations,

and declining neutralising antibody titers (3–6). Given that 5% of

COVID-19 patients with acute respiratory distress syndrome

(ARDS) require mechanical ventilation and intensive care unit

(ICU) admittance (7), effective treatment approaches are urgently

required to alleviate symptoms and reduce mortality.

Cancer and COVID-19 may be related as COVID-19 infection

is more common in cancer patients (8, 9). In addition, COVID-19

patients with cancer are at a greater risk for serious complications

and unfavourable prognosis than those without cancer (10–12),

particularly immunocompromised patients (13). Most renal cell

carcinoma (kidney clear cell carcinoma, KIRC) cases are malignant

with significant mortality (14). Following COVID-19 infection,

28.5% and 19.3% of patients experience immediate renal

impairment and die, respectively, indicating that the infection

quickly attacks the kidney and endangers the lives of patients (15,

16). This may be linked to the development of sickle cell traits and
IRC, kidney clear cell
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enhanced ACE2 expression (17, 18). Furthermore, following

COVID-19 infection, KIRC patients experience severe

complications and elevated mortality risk (19). Similarly, the

COVID-19 pandemic delays medical care for KIRC patients

(20).KIRC patients have a higher risk of infection and may

develop fatal complications and higher mortality from COVID-19.

Therefore, we sought effective treatment methods to reduce the

progressive COVID-19-induced deterioration and improve the

survival of patients with KIRC. Berberine is a natural compound

with strong antibacterial, antiviral, and antitumour activities (21–

27). It can resist the inflammatory response of acute lung injury by

facilitating nuclear translocation and phosphorylation of nuclear

factor erythroid 2–related factor 2 (Nrf2) to reduce the generation

of inflammatory factors and reactive oxygen species (ROS) (28);

berberine induced apoptosis in virus-infected cells by promoting

ROS production (29, 30). This dual effect of resistance to disease

damage and viral destruction is specific and important; by directly

interacting with the virion, berberine counteracts the infectiousness

and inhibits SARS-CoV-2 replication (31). Moreover, berberine

decreases circulating inflammatory mediators, including interleukin

(IL)-6, tumour necrosis factor (TNF)-a, and C-reactive protein

(CRP), in patients with severe COVID-19 (32). Additionally, in

combination with photodynamic therapy, berberine accelerates

autophagy and apoptosis of KIRC cells by promoting ROS

generation, resulting in KIRC cell death (33). It also strengthens

apoptosis in KIRC cells by stimulating ROS generation by

decreasing c-FLIP and Mcl-1 protein regulation (34). Hence,

berberine can inhibit SARS-CoV-2 infection and reproduction,

reduce the inflammatory response in COVID-19 patients, and

promote apoptosis of KIRC cells by facilitating ROS generation.

This study aimed to further explore the berberine therapeutic

mechanism in treating KIRC/COVID-19 patients to provide

treatment evidence and strategy for these patients (Figure 1).
2 Materials and methods

2.1 Identification of KIRC/COVID-19-
related genes and obtainment of berberine
target genes

The COVID-19-related transcriptomic RNA-sequencing

datasets, GSE157103 and GSE171110, were acquired from GEO
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datasets (https://www.ncbi.nlm.nih.gov/geo/). By using the

“limma” package in R software (version 4.2) with the the

filtering criterion of p < 0.05, and | log fold change | of > 0.585,

the COVID-19 differentially expressed genes (DEGs) in two

datasets were verified. DEGs of two datasets were intersected

reciprocally to screen out the most credible COVID-19-

related genes.

The KIRC RNA-seq dataset was downloaded from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/repository).

The analogous calculation and filtering criterion were carried out

for the identification of KIRC-related genes.

To discover the berberine therapeutic target gene, we deploy a

comprehensive retrieval strategy via official websites, including

CTD (http://ctdbase.org/), Parm Mapper (http://www.lilab-

ecust.cn/pharmmapper/), SEA (https://sea.bkslab.org/), Swiss

Target Prediction (http://www.swisstargetprediction.ch/) and

TCMSP (http://tcmspw.com/tcmsp.php/). These genes from
Frontiers in Immunology 03
various websites were merged and considered berberine

target genes.

Ultimately, the COVID-19- related genes, KIRC-related genes

and berberine target genes were intersected. And these overlapping

genes represented therapeutic target genes of berberine against

KIRC/COVID-19.
2.2 Functional analyses of therapeutic
target genes of berberine against KIRC/
COVID-19

To determine the interactions between target genes of berberine

against KIRC/COVID-19, the GeneMANIA (http://genemania.org/),

a website predicting the interactions between genes based on the label

propagation algorithm and linear regression-based algorithm, was

performed to construct a protein-protein interaction (PPI) network.
FIGURE 1

Flow chart.
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PPI network data was imported into Cytoscape software to build the

core network based on crucial topological parameters, including

Betweenness-Centrality, Closeness-Centrality and Degree.

In addition, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis were executed

via the R package “clusterProfiler”, making clear the underlying

therapeutic mechanism of berberine against KIRC/COVID-19.
2.3 Exploring the clinical significance of
target genes in COVID-19 patients

Due to the lack of clinical information in the GSE171110

dataset, the GSE157103 dataset was selected as the primary clinical

research objective. Admittedly, mechanical ventilation is an

essential life support therapy for patients with respiratory distress,

and most critically ill COVID-19 patients desperately need

mechanical ventilation (35, 36), which is an important clinical

indicator of the severity of COVID-19 patients, especially in the

respiratory system. Whether admission in ICU is also a key clinical

information to judge the condition of patients with COVID-19,

which pays greater attention to holistic life support therapy. Then,

the Wilcoxon test was performed to examine which genes are

associated with clinical factors of patients with COVID-19. After

screening, the target genes were identified the association with each

other via the Spearman correlation test.
2.4 Exploring the clinical significance of
target genes in KIRC patients

Based on the “survival”, “survminer” and “glmnet” package in R

software, the target genes of KIRC patients were identified by using

the univariate COX regression analysis and LASSO Cox regression

analysis successively. Genes after being screened would be divided

equally into high- and low- expression groups. Kaplan–Meier

survival analysis was applied to analyze which genes are closely

related to overall survival (OS) between the high- and low-

expression groups. These genes would be calculated as risk score

according to the computational formula: risk score = sum of

coefficients × gene expression level. The KIRC patients were

divided into low- and high-risk groups based on the median of

risk score. The heatmap could visually describe the difference of

gene expression between low- and high-risk groups, and the

correlation of each gene detected by the Spearman correlation test.
2.5 Verification between risk and clinical
information in KIRC patients

The relationship between risk signature and OS was proved

using Kaplan–Meier survival analysis. The risk signature’s

sensitivity and specificity were further evaluated through the area

under the curve (AUC) in the time‐dependent receiver operating
Frontiers in Immunology 04
characteristic (ROC) analyses performed by R packages

“survivalROC”. The clinical information, including age, gender,

grade, tumour stage, tumour, node and metastasis, were equipped

to describe the survival state of KIRC patients in multidimensional

and depth. And the differences in the risk signature at different

clinical stages would be compared mutually.
2.6 Revelation of potential immune
mechanism in KIRC/COVID-19

Immune response plays an irreplaceable role in the

development and treatment of KIRC (37, 38) and COVID-19

infection (39, 40). We estimated 22 immune cell infiltration in

KIRC/COVID-19 patients respectively via R package

“CIBERSORT”, and analyzed the difference of each immune cell

infiltration in genes of berberine against KIRC/COVID-19.

Moreover, analysis of immunological function was further

investigated through R package “GSVA” and “GSEABase”. The

infiltration of stromal cells and immune cells was assessed by R

software package (“estimate”), for making clear the tumour

microenvironment (TME).
2.7 Molecular docking

Molecular docking analysis was carried out to predict

predominant binding modes of berberine to KIRC/COVID-19-

related proteins. We collected structures of target proteins and

berberine from RCSB PDB database (https://www.rcsb.org/) and

PubChem (https://pubchem.ncbi.nlm.nih.gov/). After removing

redundant ligand and hydrone of target proteins via Pymol

software (version 2.4), we loaded structures of proteins and

berberine into Autodock Vina to perform the molecular docking.

When the docking affinity scores < -5.0 kcal/mol, it indicates that

berberine has strong binding interaction with target protein.
3 Results

3.3 Identification of the berberine
therapeutic target genes against KIRC/
COVID-19

In total, 19,472 genes were obtained from 10 healthy individuals

and 100 COVID-19 patients in the GSE157103 dataset, and 30,183

genes were obtained from 10 healthy individuals and 44 COVID-19

patients in the GSE171110 dataset. Following identification between

the healthy and COVID-19 group based on the filtering criterion of

p < 0.05, and | log fold change | of > 0.585, 3,505 DEGs (3,399

downregulated and 106 upregulated genes) in the GSE157103

dataset and 6,534 DEGs (3,070 downregulated and 3,464

upregulated genes) in the GSE171110 dataset were obtained

(Figures 2A–D). To exclude interference factors and enhance
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credibility, DEGs in the two datasets were intersected, and 1,038

overlapping genes were considered crucial for COVID-19

infection (Figure 2G).

In total, 38,125 genes from 72 normal and 539 KIRC tissues

were obtained from TCGA. Similarly, 12,992 KIRC DEGs (4,199

down-regulated and 8,793 upregulated genes) (Figures 2E, F)

were obtained.

Additionally, 235, 183, 8, 100, and 12 berberine target genes

were obtained from CTD, Parm Mapper, SEA, Swiss Target

Prediction and TCMSP, respectively. After merging, 489

berberine target genes were obtained (Figure 2H).

In total, 526 DEGs were co-expressed in KIRC/COVID-19 after

intersecting, and 26 genes were obtained by crossing 489 berberine

target genes with 1,038 COVID-19 and 12,992 KIRC DEGs,

indicating that berberine plays a therapeutic role in KIRC/

COVID-19 through these genes (Figure 2I).
Frontiers in Immunology 05
3.4 Exploration of the underlying
therapeutic mechanism of berberine
against KIRC/COVID-19

Proteins, the result of transcription and translation of genes, are

elementary substances that directly affect the metabolism,

physiology, and pathology of the human body. To verify protein

interactions, 26 berberine genes against KIRC/COVID-19 were

imported into the GeneMANIA website, and a PPI network was

constructed (Figure 3A). Next, the PPI network data were loaded

into Cytoscape software, and the topological parameters, including

Betweenness-Centrality, Closeness-Centrality and Degree, were

calculated via the package “CytoNCA”. Following filtering with a

criterion of topological parameters greater than the median, 14

predominant proteins were established in the core network

(Figure 3B) (Table 1).
A

B D

E

F

G IH

C

FIGURE 2

Identification of therapeutic target genes of berberine against KIRC/COVID-19. (A, B) Volcano plot and heatmap of DEGs from GSE157103 data set,
and heatmap shown the top 50 DEGs (C, D) DEGs from GSE171110 data set. (E, F) DEGs from TCGA data set. (G) The intersection of GSE157103 and
GSE171110 data set. (H) The union set of berberine target genes of each website. (I) The intersection of COVID-19 DEGs, KIRC DEGs and berberine
target genes.
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GO analysis revealed that 26 genes were enriched in 771 GO

terms, including 669 biological processes (BPs), 85 cellular

components (CCs), and 17 molecular functions (MFs). The

dominant BPs were organelle fission, nuclear division, binding

regulation, DNA packaging, and the G2/M transition of the

mitotic cell cycle (Figure 3C). Nineteen KEGG terms were

enriched in the KEGG analysis, including viral carcinogenesis,

progesterone-mediated oocyte maturation, cell cycle, oocyte

meiosis, and PI3K−Akt signalling pathway (Figure 3D).
Frontiers in Immunology 06
3.5 Clinical significance of target genes in
COVID-19 patients

Clinical information in the GSE157103 dataset includes

mechanical ventilation and ICU, which are pivotal indicators for

evaluating COVID-19 severity. Following the Wilcoxon test, six of

the 26 berberine target genes against KIRC/COVID-19 were

associated with mechanical ventilation. Compared to the non-

mechanical ventilation group, the expression of ACOX1, LRRK2,
A B

DC

FIGURE 3

Exploration of the potential mechanism of berberine against KIRC/COVID-19. (A) The PPI network based on therapeutic target genes of berberine
against KIRC/COVID-19. (B) the core network of PPI. (C) GO analysis of target genes. (D) KEGG pathway analysis of target genes.
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MMP8, and SLC1A3 was higher, and that of H4C8 and ITK was

lower in the mechanical ventilation group (Figure 4A). As MMP8

and SLC1A3 expression increased and CPT1A, H2AC11, H4C8,

and ITK expression decreased, the probability of ICU admittance

increased (Figure 4B). In addition, the correlation between genes

was demonstrated using the Spearman correlation test (Figure 4C).

These results revealed that berberine treatment could effectively

reduce the utilisation rate of mechanical ventilation and the

probability of ICU admittance by targeting these eight genes and

inducing a chain reaction among them.
3.6 Assessment of target gene signatures
in KIRC patients

According to univariate Cox regression analysis, 13 of the 26

berberine target genes against KIRC/COVID-19 were closely

correlated with OS (Figure 5A). To reduce the influence of

multicollinearity among variables and detect the optimal genes,

LASSO Cox regression analysis was performed; ACOX1, APP,

CPT1A, PLK1 and TYMS were identified as representative

signatures of the OS of KIRC patients, and the risk score

was forecasted by the computational formula: risk score = (-0.365 ×

expression ACOX1) + (-0.211 × expression APP) + (-0.077

× expression CPT1A) + (0.663 × expression PLK1) + (-0.036 ×

expression TYMS) (Figures 5B, C). According to their number,

KIRC patients were subdivided into high- and low-risk groups

(Figure 6A). The heatmap vividly described the expression of five

genes in these groups (Figure 5D). Furthermore, these five genes

correlated positively or negatively (Figure 5E). Kaplan-Meier (KM)

survival analysis revealed that high-expression genes, including

ACOX1, APP, CPT1A, and TYMS, had a higher survival probability

over time, whereas PLK1 had the opposite effect (Figures 5F–J).
Frontiers in Immunology 07
3.7 Clinical significance of risk signature in
KIRC patients

The OS of KIRC patients decreased with an increased risk score,

and the survival rate tapered towards death (Figure 6B). KM

survival analysis revealed that the prognosis of the high-risk

group was substantially worse than that of the low-risk group

(Figure 6C). The AUC, a sensitive and specific risk signature

indicator, showed reliable predictive accuracy at the 1-, 3-, and 5‐

year survival time points (Figure 6D). Except for age, significant

differences were observed in the risk signature for each clinical

feature. The risk signature increased to varying degrees as the grade,

tumour stage, tumour, lymph node, and metastasis deteriorated

(Figures 6E–J). These results suggest that the risk signature can

effectively reflect the clinical status and prognosis of KIRC patients.
3.8 The immune response of target genes
for KIRC/COVID-19 patients

In total, 22 immune cell infiltration was predicted using

“CIBERSORT”. We focused on the comparatively large number

of neutrophil infiltrations in COVID-19 patients, possibly

associated with a sharp neutrophil increase and activation of

SARS-CoV-2-induced neutrophil extracellular traps (41–44)

(Figures 7A–F, Supplementary File 1). According to the boxplot,

high expression of ACOX1, LRRK2, and SLC1A3 was susceptible to

neutrophil infiltration, whereas that of CPT1A and ITK was

resistant to neutrophil infiltration (Figures 7A–E). The

relationship between these genes and neutrophil infiltration was

consistent with the relationship between the genes and the

utilisation rate of mechanical ventilation or probability of ICU

admittance (Figures 4A, B). Moreover, high neutrophil infiltration
TABLE 1 Topological parameters of 14 preponderant proteins.

Proteins Betweenness-Centrality Closeness-Centrality Degree

CDK1 71.39674 0.661765 318

CCNA2 36.55376 0.661765 305

PLK1 55.95462 0.681818 280

CDC20 129.6673 0.703125 269

KIF23 42.9122 0.671642 249

TOP2A 65.36013 0.661765 244

CENPE 73.81254 0.671642 230

FOXM1 34.29189 0.661765 226

DLGAP5 58.82625 0.652174 215

MKI67 38.57207 0.633803 213

TPX2 76.28393 0.633803 205

KIF11 50.88171 0.671642 183

CCNF 45.66335 0.642857 147

CDK2 100.7197 0.671642 104
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significantly affected the increased use of mechanical ventilation

and ICU stay (Figures 7F, G).

In KIRC patients, five genes were positively or negatively

correlated with 22 immune cells to varying degrees, indicating

that berberine may play a therapeutic role by regulating the

infiltration of immune cells (Figures 8A–E). Furthermore, seven

immune cells, including CD8 T cells, CD4 memory-activated T

cells, follicular helper T cells, regulatory T cells (Tregs),

macrophages M0, macrophages M1 and activated dendritic cells,

were enriched with an increased risk signature; however, CD4

memory resting T cells, macrophages M2, dendritic cells, and

resting mast cells, were reduced (Figure 8F). Analysis of

immunological function demonstrated that the high-risk group

exhibited enhanced APC co-stimulation, CCR, checkpoint,

cytolytic activity, inflammation-promotion, parainflammation,

T-cell co-inhibition, and T-cell co-stimulation, and inhibited

type II IFN response (Figure 8G). The violin plot showed that

the high-risk groups correlated with a higher immune score,

suggesting that high-risk groups are prone to a hyperimmune

response (Figure 8H).
Frontiers in Immunology 08
3.9 Molecular docking of berberine binding
to KIRC/COVID-19 target genes

Molecular docking was performed to determine the optimal

binding mode of berberine to KIRC/COVID-19 target genes. The

docking affinity score output by AutoDock Vina was ACOX1

(-10.4) < PLK1 (-10.1) < H4C8 (-9.7) < H2AC11 (-7.9) < MMP8

(-7.9) < LRRK2 (-7.8) < SLC1A3 (-7.8) < ITK (-7.7) < TYMS (-7.1)

< APP (-6.1) < CPT1A (-5.5). All docking affinity score was < -5.0

kcal/mol, indicating that these target genes play an important role

in the berberine treatment of KIRC/COVID-19 (Figures 9A–E,

Supplementary File 2).
4 Discussion

The COVID-19 epidemic has significantly affected individuals

worldwide and had catastrophic effects on the global economy,

health, and psychology (45). Although the vaccine received

immediate popularity, the anti-COVID-19 vaccine campaign
A B

C

FIGURE 4

Clinical significance of target genes in COVID-19 patients. (A) Boxplot of target genes associated with mechanical ventilation. (B) Boxplot of target
genes associated with ICU admission. (C) The correlation analysis between genes after screening. *p <0.05, **p <0.01, ***p <0.005.
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persisted for years because of the dreadful contagiousness, SARS-

CoV-2 mutations, and declining antibody titers (3–6). Although

specific medicines have not yet been developed, COVID-19 therapy

schedules and management strategies have been continuously

investigated (46–48). In China, the mortality rate of COVID-19

patients is 0.41% (24,232 deaths/59,69737 confirmed cases), which
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is significantly lower than the global average, indicating the superior

effectiveness of conventional Chinese medicine in combating

COVID-19 (49, 50), such as Lianhua Qingwen capsules, Xuanfei

Baidu decoction, and Xuebijing, among others (51). SARS-CoV-2

invades the kidney, harms renal cells, and impairs renal function

(52–54), posing a greater threat to KIRC patients. Additionally,
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FIGURE 5

Assessment of target gene signatures for KIRC patients. (A) The forest plot of univariate Cox proportional analysis. (B, C) The LASSO Cox regression
analysis for detecting the representative gene. (D) Heatmap of target gene signatures. (E) The correlation analysis between target gene signatures.
(F–J) Kaplan-Meier survival analysis of target gene signatures.
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KIRC patients are more likely to contract COVID-19 and are more

susceptible to dying from its infection (8, 9, 19). We sought an

effective therapeutic strategy to decrease possible significant

sequelae and increase the survival of KIRC/COVID-19 patients

based on the relationship between COVID-19 and KIRC. It has

been demonstrated that berberine, an active ingredient in most

natural herbs, lowers inflammation in COVID-19 patients and

destroys KIRC cells. Using computer-based approaches and

algorithms, the possible therapeutic mechanism of berberine in

treating KIRC/COVID-19 patients was investigated.

In this study, 26 genes were identified as therapeutic target

genes of berberine against KIRC/COVID-19. The PPI network

produced by the GeneMANIA website revealed that the 26

therapeutic target genes achieved protein function through a core

network composed of 14 genes, such as CDK1, CCNA2, and PLK1,

among others. GO analysis revealed that the BPs of 26 target genes

were enriched mainly in organelle fission, nuclear division, binding

regulation, DNA packaging, and G2/M transition of the mitotic cell

cycle. These BPs play an important role in cell proliferation, which

is crucial in KIRC/COVID-19 pathogenesis (55, 56). The PI3K-Akt
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signalling pathway predicted by KEGG analysis was activated by

accelerating the phosphorylation of Akt, mTOR, 4E-BP1, and S6K1

during the initial phases of COVID-19 infection (57), resulting in

the rapid activation of the translation machinery of viral protein

synthesis (58, 59). The MDM2 protein is activated by the aberrant

PI3KAkt signalling pathway in KIRC, allowing easier degradation

of the tumour suppressor p53 by proteasome machinery (60).

According to functional analyses, the berberine mode of action in

treating KIRC/COVID-19 may have diverse pathways that interfere

with tumour cell proliferation or viral self-replication, particularly

the PI3K-Akt signalling pathway.

Mechanical ventilation and ICU admittance are indispensable

life support measures for patients with severe COVID-19 (61–63).

The severity of COVID-19 infection in patients intensified as the

expression of ACOX1, LRRK2, MMP8, and SLC1A3 increased, and

the expression of CPT1A, H2AC11, H4C8, and ITK decreased.

These genes play different roles in resisting viral infections and can

function as prospective targets for COVID-19 treatment. The

enhanced MMP8 production during the early stages of COVID-

19 infection is directly linked to the breakdown of the extracellular
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FIGURE 6

Clinical significance of risk signature for KIRC patients. (A) Distribution of risk scores to be divided into high- and low- risk groups. (B) Distribution of
the OS to depict the relationship between OS and risk signature in dead and alive KIRC patients. (C) Kaplan-Meier survival analysis of risk signature.
(D) AUC in ROC analysis for risk signature at 1‐, 3‐and 5‐years survival. When AUC is greater than 0.7, the prediction model has reliable accuracy.
(E–J) Boxplot reveals the relationship between risk signature and clinical information, containing in age, grade, tumor stage, tumor, lymph node and
metastasis deteriorated.
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matrix (ECM), including collagen, laminin, and proteoglycans,

which promotes viral multiplication and inflammation (64). ROS

production, which is essential for inflammation and lung injury, is

enhanced by high levels of ACOX1 protein and function (65, 66).

Huang et al. found that IL-2-inducible T-cell kinase (ITK) facilitates

gd T-cell-derived IL-17A production to resist Mycobacterium

tuberculosis infection (67). By inhibiting CPT1a expression,

increased mitochondrial ROS accelerates the progression of

pulmonary fibrosis; however, restoring CPT1a expression impedes

pulmonary fibrosis (68). These genes function by controlling ROS

production or being controlled by ROS, which may be connected to

the interference of berberine with ROS production. Thus, berberine

decreases ROS production by controlling the expression levels of

these genes, lowering mechanical ventilation and ICU admittance in

COVID-19 patients.

Five of the 26 target genes of berberine against KIRC/COVID-

19 were closely associated with OS in KIRC patients, as determined

by univariate and LASSO Cox regression analyses., Du et al.

discovered that lipid deposition plays a significant role in

accelerating KIRC progression with hypoxia-inducible factors

(HIFs)-induced CPT1A suppression, and with the reversing of

this inhibition, CPT1A decreases KIRC progression (69).

Increasing fatty acid oxidation by enhancing CPT1A expression

may be a promising therapeutic strategy for KIRC (70).
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Furthermore, HIF-2 increased PLK1 expression, inducing

metastasis and drug resistance in KIRC cells (71) and

counteracting CPT1A effects. By phosphorylating MCM3, PLK1

promoted KIRC cell growth and prevented apoptosis (72).

Regulation of the antagonistic effect between CPT1A and PLK1

may be an advancement to improve the OS of KIRC patients. The

survival status of KIRC patients may be more thoroughly and

objectively reflected by the risk signature derived from the five

gene expression levels in this study and may accurately reveal the

change mechanism of tumour grade, stage, lymph nodes, and

metastasis. All of the evidence demonstrates the risk signature as

a valid indicator of patient prognosis and a tool for evaluating the

effectiveness of KIRC.

The immune response significantly contributes to disease

development. The fulminant immune response is a body

characteristic following SARS-CoV-2 infection (73–75). In this

study, abundant neutrophil infiltration was observed in COVID-

19 patients compared with the remaining 21 immune cells. This is

similar to the results of several studies, and the sharp increase in

neutrophils and activation of neutrophil extracellular traps caused

further acute injury to the lungs and kidneys (41–44, 76). Cytokine

storm-induced inflammation activates ROS, causing severe

complications (77). Therefore, it is practical to reduce mechanical

ventilation and ICU admittance by decreasing neutrophil
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FIGURE 7

Immune response of target genes for COVID-19 patients. (A–E) Boxplot of target genes associated with 22 immune cell infiltration. (F) Boxplot of
neutrophil infiltration associated with mechanical ventilation. (G) Boxplot of neutrophil infiltration associated with ICU admission. *p <0.05,
**p <0.01, ***p <0.005.
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FIGURE 8

Immune response of target genes for KIRC patients. (A–F) Boxplot of target gene signatures associated with 22 immune cell infiltration. (G) The
analysis of immunological functions. (H) the tumor microenvironment score. *p <0.05, **p <0.01, ***p <0.005.
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FIGURE 9

Molecular docking of berberine and target genes. The top 5 docking affinity score. (A) Berberine binding to ACOX1. (B) Berberine binding to PLK.
(C) Berberine binding to H4C8. (D) Berberine binding to H2AC11. (E) Berberine binding to MMP8.
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infiltration. Abnormal immunological responses in KIRC patients

are a significant contributor to disease onset. KIRC patients with a

high immune score were at increased risk, suggesting KIRC

progressed when a significant proportion of immune cells were

concentrated in the tumour microenvironment (TME). In recent

years, immune checkpoint inhibitors have gradually become a

mainstream therapy and research focus for KIRC (78) and are

beneficial for improving the prognosis of patients (79–81). Relative

to chemotherapy, treatment with immune checkpoint inhibitors

does not appear to significantly increase risk of serious adverse

events in COVID-19-positive patients (82). Correcting immune

disorders may be a future trend for KIRC treatment, immune

checkpoint inhibitors remains an important treatment option

even in COVID-19 positive patients.

The treatment mechanism of berberine against KIRC/COVID-

19 remains uncertain. In this study, DEGs were screened, and target

genes for correlation with clinical information were analysed,

revealing immune mechanisms. Finally, molecular docking was

used to investigate the best binding mode of berberine to the

KIRC/COVID-19 target genes. The results indicate that berberine

treatment is an effective strategy for treating KIRC/COVID-19. In a

follow-up study, COVID-19-infected KIRC cells will be examined

using berberine, and the role of target genes in the treatment

process will be analysed to further explore the therapeutic

mechanism of berberine against KIRC/COVID-19.

Overall, KIRC patients are at higher risk of contracting COVID-

19, and no effective therapies have been developed for both

conditions. In this study, berberine was demonstrated as a

potential treatment option in pharmacological, immunological,

and clinical practice; its therapeutic effect provides a potential and

reliable treatment option for patients with KIRC/COVID-19.
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