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Wild-type SARS-CoV-2
neutralizing immunity decreases
across variants and over time
but correlates well with
diagnostic testing

Kelly M. O’Shea1,2†, Charles F. Schuler IV1,2†, Jesse Chen1,3,
Jonathan P. Troost4, Pamela T. Wong1,2,3, Kelsea Chen2,
Daniel R. O’Shea2, Westley Peng2, Carmen Gherasim5,
David M. Manthei5, Riccardo Valdez5, James L. Baldwin1,2

and James R. Baker Jr.1,2,3*

1Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan,
Ann Arbor, MI, United States, 2Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor,
MI, United States, 3Michigan Nanotechnology Institute for Medicine and Biological Sciences, University
of Michigan, Ann Arbor, MI, United States, 4Michigan Institute for Clinical and Health Research,
University of Michigan, Ann Arbor, MI, United States, 5Department of Pathology, University of Michigan,
Ann Arbor, MI, United States
Importance: The degree of immune protection against severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus

vaccination with wild-type virus remains unresolved, which could influence

future vaccine strategies. The gold-standard for assessing immune protection is

viral neutralization; however, few studies involve a large-scale analysis of viral

neutralization against the Omicron variant by sera from individuals infected with

wild-type virus.

Objectives: 1) To define the degree to which infection versus vaccination with

wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron

variants.2) To determine whether clinically available data, such as infection/

vaccination timing or antibody status, can predict variant neutralization.

Methods: We examined a longitudinal cohort of 653 subjects with sera collected

three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals

were categorized according to SARS-CoV-2 infection and vaccination status. Spike

and nucleocapsid antibodies were detected via ADVIA Centaur
®
(Siemens) and

Elecsys
®
(Roche) assays, respectively. The Healgen Scientific

®
lateral flow assay

was used to detect IgG and IgM spike antibody responses. Pseudoviral

neutralization assays were performed on all samples using human ACE2

receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein

pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529

(Omicron) variants.

Results: Vaccination after infection led to the highest neutralization titers at all

timepoints for all variants. Neutralization was also more durable in the setting of

prior infection versus vaccination alone. Spike antibody clinical testing effectively
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predicted neutralization for wild-type and Delta. However, nucleocapsid antibody

presence was the best independent predictor of Omicron neutralization.

Neutralization of Omicron was lower than neutralization of either wild-type or

Delta virus across all groups and timepoints, with significant activity only present in

patients that were first infected and later immunized.

Conclusions: Participants having both infection and vaccination with wild-type

virus had the highest neutralizing antibody levels against all variants and had

persistence of activity. Neutralization of WT and Delta virus correlated with spike

antibody levels against wild-type and Delta variants, but Omicron neutralization

was better correlated with evidence of prior infection. These data help explain why

‘breakthrough’ Omicron infections occurred in previously vaccinated individuals

and suggest better protection is observed in those with both vaccination and

previous infection. This study also supports the concept of future SARS-CoV-2

Omicron-specific vaccine boosters.
KEYWORDS

COVID-19, SARS-CoV-2, antibody, viral neutralization, variant of concern, spike,
nucleocapsid, vaccine
Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),

the causative virus for the coronavirus disease 2019 (COVID-19)

pandemic, has caused millions of cases and deaths worldwide (1).

Throughout the pandemic, mutations of the original virus have led to

new viral variants (2, 3), and these “variants of concern” have raised

questions about pathogenesis and immune escape, especially as

additional waves of infection have occurred.

Vaccination against COVID-19 is effective in mitigating severe

disease and hospitalization from SARS-CoV-2 (4–7). Furthermore,

infection with SARS-CoV-2 induces strong cellular and humoral

immunity, with the magnitude of response possibly correlating with

disease severity (8–10). However, reinfections have raised questions

pertaining to protective immunity after infection and vaccination,

especially with Omicron variants (11–14). Current primary vaccines

for SARS-CoV-2 target the wild-type (WT) spike protein, and studies

have documented reduced viral neutralization titers to Omicron as

compared to other variants (13). However, studies are necessary to

clarify how the combination of WT infection and vaccination impact

viral immune responses to subsequent viral variants in order to define

the value of including additional spike protein SARS-CoV-2 variants

in vaccine boosters.

Viral neutralization assays evaluate the functional ability of

antibodies to neutralize SARS-CoV-2 and provide insights into

immune protection against infection (15). Unfortunately, these
S-CoV-2, severe acute

anscriptase polymerase

nal Review Board; WT,

, lateral flow assay; Ig,

Dulbecco’s modified

02
assays are cumbersome because they must be performed in

biosafety level 3 facilities, requiring intensive time, resources, and

expertise. Pseudoviral neutralization of lentiviruses expressing SARS-

CoV-2 spike protein is an effective surrogate to standard

neutralization assays (16, 17), however even this technique is too

complex for clinical deployment. Therefore, most clinical laboratory

tests for SARS-CoV-2 humoral immunity involve simply identifying

and/or quantifying overall spike and nucleocapsid antibody levels

rather than their neutralizing functional capacity.

To better understand the infection and vaccination factors leading

to protection from SARS-CoV-2, we conducted a large population

study to assess the neutralizing capacity of sera from individuals with

varied WT COVID-19 disease and vaccination status. We also

defined the ability of these individuals to neutralizing subsequent

variants, including Omicron. Further, we attempted to determine

whether clinically available serological assays can provide insight into

variant neutralization capability.
Methods

Study populations

The University of Michigan (U-M) Institutional Review Board

approved this study (HUM00180074). All subjects provided written

informed consent. Additional details on recruitment, inclusion/

exclusion criteria, data collection, and specimen processing are

available from prior reports on this cohort (10, 18). Subjects

underwent 3 visits, each approximately 3-6 months apart and

serum was collected at each visit (Figure 1). All study visits were

concluded by 6/24/2021 while the Delta variant became a variant of

concern in the United States on 6/15/2021 (19).
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Vaccination

During the study, both COVID-19 mRNA vaccines [BNT162b2

(Pfizer) or mRNA-1273 (Moderna)] became available. Participants

who chose to be vaccinated remained in the study. The vaccination

type and administration dates were recorded. Booster third vaccine

doses were not available during the study timeframe.
Subject categorization

Subjects were categorized into 4 groups according to SARS-CoV-

2 and vaccination status; SARS-CoV-2 infection positive/vaccine

positive (I+/V+), SARS-CoV-2 infection positive/vaccine negative (I

+/V-), SARS-CoV-2 infection negative/vaccine positive (I-/V+), and

SARS-CoV-2 infection negative/vaccine negative (I-/V-). Vaccination

status was considered positive for individuals that had completed the

2-dose series of a COVID-19 mRNA vaccination. Infection status was

considered positive if an individual had a reverse transcriptase

polymerase chain reaction (RT-PCR) positive for SARS-CoV-2

from a nasopharyngeal swab or evidence of a positive nucleocapsid

(N) antibody and was considered negative if an individual had no

history of a positive RT-PCR and negative nucleocapsid antibody

testing. Individuals were categorized according to infection and

vaccination status independently at each timepoint. For all

participants in this cohort, infection occurred prior to vaccination.
SARS-CoV-2 nucleocapsid
electrochemiluminescence immunoassay
and spike (S1-RBD) chemiluminescence
immunoassay

The Elecsys® (Roche) SARS-CoV-2 Total Antibody Assay on a

Cobas e411 analyzer was used to detect anti-nucleocapsid antibodies.

The ADVIA Centaur® (Siemens) SARS-CoV-2 Total (COV2T) assay
Frontiers in Immunology 03
on an ADVIA Centaur® XPT analyzer was used to detect anti-spike (S)

antibodies. These assays detect total SARS-CoV-2 nucleocapsid or S

antibodies via a sandwich electrochemiluminescence immunoassay or a

chemiluminescence immunoassay, respectively. A cutoff index of >1 is

defined as a positive result. The assays detect all isotypes in aggregate of

the relevant SARS-CoV-2 antibody. All samples were evaluated in the

CLIA-certified U-M Clinical Pathology Laboratory.
SARS-CoV-2 lateral flow assay

A SARS-CoV-2 lateral flow immunoassay (LFA) from Healgen

Scientific (COVID-19 IgG/IgM Rapid Test Cassette) was also used to

separately evaluate IgG and IgM antibodies toward the SARS-CoV-2

S1-receptor binding domain. The assay was run following the

Emergency Use Authorization - Instructions for Use (20) using

subject serum. A faint line was read as positive. “IgG” refers to a

positive IgG result and “IgM” refers to a positive IgM result from this

LFA hereafter.
Pseudoviral neutralization assay

SARS-CoV-2 wild-type (WT), B.1.617.2 (Delta) and B.1.1.529

(Omicron BA.1) spike proteins were cloned into a lentivirus vector as

previously described (21). To perform pseudoviral neutralization

assays, HEK-293T cells stably expressing human ACE2 were seeded

at 9*10^3 cells per well of white clear-bottom, tissue culture 96-well

plates and incubated at 37°C and 5% CO2 for 24 hours in complete

DMEM (DMEM/10% FBS/1% Pen-Strep). Serum samples were

serially diluted 2-fold in complete DMEM starting at an initial

dilution of 1:10. Equal volumes of diluted sera were mixed with

each pseudovirus expressing variant spike proteins diluted in DMEM

with polybrene in a new 96-well plate, giving a final concentration of

4,163 transduction units/mL lentivirus with polybrene (8 ug/mL) with

a serum starting dilution of 1:20. Sera and virus were incubated at 37°
FIGURE 1

Study Timeline and Emergence of known Variants of Concern for SARS-CoV-2. Timeline of visits related to vaccine availability and variant detection
dates. VOC, variant of concern.
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C and 5% CO2 for 1 hour. Complete DMEM in the HEK-293T plate

was replaced with 100 uL of the serum-pseudovirus mixtures and

then incubated at 37°C and 5% CO2 for 4 hours. Serum-pseudovirus

mixtures were aspirated from the cell culture plates and replaced with

100 uL of fresh complete DMEM and then incubated at 37°C and 5%

CO2 for 72 hours. Uninfected cell and virus only controls (without

sera) were plated for all variants during each assay to standardize

results. After 72 hours, luciferase detection was performed using a

GloMax (Promega) plate reader according to manufacturer

instructions. BrightGlo assay reagent (Promega, Madison, WI) was

used for WT and Omicron pseudovirus neutralization and SteadyGlo

(Promega) assay reagent was used for Delta variant pseudovirus

neutralization to account for differences in luminescence with the

different viral constructs.
Statistical analysis

Descriptive statistics were provided using mean and standard

deviation for continuous variables and frequencies and percentages for

categorical variables. Fifty percent inhibitory concentration (IC50)

analyses were performed in Prism V8.0 (GraphPad Inc., San Diego,

CA). The datasets were not normally distributed based on histogram

visualization and the Shapiro-Wilk test for normality. Statistical

comparison between multiple groups was performed using Kruskal-

Wallis Multiple Comparisons. Antibody variables of interest included

IgM (positive/negative), IgG (positive/negative), Spike (positive/negative),

Spike (continuous—with upper and lower limit values recoded as follow:

<0.05 = 0.05 and >10.0 = 10.0), Nucleocapsid (positive/negative),

Nucleocapsid (continuous). Linear mixed effects models of log-

transformed IC50 values were developed with a random intercept for

each subject and repeated measures for time with an auto-regressive

covariance structure to address the repeated measures within subjects.

Beta values reported reflect positive (>0) or negative (<0) associations

between the dependent and independent variables, with no effect at beta =

0. Analyses and figure production were performed in SAS V9.4 (SAS

Institute Inc., Cary, NC) and PrismV8.0 (GraphPad Inc., San Diego, CA).
Results

Patient characteristics

Descriptive statistics for the full study cohort are detailed in

Table 1. The mean age was 40.6 ± 12.1 years. Female participants

composed 72% of the cohort and healthcare workers composed 80%.

151 participants (23%) had pre-existing medical conditions. The most

prevalent pre-existing conditions were chronic lung disease (10%)

and hypertension (10%).
Viral neutralization is highest in individuals
with both infection and vaccination history
across all variants

Viral neutralization was performed on all serum samples at each

timepoint using three SARS-CoV-2 variants (WT, Delta, and Omicron)
Frontiers in Immunology 04
and neutralization titers were compared across all variants and groups

(Figures 2A-I). COVID-19 vaccination became available just prior to

Visit 2. At Visits 2 and 3 for every variant, the average IC50 is highest

amongst individuals with a history of COVID infection and who also

had completed the 2-dose vaccination series (I+/V+) (Figures 2D-I).

Individuals who had vaccination or infection alone had lower levels of

neutralization. Not surprisingly, individuals who had no history of

COVID infection and did not receive any vaccine doses (I-/V-) had the

lowest average IC50 (Figures 2A-I). The average IC50 of all groups with
TABLE 1 Participant descriptive statistics.

Age (years)

Mean (SD) 40.6 (12.14)

N 653

Sex, n (%)

Female 472 (72)

Male 176 (28)

Other 3 (1)

Unknown/Not Reported 2 (0)

Race, n (%)

Unknown/Not Reported 3 (1)

American Indian/Alaska Native 1 (0)

Asian 57 (9)

Black or African American 26 (4)

More Than One Race 18 (3)

Native Hawaiian or Other Pacific Islander 1 (0)

White 545 (84)

Ethnicity, n (%)

Unknown/Not Reported 3 (1)

Hispanic or Latino 32 (5)

NOT Hispanic or Latino 618 (94)

BMI (kg/m)

Mean (SD) 27.7 (8.33)

Enrollment Group, n (%)

Healthcare worker 522 (80)

Not HC worker 131 (20)

Pre-existing Medical Conditions, n (%) 151 (23)

Chronic Lung Disease (asthma/emphysema/COPD) 66 (10)

Diabetes Mellitus 22 (3)

Cardiovascular Disease 13 (2)

Chronic Renal Disease 3 (<1)

Liver Disease 1 (<1)

Hypertension 66 (10)

Immunocompromised condition 4 (1)

Neurologic/Neurodevelopmental/Intellectual Disability 1 (<1)
fr
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either vaccination, infection or both (I+/V+, I+/V- and I-/V+) were

significantly higher than the I-/V- group at every timepoint. By Visit 3,

the I+/V+ group showed significantly greater neutralization activity

than either the I+/V- or I-/V+ groups for all variants. There was no

significant difference between the average IC50 for the I+/V- and I-/V+

groups at visit 3 for all variants.
Frontiers in Immunology 05
Amultivariable linear mixed effects model of log-transformed IC50

values was used to better assess the independent impacts of infection

and vaccination status on individual serum ability to neutralize variant

virus (Figure 2J). Across all variants, a history of infection, a history of

vaccination, or both were all independent predictors of viral

neutralization. However, the magnitude of effect was greatest in the
A B

D E F

G IH

J

C

FIGURE 2

Viral neutralization across 3 timepoints for WT, Delta and Omicron SARS-CoV-2. (A-I) Viral neutralization across 3 timepoints for WT, Delta, and Omicron
SARS-CoV-2. Each point represents the IC50 (log10 transformed) of an individual. Serum dilutions start at 1:20, visualized by the dotted line. Statistical
analysis was performed using Kruskal-Wallis Multiple Comparisons. I, Infection; V, Vaccine; IC50, half maximal inhibitory concentration. (J). Results of a
linear mixed effects model of log-transformed IC50 values analyzed according to infection, vaccination, or infection plus vaccination status. *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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infected and vaccinated group (I+/V+), although the impact decreased

across later variants. For example, viral neutralization activity

associated with the combination of vaccination and infection was

only 74% of WT serum neutralization activity for Delta and was only

47% for Omicron.

When comparing viral neutralization across variants, at visit 1, the

median IC50 was highest for WT and significantly lower for both Delta

and Omicron (Figure 3A). At visits 2 and 3, neutralization was

significantly lower for Omicron compared to both WT and Delta for

all groups (Figures 3B, C). WT neutralization was also significantly better

than Delta neutralization in most subjects at all visits (Figures 3A-C). For

Omicron, median IC50 was >100 only in the I+/V+ groups at visits 2 and

3 (Figures 3D-F).
Neutralization was more durable in the
setting of prior infection compared to
only vaccination

Subjects with history of infection without vaccination (I+/V-)

were analyzed over time across all variants and sorted into 90-day

intervals since the time of infection (Figure 4A). In these individuals
Frontiers in Immunology 06
there were no significant differences in the median IC50 across all 90-

day intervals for all variants (WT, Delta, and Omicron); this extended

out to >270 days. For all intervals except >270 days, the median IC50

value for WT was significantly greater than for Delta. In contrast, at

all timepoints the median IC50 for both WT and Delta were

significantly higher than Omicron. Among individuals with a

history of vaccination without infection (I-/V+), the time since

vaccination had a much greater impact on neutralization titers

(Figure 4B). In these subjects there was a significant decline in

median IC50 for both WT and Delta even after 90 days.

Neutralization titers against Omicron in these subjects were initially

low so no trend could be determined. The median IC50 for WT was

significantly greater than Delta for both time intervals.

We utilized linear mixed effects models of log-transformed IC50

values across time for each variant to further evaluate the trend of

IC50 values since either infection or vaccination. Figure 4C shows a

linear mixed effects model of log-transformed IC50 values

superimposed on the IC50 values for each variant analyzing the

role of time since infection, controlling for vaccine status. There was a

slight decline in IC50 over time for both WT and Delta, but this was

not observed for Omicron. Figure 4D shows a linear mixed effects

model of log-transformed IC50 values analyzing the role of time since
A B

D

E F

C

FIGURE 3

Impact of Variants by Group. (A-F) Viral neutralization comparisons of WT,
Delta, and Omicron SARS-CoV-2. Each point represents the IC50 (log10
transformed) of an individual. Serum dilutions start at 1:20, visualized by
the dotted line. Results are grouped by variant (A-C) or by infection/
vaccination status (D-F) for clarity. Statistical analysis was performed using
Kruskal-Wallis Multiple Comparisons. I, Infection; V, Vaccine; IC50, half
maximal inhibitory concentration. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
****p ≤ 0.0001.
A B

D

C

FIGURE 4

Impact of Time Since Infection or Vaccination. (A) Individuals at all
timepoints with history of infection but without vaccination analyzed
over time across all variants. (B) Individuals at all timepoints with
history of vaccination but without prior infection analyzed over time
across all variants. (C) Individual IC50s over time by variant for all
participants with history of infection without vaccination. Line
indicates the results of a linear mixed effects model of log-
transformed IC50 values analyzing the role of time since infection
controlling for vaccine status. (D) Individual IC50s over time by variant
for all participants with history of vaccination without prior infection.
Line indicates the results of a linear mixed effects model of log-
transformed IC50 values analyzing the role of time since vaccination
controlling for infection status. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤

0.0001.
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vaccination, controlling for infection status. There was a sharp decline

in IC50 over time for both WT and Delta, but no neutralization was

observed for Omicron.
Correlation between clinical testing and
neutralization results

We sought to define whether readily available clinical serological

assays predicted neutralization results. Spike antibody levels were

associated with IC50 results across variants at each visit, but the

poorest association was for Omicron (Figures 5A-C). Nucleocapsid

antibodies did not correlate with viral neutralization as well as spike
Frontiers in Immunology 07
antibodies in part because nucleocapsid antibodies were not present

in individuals who were vaccinated and not infected. Therefore, at

visit 2 and 3, the IC50 was similar for WT and Delta regardless of

positive nucleocapsid testing, but the mean IC50 was higher for

nucleocapsid positive individuals with Omicron (Figures 5D-F).

A multivariable linear mixed effects model of log-transformed

IC50 values was used to assess each independent marker of clinical

testing on every variant’s IC50 (Figure 5G). Clinical testing included

spike and nucleocapsid antibodies, as well as presence of IgG and IgM

using the LFA. For WT, the IgM, IgG, and spike antibody results were

all independently associated with neutralization activity; the strongest

association being with spike antibody (beta = 2.61). Of interest, there

was no association seen between neutralization activity and
A B

D E F

G

C

FIGURE 5

Correlation Between Clinical Testing and Viral Neutralization. (A-F) IC50 results for each variant (WT, Delta, Omicron) categorized by spike antibody and
nucleocapsid status (positive or negative) regardless of infection or vaccination status across all variants and time points. Serum dilutions start at 1:20,
visualized by the dotted line. (G) Results of a linear mixed effects model of log-transformed IC50 values analyzing LFA results each for IgM and IgG, spike
antibody status, and nucleocapsid antibody status all as dichotomous results.
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nucleocapsid antibody resulting from infection in the WT data. A

strong association between spike antibody and neutralization activity

was also observed with the Delta variant (beta = 1.35). However,

unlike WT virus nucleocapsid antibody was also significantly

associated with neutralization, albeit to a lesser extent. This

suggested augmentation of neutralization activity from infection.

In contrast, with the Omicron variant, nucleocapsid antibody was

the most significant predictor of neutralization (beta = 0.68). This

suggested infection was more important than vaccination for

neutralizing activity. However, the association of nucleocapsid

antibody with Omicron neutralization was lower than the

associations between spike protein with WT and Delta

neutralization activity. IgG (LFA) and spike antibody positivity

were independently associated with Omicron variant neutralization,

but these associations were minimal and unlikely to have clinical

relevance. Together, this suggested vaccine immunity alone was

associated with little neutralization activity against Omicron.
Discussion

We studied viral neutralization of SARS-CoV-2 during the initial

period of the pandemic, in which the only identified circulating virus

was WT, to understand how this might relate to immunity against

subsequent variants and protection against infection (19). There were

several interesting findings that may have had impact on the progress of

the pandemic. Viral neutralization activity was strong after either

vaccination or infection and appeared to be boosted in those with a

combination of both immune challenges. This correlated with the

highly effective protection against clinical infection observed with

vaccination during the WT and subsequent Delta variant infection

cycles (4, 5). It also suggests why Delta infections mainly involved

unvaccinated individuals with little evidence of reinfection during that

period (22). In contrast, the Omicron wave of infection were noted for

breakthrough infections in vaccinated individuals and reinfections (23,

24). While viral spike protein changes in Omicron may have been

responsible for these events, our data demonstrate that in the absence of

prior infection waning neutralizing immunity from vaccination also

may have played a role. Thus, initial immune profiles in the pandemic

provide insights into what drove subsequent waves of infection.

Viral neutralization activity was highest across all variants for

those who were both infected and vaccinated. This provides evidence

supporting reports of enhanced immunity from this combination

against WT virus and the Delta variant (25, 26). While neutralization

activity was significantly lower against Omicron, the infected and

vaccinated group had a median IC50 over 100. This argues against the

concern that initial COVID exposure limits subsequent immune

response to variant SARS-CoV-2 viruses (27). Also, neutralization

activity in the post-infection WT group may be better with Omicron

than what we demonstrated since infection yields immunity to

multiple viral proteins while pseudoviral neutralization measures

neutralization specifically with spike protein. This is reinforced by

the correlation between nucleocapsid antibody titers and

neutralization activity for Omicron. On the other hand, a recent

study suggests that Omicron infection in the absence of vaccination is

ineffective for cross-variant immunity, supporting the need for
Frontiers in Immunology 08
vaccination even after infection (28). Our results clearly indicate

that neutralization is more durable in the setting of infection

compared to 2-dose vaccination alone, consistent with smaller prior

studies of mRNA vaccines (23). Together, these findings support the

use of Omicron vaccine boosters regardless of infection status.

This work also demonstrates conclusively that neutralization

activity falls progressively from either infection or vaccination

regardless of SARS-CoV-2 variant. Prior studies have shown

somewhat similar findings in smaller cohorts (13, 29, 30), and the

present work is notable for its large cohort size and the fact that it

utilized only WT infected or vaccinated individuals. These results also

help explain the phenomenon of ‘breakthrough’ infections with

Omicron, both after vaccination as well as previous infection (23, 24).

Since much of the population was exposed to WT virus and/or vaccine

(31), the results of this study are relevant for a substantial portion of the

global population and, given the ubiquity of Omicron exposure (32, 33),

re-creating the immune status of our cohort will be impossible.

Given the difficulties in performing SARS-CoV-2 neutralization or

cellular immunity tests, identifying correlates of protection from

available humoral testing is important (34). Since all vaccines against

SARS-CoV-2 immunize with spike protein (4, 5), spike antibody levels

after vaccination are elevated and may not reflect neutralizing antibody

activity (35). Prior work also suggests that total SARS-CoV-2 antibody

levels may predict risk for breakthrough infections (36). In this study, we

were able to associate both infection and immune status to neutralization

capacity, providing a stratification approach from clinical antibody

testing for risk of infection. Also, given the many individuals infected

during recent Omicron waves, nucleocapsid responses may be important

for understanding future COVID-19 infection risk.

Despite our large and diverse cohort, our study has limitations. All

participants that were both infected and vaccinated were always infected

prior to vaccination. We cannot determine whether individuals

vaccinated and subsequently infected would have the same

neutralization profiles. Furthermore, booster doses were not available

during the study period. However, most individuals in the United States

are vaccinated adults without booster shots, so our data remain relevant.

In conclusion, individuals with a history of infection followed by

vaccination have higher neutralizing antibody levels for all variants

compared to those with vaccination or infection alone. Among

individuals infected or vaccinated with WT SARS-CoV-2, viral

neutralization capacity was highest for WT and Delta and was

much lower for Omicron. Importantly, SARS-CoV-2 vaccine

induced immunity wanes significantly over time but when

combined with infection is much more persistent. Infection status

and clinical antibody testing can provide insight into SARS-CoV-2

neutralization capacity, which is useful given the logistic constraints

of neutralization testing. These findings help to explain the high rates

of vaccine breakthrough infection observed with the Omicron variant

and support the use of vaccine boosters after infection.
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