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Liquid biopsy strategies enable the noninvasive detection of changes in the levels

of circulating biomarkers in body fluid samples, providing an opportunity to

diagnose, dynamically monitor, and treat a range of diseases, including cancers.

Glioma is among the most common forms of intracranial malignancy, and

affected patients exhibit poor prognostic outcomes. As such, diagnosing and

treating this disease in its early stages is critical for optimal patient outcomes.

Exosomal circular RNAs (circRNAs) are involved in both the onset and

progression of glioma. Both the roles of exosomes and methods for their

detection have received much attention in recent years and the detection of

exosomal circRNAs by liquid biopsy has significant potential for monitoring

dynamic changes in glioma. The present review provides an overview of

the circulating liquid biopsy biomarkers associated with this cancer type

and the potential application of exosomal circRNAs as tools to guide the

diagnosis, treatment, and prognostic evaluation of glioma patients during

disease progression.
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RBPs, RNA-binding proteins; MRI, Magnetic resonance imaging; BBB, blood-brain barrier; RIP, RNA

immunoprecipitation assay; GBM, Glioblastoma; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-

lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; DBD, DNA core binding domain; TMZ,

temozolomide; IPC, initiating parent cell.
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Introduction

Tumors are formed by proliferating malignant cells caused by a

range of oncogenic processes, including the accumulation of

mutations and the abnormal proliferation of stem cells or specific

tissues (1, 2). Changes in the expression of endogenous molecules or

the production of entirely new molecules can be used as biomarkers

of tumorigenesis (3). While histopathological biopsy remains the gold

standard for the diagnosis of most tumor types, the

inherent invasiveness of this approach limits its utility (4). While

several tumor biomarkers are routinely analyzed in biofluid

samples, including alpha-fetoprotein (AFP), carcinoembryonic

antigen (CEA), carcinoembryonic antigen 125 (CA125),

carcinoembryonic antigen 153 (CA153), glycoconjugate antigen 199

(CA199), and prostate-specific antigen (PSA), they are all subject to

somewhat limited sensitivity and specificity such that their utility for

early-stage tumor detection is limited (5–7). For example, while AFP

is often upregulated in cases of hepatocellular carcinoma (HCC), this

is not universally true (8, 9). Moreover, while CEA levels can be

elevated in breast, pancreatic, or colorectal cancer, they may also be

upregulated in nonmalignant diseases, including uremia, pulmonary

fibrosis, and Alzheimer’s disease (10, 11). Increasingly advanced

molecular detection techniques have led to the emergence of

circulating tumor cells (CTCs), circulating tumor DNA (ctDNA),

circulating tumor RNA (ctRNA), exosomes, and exosomal contents

as promising tumor-related biomarkers that can be readily detected

through the noninvasive sampling of biofluids – a process known as

liquid biopsy. These liquid biopsy strategies have the potential to be

more sensitive and specific than traditional oncogenic biomarkers,

offering insight into tumor development, diagnosis, and prognostic

evaluation (12–14).

Liquid biopsy approaches enable the noninvasive assessment

of tumor biomarkers in a range of biofluids including blood,
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saliva, cerebrospinal fluid (CSF), urine, bile, or breast milk (15–

17). Exosomes are small (diameters: 40-150 nm) lipid bilayer-

enclosed vesicles secreted by most cell types that contain a range of

cargo molecules including lipids, proteins, specific cytokines,

microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and

circRNAs (18, 19). Several studies have demonstrated that

circRNAs can serve as important regulators of a diverse range of

tumor-related processes such as proliferation, invasion,

metastasis, stemness, and resistance to radiotherapy in part

owing to their unique closed-loop structure (20). Exosomes can

readily transport these stable circRNA molecules through

biofluids including blood and urine, delivering them to recipient

cells in which they can exert specific biological functions. As such,

exosomal circRNAs have emerged as promising biomarkers and

targets for therapeutic intervention for a range of tumor-related

liquid biopsy assays (21, 22) (Figure 1).

Tumors of the central nervous system (CNS) are relatively rare

but are associated with very high mortality rates (23). Gliomas

comprise 81% of all CNS tumor cases, and are the second deadliest

form of CNS disease (24, 25). Glioma cases are highly

heterogeneous and the selection of appropriate treatment is

highly dependent on pathological biopsy results, with most

patients facing a poor prognosis (26). High levels of circRNAs

have been detected in brain tissue where they have been found to

influence tumorigenesis through the regulation of processes

including inflammation, neuronal apoptosis, and angiogenesis

(27, 28). By transmitting biological information between cells

through exosome-mediated transmission, these circRNAs can

profoundly shape glioma onset and progression (29). Assessing

the onset, progression, therapeutic responsiveness, and prognosis of

glioma cases is critical to guiding clinical care, and liquid biopsy

analyses of exosomal circRNAs represent a promising approach to

this form of disease monitoring (29, 30).
B

A

FIGURE 1

Liquid biopsy of tumors. (A) Body fluids used for liquid biopsy. (B) Novel biomarkers for liquid biopsies.
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The present review summarizes the clinical application of

exosomal circRNAs in the context of the early diagnosis,

treatment, and prognostic evaluation of glioma patients through

liquid biopsy-based approaches, with a particular focus on the

relevance of exosomal circRNAs to the dynamic monitoring of

disease progression with the goal of providing a robust foundation

for future efforts to improve patient prognostic outcomes and to

expand the clinical potential of liquid biopsy.
Clinical applications of liquid
biopsy strategies

The increased understanding of disease mechanisms together

with technological development have led to significant advances in

the diagnosis and treatment of a variety of diseases. Techniques

such as blood or CSF analysis, tissue biopsy, MRI, and other

imaging techniques have been widely used in clinical work.

Analysis of blood and CSF are most commonly used; however,

the tests tend to have poor specificity and often need to be

combined with other tests for comprehensive judgment. Although

more intuitive understanding of some diseases can be achieved

through MRI and other optical techniques, they can only reflect the

disease state at a specific stage. Tissue biopsy is the gold standard for

disease diagnosis. However, although tissue biopsy is an accurate

indicator of tumor diagnosis, it nevertheless has limitations. The use

of exosome based-liquid biopsy is gradually achieving recognition.

Liquid biopsies represent a convenient and minimally invasive

alternative to traditional tissue biopsy techniques, enabling

analyses of blood as well as other biofluids of interest such as the

CSF, urine, bile, breast milk, or saliva. Notably, these approaches

allow for the dynamic monitoring of tumors over the course of

disease progression (15, 31). Beyond traditional tumor biomarkers,

liquid biopsy approaches can also detect CTCs, ctDNA, ctRNA,

exosomes, and exosomal contents (32).
The application of liquid biopsy
techniques in cancer

The production of CTCs, ctDNA, ctRNA, exosomes, and

exosomal contents is highly heterogeneous over the course of

tumor development and progression. Accordingly, the most

appropriate methods for detecting these tumor-related

biomarkers and their clinical significance when detected can vary

substantially over the course of disease.
CTCs in liquid biopsy

Initially identified in blood samples as early as 1860 (33), CTCs

are small nucleated cells > 4 mm in size or clusters of 2-50 nucleated

cells that express the epithelial protein EpCAM as well as the

cytokeratins 8, 18, and/or 19. These CTCs also do not express

cluster of differentiation 45 (CD45), which is an antigen specifically
Frontiers in Immunology 03
expressed by leukocytes, and there may be as many as several

hundred CTCs per milliliter of blood in some cancer patients (34,

35). CTC is a cellular derivative of primary tumor tissue, and cancer

cells enter body fluids from primary or metastatic solid tumors

through the associated vascular or lymphatic system during the

process of tumor metastasis (36, 37). Actual CTC counts in most

body fluids are low, and the CellSearch assay is often used to detect

these rare cells in diseases including breast, lung, liver, and

neuroendocrine cancers (35, 38–41). In HCC, high levels of

peripheral blood CTCs prior to treatment are closely related to

the risk of microvascular invasion (MVI), and these postoperative

CTC levels should be reduced. If they remain high (≥ 5), this can be

indicative of a higher risk of early HCC recurrence (42). In patients

with chronic obstructive pulmonary disease (COPD) at an elevated

risk of lung cancer, CTCs can be detected through epithelial tumor

cell size separation techniques up to 1-4 years before computed

tomography (CT) scans can detect these tumors (43). As such,

CTCs are highly sensitive tumor biomarkers.
CtDNA detection in liquid
biopsy samples

First described in 1940, ctDNA is DNA derived from tumor

cells that circulates systemically, comprising a small fraction of the

total cell-free DNA (cfDNA) (44). CtDNA is usually detected by

next-generation sequencing or digital PCR (35) and is often utilized

as a biomarker in liquid biopsy analyses aimed at diagnosing

tumors, selecting appropriate therapeutic targets, detecting small

residual tumors, or predicting the risk of disease recurrence (31, 45).

The specific application of ctDNA has been used to guide the

sensitive and specific detection of early-stage breast, colorectal,

liver, lung, gastric, pancreatic, and ovarian cancer (46). Following

surgical treatment, higher ctDNA levels in lung cancer patient

plasma or breast cancer patient urine have been linked to a

higher risk of recurrent disease, allowing for the detection of such

risk at an earlier time point than that enabled by more conventional

imaging strategies (47, 48).
CtRNA detection in liquid
biopsy samples

Any RNA derived from tumor cells, including messenger RNAs

(mRNAs), miRNAs, circRNAs, and lncRNAs, is classified as a form

of ctRNA when released into the systemic circulation. Reports of the

detection of circulating mRNA in tumor patients were first

published in the 1990s, and many more recent studies have

similarly documented high levels of circulating miRNAs in tumor

patient biofluids, with over 70 such miRNAs having been proposed

as candidate HCC-related biomarkers (49). Higher levels of miR-

10b and miR-21 in the CSF of glioblastoma patients with brain

metastases have been described (50). LncRNAs are noncoding

RNAs > 200 bp long that can be dysregulated in a manner

conducive to tumor onset, progression, and metastasis.
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Accordingly, clinical efforts have recently focused on the successful

diagnostic application of circulating lncRNAs in cancer (51). For

example, higher plasma levels of the lncRNA CASC11 in early

bladder cancer patients have been reported and found to coincide

with plasma miR-150 downregulation (52). Additionally, circRNAs

are highly stable single-stranded closed-loop RNAs that are highly

abundant and stable in tissues and biofluids where they influence

the progression of various diseases such as diabetes, neurological

diseases, and cancer (53). Elevated serum circRNA404686

expression can offer value as a diagnostic biomarker of papillary

thyroid microcarcinoma (PTMC) in women (54).
Liquid biopsy analyses of exosomes

Exosomes are small lipid bilayer-enclosed vesicles derived from

the endocytic pathway (55). They are present at high levels in most

biofluids wherein they can transmit cargoes including proteins,

circRNAs, miRNAs, and lncRNAs between cells (56). These

exosomes can shape tumor progression through the promotion of

angiogenic activity, the suppression of antitumor immunity, and the

acceleration of metastatic tumor growth (57, 58). Studies have

shown that the components of exosomes largely depend on their

initiating parent cells (IPCs), carrying or mimicking the

information of the parent cells. Thus, exosomes may represent

useful diagnostic tools for cancers. In addition, non-invasive liquid

biopsy for the detection of specific exosomes may be useful for both

diagnosis and prognosis prediction (59, 60). Elevated exosomal

levels are often detectable in liquid biopsy samples from cancer

patients, including patients with breast or pancreatic cancer (61,

62). Ultracentrifugation, ultrafiltration, or related techniques can be

used for the specific isolation of exosomes and other extracellular

vesicles from biofluids of interest, thereby permitting the further

interrogation of their cargo content (63, 64).

Exosomes are a type of extracellular vesicles (EVs) associated

with both normal and diseased cells and have multiple biological

functions. Exosome release is significantly increased in various

diseases, including cancer. Various drugs that inhibit the release

or uptake of pro-oncogenic exosomes in the tumor

microenvironment (TME) have been proposed as novel cancer

therapeutics (65, 66). The identification of different types of EVs

can play an important role in the liquid biopsy analysis of malignant

cancer. Hypoxic GM-derived (Glioblastoma cell, GM) exosomes

have been found to contain significantly elevated levels of the

monocarboxylate transporter 1 (MCT1) and its accessory protein

differentiation cluster 147 (CD147) that promote the growth,

metastasis, and invasion of GMs, as well as angiogenesis, in both

in vitro and in vivo experimental models (67, 68). The levels of

CD44 and CD133 were shown to be elevated in exosomes in anoxic

environments, promoting glioma migration and lumen formation

by endothelial cells.

Western blotting (WB), nanoparticle tracking analysis (NTA),

dynamic light scattering analysis (DLSA), zeta potential analysis

(ZPA), tunable resistive pulse sensing (TRPS), size exclusion

chromatography (SEC), and other techniques can be used for the

detection and characterization of EVs (69, 70). NTA and atomic
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force microscopy (AFM) can distinguish the size and concentration

of exosomes and multivesicular vesicles (MVs, another type of

extracellular vesicle). In addition, a localized surface plasmon

resonance (LSPR) biosensor with self-assembly gold nanoislands

(SAM-AuNIs) can be used to detect and distinguish EVs from MVs

isolated from A-549 cells (67). Another LSPR method utilizes the

self-assembly of a silver nanoparticle-decorated gold nano-island

(Ag@AuNI) sensor chip to provide site-specific conjunction of

biotinylated antibodies for the detection of exosomal surface

biomarkers, and has high sensitivity and selectivity in the label-

free sensing of exosomal biomarkers (71). Because exosomes

originate from IPCs, it is particularly important to specifically

identify their tissue of origin. Both LSPR and AFM have high

sensitivity and specificity, and can detect and quantify raised levels

of CD44 and CD133 in immunocaptured glioma-derived exosomes

in the blood and CSF of animal models (72). In addition,

biotinylated antibody-functionalized titanium nitride (BAF-TiN)

and titanium dioxide (TiO2)-related LSPR can quantitatively detect

exosomes isolated from human glioma cells, recognizing the

exosomal marker membrane protein CD63, and BAF-TiN can

also recognize glioma-specific variants of epidermal growth factor

receptor variant-III (68). BIGH3 in GM-derived exosomes

dynamically reflect the efficacy of TMZ (temozolomide) treatment

of glioma, while TiO2-related LSPR can track the level of BIGH3 to

monitor TMZ ’s anti-cancer effect and prognosis after

treatment (73).

The surface zeta potential (ZP) of exosomes sustains their

stability, allowing the transfer of information between cells.

Exosomes are released into the TME, leading to protein-protein

and protein-lipid interactions and reducing the expenditure of

energy. ATP produced by mitochondria and lactate accumulation

may facilitate the entry of exosomes into cancer cells to promote

metastasis and contribute to the targeting of cancer cells to the TME

(74). Exosomes target the delivery of their cargoes by modifying

various surface ligands, such as proteins, peptides, or aptamers.

Therapeutic cargoes such as proteins, drugs, or small nucleic acids

such as miRNA can be loaded in two different ways, both in vivo

and in vitro. The source of the exosomes can affect the drug-loading

capacity (75). Exosomes can cross the blood-brain barrier (BBB) to

deliver drugs used for treating glioma. A microfluidic device (Exo-

Load) can be used to improve the loading efficiency of doxorubicin

(DOX) and paclitaxel (PTX) into glioma cell-derived exosomes, to

improve the drug delivery efficiency (76).
Liquid biopsy of exosomal circRNAs

High levels of circRNAs in serum exosomes were first reported

in RNA-Seq analyses conducted in 2015, and they have since

emerged as promising tumor-related biomarkers with the

potential to guide diagnostic or related efforts (77).

Mechanistically, circRNAs can exert diverse biological functions

through interactions with particular RNA-binding proteins (RBPs)

in a manner that enables the additional post-transcriptional or

translational regulation of specific targets (78–80). In addition,

circRNAs can function as molecular sponges capable of
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sequestering complementary miRNAs and preventing them from

pairing with the 3’-UTR regions of their target mRNAs to inhibit

translation, thus resulting in the indirect circRNA-mediated

upregulation of these mRNA targets (81, 82). There is also

evidence that some circRNAs can serve as templates encoding

specific peptides related to tumorigenesis or disease progression

(83). Tumor-related circRNA dysregulation has been confirmed

through both animal studies and analyses of the serum exosomal

circRNA profiles of healthy individuals and cancer patients (77).

Exosomes are capable of delivering circRNAs to recipient cells, thus

potentially driving tumor proliferation, therapeutic resistance, or

metastatic progression (22). As such, liquid biopsy-based studies of

exosomal circRNAs offer great potential for the dynamic

monitoring of specific tumor-related biomarkers in glioma

patients and individuals with related diseases.
Liquid biopsy analyses of exosomal
circRNAs in glioma

Glioma

Glioma is the most common CNS tumor and is characterized by

rapid progression, aggressive growth, substantial heterogeneity,

resistance to treatment, and poor prognostic outcomes (24, 84–

86). The initial glioma diagnosis is generally guided by magnetic

resonance imaging (MRI), However, accurate MRI-mediated tumor

grading and analyses of tumor boundaries can be hampered by

limitations associated with BBB permeability and the dilution of the

contrast agent (87). The gold-standard approach to glioma

diagnosis necessitates pathological biopsy, but these biopsy results

have the potential to be inconclusive and may be contraindicated in

some patients (88, 89). Many different processes drive glioma

progression, and high levels of circRNA expression have been

observed in brain tissue where they can act by sequestering

specific miRNAs and thereby influencing tumor proliferative

activity, invasion, and therapeutic sensitivity (90, 91). Significantly
Frontiers in Immunology 05
increased circPTN expression has been reported in glioma tissue

and cell lines compared to healthy astrocytes, and the ability of

circPTN to promote the proliferation of glioma cells by sequestering

miR-145-5p and miR-330-5p has been demonstrated through both

RNA immunoprecipitation and dual luciferase assays (92). The

Notch signaling pathway is a key regulator of oncogenic pathways

including cellular differentiation, apoptosis, and proliferation (93).

Notably, the significant upregulation of circNFIX has been observed

in glioma cells wherein it can regulate Notch1 by sequestering miR-

34a-5p, thus influencing Notch signaling activity (94). As circRNAs

are stably present in exosomes which are capable of readily crossing

the BBB, they represent important intercellular communication

targets that can serve as effective diagnostic, prognostic, or

therapeutic biomarkers for the liquid biopsy-based evaluation

of glioma patients (95). Exosomal circRNAs are present in the

TME where they may play a vital role in the promotion of

tumor progression. Exosomal circRNAs also play an important

role in the development of glioma, including proliferation,

immunosuppression, angiogenesis, invasion, migration, and

therapeutic resistance. Recent studies have shown that exosome-

associated circRNAs such as circ_104948, circ_0001445, circHIPK3,

circWDR62, circMMP1, circ_0012381 play roles in the glioma

proliferation process through miRNAs (30, 96–100). CircNEIL3

promotes glioma progression and exosome-mediated macrophage

immunosuppressive polarization via stabilizing IGF2BP3 (101).

Exosomal circKIF18A promotes angiogenesis by targeting FOXC2

in glioblastoma (GBM) (102). Macrophage-derived exosomes

circBTG2 overexpression inhibited proliferation and invasion of

glioma cells, circMMP1, and circSMARCA5 (circ_0001445) also

play roles in the process of invasion and migration (30, 98, 103,

104). Low-dose radiation-induced exosomal circ-METRN plays an

oncogenic role in glioblastoma progression and radioresistance

through miR-4709-3p/GRB14 pathway; circ_0072083,

circWDR62, circ_0042003, circNFIX, circHIPK3, circGLIS3 can

resist TMZ in the treatment of glioma (96, 97, 105–109). Figure 2

shows the roles by which exosomal circRNAs may be involved in

the development of glioma.
FIGURE 2

The role of exosomal circRNAs in the development of glioma. Exosomal circRNAs affect the progression of glioma by regulating its proliferation,
invasion, migration, angiogenesis, and therapeutic resistance (30, 96–109).
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Exosomal circRNAs as diagnostic
biomarkers for glioma patient liquid biopsy
analyses

GBM is the most aggressive glioma subtype and accounts for

roughly half of all cases. GBM patients exhibit lower levels of

exosomal circSMARCA5 and circHIPK3 in their plasma samples,

and researchers have reported improvements in GBM diagnostic

accuracy when assessing these two exosomal circRNA biomarkers

in combination with three traditional prognostic and diagnostic

biomarkers associated with this tumor type including the

preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-

lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio

(LMR) (29, 110). GBM patients also reportedly exhibit

s ignificantly elevated plasma exosomal circ_0055202,

circ_0074920, and circ_0043722 levels, and inhibiting the

expression of these three circRNAs in the U87 cell line

significantly impaired their proliferative activity, suggesting that

this may be a viable biomarker for the detection of GBM (111).

High levels of serum exosomal circMMP1 (circ_0024108) have been

reported in glioma where it can promote glioma cell proliferative

and migratory activity while inhibiting apoptotic cell death (30).

High levels of circFBXW7 expression are evident in healthy brain

tissue where it encodes the FBXW7-185aa protein. However, the

upregulation of FBXW7-185aa in tumor cells can suppress

proliferation, and as a result, GBM tissues have been shown to

have lower levels of circFBXW7 and FBXW7-185aa expression

relative to adjacent tissues. A positive correlation between

circFBXW7 expression and overall survival has been reported in

GBM patients, with corresponding circFBXW7 downregulation in

glioma tissues (112, 113). In addition, the downregulation of

CDR1as has been observed in glioma wherein it has been shown

to bind the DNA-binding domain of the p53 tumor suppressor

protein, thus inhibiting the ubiquitination and degradation of p53.

Accordingly, inactivating CDR1as can promote gliomagenesis

(114, 115).
Exosomal circRNAs as therapeutic markers
for glioma patient liquid biopsy analyses

CircMMP1 can promote the proliferation of tumor cells while

inhibiting apoptosis, and high levels of exosomal circMMP1 are

evident in the glioma where it promotes oncogenesis via the

circMMP1/miR-433/HMGB3 axis, indicating that this pathway

may be amenable to patient treatment (30). In glioma patients

undergoing radiotherapy, exosomal circATP8B4 can sequester

miR-766 and contribute to radioresistance (116). The expression

of circHIPK3 is increased in glioma cells and tissues where it

promotes miR-124 sequestration-mediated enhancement of

CCND2 expression, ultimately driving increased proliferation and

invasion. Exosomal circHIPK3 can promote the proliferation of

tumor cells and resistance to TMZ treatment through the miR-421/

ZIC5 pathway (97, 117). TMZ-resistant glioma patients also exhibit

higher levels of exosomal circNFIX, which can promote oncogenic

progression. The upregulation of circNFIX reduces glioma cell
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sensitivity to TMZ as a consequence of miR-132 downregulation

(107). The upregulation of circ_0042003 in exosomes derived from

the TMZ-resistant U251 cell line can be positively regulated by

acetyl heparinase, which influences glioma cell TMZ resistance and

can be knocked down to sensitize U251 cells to this drug (109).

Higher levels of circ_0072083 in TMZ-resistant glioma tissues and

cells can regulate ALKBH5 via miR-1252-5p, thereby influencing

TMZ resistance. The Warburg effect can promote exosomal

circ_0072083 release from drug-resistant cells, and this circRNA

can, in turn, enhance the TMZ-resistant properties of sensitive

cells (106).
Exosomal circRNAs as a prognostic marker
for liquid biopsy of glioma

High serum exosomal circMMP1 (circ_0024108) levels have

been potentially linked to poor glioma patient prognosis (30). While

higher levels of exosomal circNFIX have been associated with

resistance to TMZ treatment, suggesting that analyses of this

circRNA can better guide the care and therapeutic monitoring of

affected patients (107, 118). The positive cell migration regulator

splicing factor 1 (SRSF1) is expressed at high levels in glioblastoma

cells, and it exhibits multiple binding sites for circSMARCA5.

Moreover, higher levels of splicing factor 3 (SRSF3) expression

are observed in glioma and it has been speculated to function as a

positive regulator of SRSF1-dependent glioma cell migratory

activity. Lower levels of exosomal circSMARCA5 can inhibit the

migration of GBM cells through the regulation of the SRSF1/SRSF3/

PTB axis, indicating that it may function as a potent tumor

suppressor in this cancer type through the inhibition of SRSF1

function (103). In addition, the upregulation of circGLIS3 is evident

in high-grade glioma and exosomes can facilitate its secretion into

the glioma microenvironment, facilitating tumor invasivity,

angiogenic activity, and the phosphorylation of Ezrin (T567)

phosphorylation. Elevated levels of p-Ezrin (T567) are,

accordingly, associated with high-grade glioma and with a poor

patient prognosis (119) (Figure 3).
Conclusions and outlook

Given their noninvasive nature and amenability to convenient

sample collection and analysis, liquid biopsy-based testing strategies

have developed rapidly in recent years and are used in a range of

advanced clinical tests assessing particular biomarkers relevant to

specific disease states. Liquid biopsy strategies can be used for early

cancer screening and diagnosis, while also enabling the prediction

of therapeutic targets, therapeutic resistance, post-treatment follow-

up outcomes, and disease recurrence. Many recent studies have

explored the molecular basis for the pathogenesis of glioma,

spurring the increased application of liquid biopsy-based analyses

in this oncogenic context. Exosomal circRNAs have emerged as

particularly promising biomarkers in the context of liquid biopsy

analyses, offering higher levels of sensitivity and specificity

compared with more traditional biomarkers, thereby providing
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clinicians with better guidance for the timely diagnosis, prognostic

assessment, and monitoring of treatment resistance in individuals

affected by glioma. At present, the methods for detecting exosomes

are increasing, together with improved specificity and credibility,

leading to potential for borad clinical application. Through the

discussion of the formation, action mechanism, clinical application

and detection means of exosomes, we have gained a deeper

understanding of the role of exosomes in disease. CircRNAs in

exosomes can play a role in both the physiological and pathological

state of the body, especially in tumors. The deepening

understanding of the roles of exosomal circRNAs in glioma has

led to the proposal of novel clinical applications. Exosomal circRNA

is a small molecule present in body fluids where it can be accurately

detected by liquid biopsy technology, allowing its precise analysis.

Liquid biopsy strategies are still subject to a range of challenges

and necessitate further validation before they can enter into routine

clinical use. For one, it is important that appropriate biofluids be

selected when conducting these analyses, and whether a given

biomarker is the most appropriate target in that biofluid sample

also warrants consideration. One must also consider whether the

source of a given biomarker detected in a particular biofluid is

unique to primary or metastatic tumor-derived sources or whether

it may also arise from other tissues or cell populations in the body.

Given the relatively low levels of particular molecular biomarkers in

samples of different body fluids, this can place substantial demands

on the volume of available body fluids, and highly sensitive assay

instruments must be capable of detecting even small changes in

these biomarker concentrations. As they are a relatively new type of

tumor marker, there also remain several barriers to the clinical

application of exosomal circRNAs, and new detection instruments
Frontiers in Immunology 07
with higher levels of sensitivity will be essential to facilitate their

routine detection. It is also important that the molecular basis of

glioma pathogenesis be better understood, so that exosomal

circRNAs can be more reliably applied to guide the diagnosis and

treatment of patients suffering from this devastating form of cancer.

We believe exosomal circRNAs can be used as liquid biopsies and

noninvasive biomarkers for the early detection, diagnosis, and

treatment of cancer and other diseases in the nearly future.
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