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Implant surgery is followed by a series of inflammatory reactions that directly affect

its postoperative results. The inflammasome plays a vital role in the inflammatory

response by inducing pyroptosis and producing interleukin-1b, which plays a

critical role in inflammation and tissue damage. Therefore, it is essential to study

the activation of the inflammasome in the bone healing process after implant

surgery. As metals are the primary implant materials, metal-induced local

inflammatory reactions have received significant attention, and there has been

more and more research on the activation of the NLRP3 (NOD-like receptor

protein-3) inflammasome caused by these metals. In this review, we consolidate

the basic knowledge on the NLRP3 inflammasome structures, the present

knowledge on the mechanisms of NLRP3 inflammasome activation, and the

studies of metal-induced NLRP3 inflammasome activation.
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1 Introduction

Implantation has been widely used in orthopedic and dental treatments to replace the

non-regenerative part of the human body (1, 2). Surgical implantation is accompanied by

hemorrhage, which causes various cells and proteins between the bone and surrounding soft

tissue to participate in a series of biological processes, including protein deposition,

coagulation, inflammation, and tissue formation (3). Leukocytes migrate into the peri-

implant site, and the activation of leukocytes results in the release of inflammatory mediators,

including interleukin-1 beta (IL-1b), IL-6, tumor necrosis factor alpha (TNF-a), and
macrophage colony-stimulating factor (3). The initial reaction of inflammatory cells to

foreign materials influences the bone healing process. Thus, it is essential to study

biomaterial-induced inflammation in the osteogenesis field (4). The inflammasome is an

essential part of the innate immune system that is involved in metal-induced hypersensitivity,

bacterial infection-induced peri-implantitis, and other possible side effects of implantation (5,

6). The activation and assembly of the inflammasome are complicated programmed

processes that involve the upstream sensors, the adaptors, and the downstream effectors
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(7). Therefore, studies on implantation-induced inflammasome

activation have constantly increased over the years.

Broadly, biomaterials are grouped into natural precursors or

synthetic materials (8, 9). Suitable implant materials must satisfy

the biochemical, physiological, and antibacterial property

requirements of implantations. The implant surface chemistry and

topography influence the process of osteogenesis (10). There are two

main methods to improve osseointegration: 1) sintering of the

metallic beads or fibers over the implant surface and 2) plasma

spray deposition of the metallics or ceramics onto the implant

surface (3). Metal implants apply load-bearing sections, such as in

long bone and dental implants. Metal implantation can constantly

precipitate metal ions, which are components of cellular proteins,

bone structures, and intracellular or extracellular matrices (11). In

addition, the release of metal ions into the surrounding bone tissues

participates in osseointegration, which has been used to describe the

successful healing of an implant within a host bone (12).

Peri-implant tissue healing starts with an inflammatory response

after the implant is inserted into the bone cavity (13); however,

inflammation at the peri-implantation site is also the leading cause of

implantation failure (14). Therefore, it is essential to study the

immune response to implant biomaterials. However, the role of

implant-released metal ions in inflammasome activation, a critical

component of the host immune system, is still unclear. Recent studies

on metal-activated inflammasomes have mainly focused on the NOD-

like receptor protein-3 (NLRP3) inflammasome. In this review, we

first present an overview of the series of NLRP3 inflammasome

activation mechanisms and then summarize recently published

research on various metal ions, metal particles, and metalloproteins

that activate the NLRP3 inflammasome signals.
2 NLRP3 inflammasome

The inflammasome, identified by Tschopp and co-workers in

2002, is described as a high-molecular-weight complex present in the

cytosol of stimulated immune cells that mediates the activation of

inflammatory caspases (15). The activated caspases convert IL-1b and

IL-18 from their inactive to their active forms. At the same time, full-

length gasdermin D (FL-GSDMD) is cleaved to the N-terminal

GSDMD (GSDMD-NT) and forms membrane pores, resulting in

cytokine release and/or programmed cell death called pyroptosis (16,

17). The inflammasomes are named after the pattern recognition

receptors (PRRs) that sense the pathogen-associated molecular

patterns (PAMPs) and the damage-associated molecular patterns

(DAMPs) in the cytosol and initiate downstream responses. In

general, inflammasomes are classified into canonical and non-

canonical inflammasomes.

Canonical inflammasomes comprise a sensor molecule, the

adaptor ASC (apoptosis-associated speck-like protein containing a

C-terminal caspase recruitment domain (CARD), and the effector

caspase-1. Several sensors have been identified. There are sensors that

consist of the nucleotide-binding oligomerization domain (NOD) and

leucine-rich repeat (LRR)-containing protein (NLR) family members,

including NLRP1, NLRP3, NLRC4, NLRP6, NLRP7, and NLRP12.

These sensors, which activate inflammasomes, are classified as NLR

N-terminal domains. Another class of inflammasomes assembling
Frontiers in Immunology 02
sensors is represented by the PYHIN protein family members, such as

melanoma 2 (AIM2) and pyrin (7). The ASC adaptor contains two

death-fold domains: one pyrin domain (PYD) and one caspase

recruitment domain (CARD). On the one hand, PYD forms PYD–

PYD interactions with the PYD domain in activated sensors. On the

other hand, the CARD domain interacts with the CARD domain in

pro-caspase-1. Therefore, ASC serves as a bridge between the sensors

and pro-caspase-1, forming inflammasomes as a result of recognition

of the PAMPs and DAMPs in canonical inflammasomes (6).

The NLRP3 inflammasome plays critical roles in various

inflammatory disorders, including Alzheimer’s disease, diabetes,

and other inflammation-related diseases (18–20). It consists of an

N-terminal PYD, a central NOD (also called the NACHT domain),

and a C-terminal LRR domain (21). The ATPase activity of NOD is

essential for NLRP3 oligomerization and is targeted by MCC950, a

commonly used NLRP3 inhibitor (22). In addition, it has been

determined that the NIMA-related kinase 7 (NEK7) interacts with

the LRR domain to promote the activation of NLRP3 (23). The

structure of the NLRP3 inflammasome is shown in Figure 1.

The NLRP3 inflammasome has been extensively studied for its

broad spectrum of stimuli and complicated activation signaling. The

stimulators of NLRP3 include crystalline materials, extracellular ATP,

pore-forming toxins, RNA–DNA hybrids, peptide aggregates, and

viral, fungal, and bacterial pathogens (6, 24). It is generally accepted

that the activation of the NLRP3 inflammasome involves a two-step

process. Signal 1, also known as the priming signal, is triggered by

PRR signaling, such as Toll-like receptors (TLRs) or cytokine

receptors, e.g., TNF and IL-1 receptors. The activation of signal 1

leads to the transcriptional activation of nuclear factor kappa B (NF-

kB), which upregulates the gene expression of NLRP3, IL-1b, and IL-

18. Signal 2, also known as the activation signal, is induced by various

PAMPs and DAMPs. Multiple molecular and cellular signaling events

have been proposed to activate the NLRP3 inflammasome, as follows:

1) ionic flux, including K+ efflux, Ca2+ mobilization, Cl− efflux, and

Na+ influx. As a DAMP, ATP activates the P2X7 receptor on the cell

membrane, inducing K+ efflux that triggers the activation signal; 2)

mitochondrial dysfunction and the production of reactive oxygen

species (ROS); and 3) lysosome damage. However, none of these is

recognized as a common event induced by all the NLRP3

inflammasome stimuli (21, 25). To date, studies on metal-activated

inflammasomes have mainly focused on the NLRP3 inflammasome

(26, 27). Details of these studies are discussed in the following sections

and are summarized in Figure 2.
3 Metals involved in NLRP3
inflammasome activation

As metals are the primary implant materials, metal-induced local

inflammatory reactions have received significant attention, and there

has been more and more research on the activation of inflammasomes

caused by metals (28, 29). One of the present trends of biomaterials is

the development of strategies and solutions that modulate the

immune cell biology to avoid or minimize the undesired side effects

in regenerative medicine (30). In the host response to biomaterials,

the inflammasome is the bridge between inflammation and tissue

regeneration. As the widest studied inflammasome, the NLRP3
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inflammasome has become a major topic in the development of

immunomodulatory biomaterials. Modulation of NLRP3

inflammasome activation in response to biomaterials in order to

minimize the tissue inflammatory response to implants can promote

tissue regeneration around the implant and determine the outcomes

post-implantation (31). The reaction and mechanisms of metals

activating the NLRP3 inflammasome depend on the different metal

elements and metal states. We summarize recent studies on the roles

of metals in NLRP3 inflammasome activation in Table 1. Details of

specific metals are discussed as follows.
Frontiers in Immunology 03
3.1 Titanium

Titanium (Ti) and its alloys have recently attracted significant

interest (75). They are the most widely used metals for implantation

due to their advantageous characteristics, including their excellent

corrosion resistance and bone-bonding ability (76). The interface

between metals and the surrounding tissues is also critical as

insufficient bonding provides a bacterial invasion route, resulting in

peri-implantitis. Titanium ions are frequently detected in the implant

region, especially in peri-implantitis tissue (75). It has been reported
FIGURE 1

The structure of NLRP3 inflammasome. Canonical inflammasomes comprise a sensor molecule, the adaptor ASC, and the effector Caspase-1. NLRP3
comprises a N-terminal PYD, a central NOD, and a C-terminal LRR domain. NEK7 interacts with LRR domain to promote NLRP3 activation. ASC
comprises a PYD and a CARD domain. Caspase-1 comprises a CARD and two subunits, p10 and p20. Sensors interact with ASC by PYD domains and ASC
interacts with caspases-1 by CARD domains.
FIGURE 2

Roles of metals in NLRP3 inflammasome activation. NLRP3 inflammasome activation requires a two-step process. In signal 1, NF-kB transcriptional
activation can be accelerated by Mn2+ binding prion fibrils, Ni2+ ions, ZrO2 and inhibited by magnesium isoglycyrrhizinate (MGL). In signal 2, ionic flux
activating NLRP3 inflammasome is controlled by the P2X7 and pannexin-1 receptors. The pannexin-1 activity can be regulated by Zn2+. Mg2+ can inhibit
the ATP-gated Ca2+ channel P2X7 and limits the oligomerization and membrane localization of GSDMD-NT, which form the GSDMD-N pore. In addition,
caspase-11 cleave pannexin-1, resulting in K+ efflux and NLRP3 inflammasome activation. Mitochondrion dysfunction and ROS production can induce
NLRP3 inflammasome activation. Ti ions, Fe2+, K+, Nano-Co and Ni particles promote this process, while MnTBAP inhibits it. Zinc can attenuate ROS
production while Mn2+, Cr (VI) and Ni2+ induce the release of ROS, triggering NLRP3 inflammasome. Ti particles, Zn2+ depletion, ZnONPs, CuONPs, Cr
pariticles and Ni particles can induce lysosome damage, which induced cathepsins release and result in NLRP3 inflammasome activation.
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TABLE 1 Present studies regarding the roles of metals in NLRP3 inflammasome activation.

Activator Mechanism Species Model Reference

Ti ions Promote ROS production Human Jurkat T cells (32)

Ti particles Lysosome and lysosomal cathepsins Mice,
human

Primary macrophages, THP-1 cells (33)

Ti nanoblets Lysosome membrane permeabilization increase and
cathepsin leakage

Mice Caspase-1-deficient mice, mouse bone marrow derived
macrophages (BMDMs)

(34)

Ti particle GSK-3b/b-catenin pathway Rats Male Sprague–Dawley rats, rat mesenchymal stem cells
(rMSCs)

(35)

Zinc ions Inhibit the activity of pannexin-1 Mice Primary macrophages (36)

TPEN Damage the integrity of lysosome Mice Primary macrophages, J774 cells (37)

Zinc ions Inhibit high glucose-induced NLRP3 inflammasome
activation by attenuating ROS production

Human Human peritoneal mesothelial cell line HMrSV5 (38)

Zinc gluconate Suppress NLRP3 inflammasome by promoting autophagy
and ubiquitination

Mice C57BL/6J mice, BV2 cells (a microglia cell line) (39)

Zinc gluconate Regulate miR-374a-5p and promote microglial autophagy-
induced NLRP3 inflammasome inactivation

Mice C57BL/6J mice, BV2 cells (40)

TPEN Unknown Mice Primary astrocytes, BV2 microglial cells (41)

ZnONPs NLRP3 inflammasome–autophagy–exosomal pathway Mice,
human

Human keratinocyte HaCaT cells, SKH-1 hairless mice (42)

MgCl2, MgSO4,
MgGluc2

Inhibit the ATP-gated Ca2+ channel P2X7 Mice,
human

HEK 293T cells, 293FT cells, THP-1 cells, primary
immortalized BMDM cells (iBMDMs), LPS
(intraperitoneally) mice

(43)

MGL Unknown Rats Fructose-fed Sprague–Dawley rats with metabolic syndrome (44)

MGL Unknown Mice Con A-induced liver injury mouse model (45)

Copper depletion
(TTM)

Remove copper from the active site of superoxide
dismutase 1

Mice,
human

SOD1-, NLRP3-, and caspase-1/-11-deficient mice, human
macrophages from ascite fluid, human blood-derived
monocytes

(46)

CuONPs Induce lysosomal damage along with the release of
cathepsin B, release Cu2+, and induce cellular oxidative
stress

Mice J774A.1 macrophage (47)

Multi-target iron
chelator M30

Inhibit activation of the AC/cAMP/PKA/HIF-1a/NLRP3
pathway

Rat Hepatocyte cell line BRL-3A (48)

Ferric
ammonium
citrate

Cellular labile iron induces ROS production and
mitochondrial dysfunction

Human PBMCs, THP-1 (human monocyte) cells (49)

MnCl2 Induce ROS release Mice Oropharyngeal aspiration exposed mice, HAPI cells (50)

Mn Mitochondrial defects Mice Oropharyngeal aspiration exposed mice, primary microglial
cells

(51)

MnCl2 Mn2+ binding on prion fibrils Mice immortalized mouse brain EOC 13.31 microglial cells (52)

MnSOD Enhance ROS scavenging ability Mice Isolated heart perfusion (53)

MnTBAP Block albumin-induced mitochondrial dysfunction Mice Intraperitoneal injection exposed mice, mouse proximal
tubular cells (mPTCs)

(54)

MnTE-2-PyP Unknown Mice Hypoxic mouse model (55)

Mn-TAT PTD-
Ngb

Enhance ROS scavenging ability and abate mitochondrial
dysfunction

Mice BV2 cells (56, 57)

KCl NLRP3–NEK7 interaction Mice Nek7−, Nlrp3−, Asc−, Casp1/Casp11−,Casp11− deficient
mice, BMDMs

(58)

Indanyloxyacetic
acid-94 (IAA94)

Induce mitochondrial dysfunction and mtROS production Human THP-1 cells (58)

(Continued)
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that Ti ions can promote the production of ROS, and N-acetyl-L-

cysteine (NAC), a ROS scavenger, decreased the Ti ion-induced

NLRP3 gene expression and IL-1b release, suggesting that Ti ions

activated the NLRP3 inflammasome in an ROS-dependent

manner (32).

However, research has shown that Ti ions alone cannot stimulate

the transcription of the inflammasome components, but they form

particles that stimulate inflammasome activation and, consequently,

IL-1b release (77). It is widely accepted that Ti particles can activate

the NLRP3 inflammasome (78, 79). However, the mechanisms of Ti-

induced inflammasome activation in inflammatory diseases are still

controversial. Several studies have suggested that Ti particle-induced

activation of the NLRP3 inflammasome is dependent on lysosomes

and lysosomal cathepsins. St. Pierre et al. found that the macrophage

uptake of Ti particles was cathepsin B-dependent and induced acute

inflammation by activating the NLRP3 inflammasome, resulting in

IL-1b release and neutrophil recruitment (33). In a rat peri-implant

osteolysis model, Ti particles induced NLRP3 inflammasome

activation depending on mitochondrial function. Sirtuin 3, an

NAD+-dependent deacetylase of the mitochondria that regulates its

function, suppressed the Ti particle-induced NLRP3 inflammasome

activation via the GSK-3b/b-catenin pathway (35). In addition, Ti

particles can also induce cell death. However, NLRP3 and gasdermin

D did not participate in the cell death process, suggesting that the Ti

particle-induced cell death was not pyroptosis (80). An in vitro study
Frontiers in Immunology 05
also showed that Ti particles alone were insufficient at inducing the

IL-1b release in macrophages; an additional priming signal, such as

bacterial lipopolysaccharide (LPS), was required to enable

inflammasome activation (63). Therefore, reducing the amount of

particles produced in the process of implant surgery and application is

critical to suppressing the activation of the NLRP3 inflammasome.
3.2 Zinc

Nearly 90% of zinc (Zn) is found in muscles and bones. Zn has a

stimulatory effect on bone metabolism and the ability to promote

bone formation and mineralization (81). It is accepted that the

immune system is regulated by Zn homeostasis, and Zn2+ functions

as a second passenger in innate immunity (27). Zn homeostasis is

maintained by the Zn2+ transporter proteins, including SLC30A

(ZnT) and SLC39A (ZIP, Zir/Irt-like proteins) (82). The effects of

Zn in NLRP3 inflammasome activation have been proven in series

studies. Brough et al. explored pretreating the macrophage with N,N,

N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), the Zn

chelator, and found significant inhibition of the activity of

pannexin-1, thus suppressing the activation of the NLRP3

inflammasome and decreasing the production of IL-1b (36).

Pretreatment of primary mouse macrophages with TPEN also

damaged the integrity of the lysosome, thus suppressing the NLRP3
TABLE 1 Continued

Activator Mechanism Species Model Reference

KCl P2X7 receptor Mice Casp1/Casp11−, Casp11−, Nlrp3−, Nlrp6−, Nlrp12−, Nlrc4−,
Pycard−, P2x7−, Panx1−, and AIM2− deficient mice

(59–61)

Cr(VI)
compounds

Induce mtROS production Mice,
human

Primary human monocytes, primary human keratinocytes,
murin dentritic cells

(62)

Cr particles Lysosome–cathepsin B Human Primary macrophage (63)

Cr3+ Unknown Mice BMDMs (28)

CoCl2 Unknown Human HaCaT cells (64)

CoCl2 Negative regulation by inducing hypoxia Mice BV-2 cells and primary mixed glial cells (65)

Nano-Co Promote intracellular oxidative stress damage and
mitochondrial reactive oxygen species (mtROS)

Human Liver L02 cells (66)

CoPP Reduce the amount of intracellular ASC Mice,
human

Human primary macrophages, THP-1 cells, BMDMs (67)

Ni particles Decrease MMP and increase MPTP, inducing
mitochondrial dysfunction and ROS production, induce the
Warburg effect

Human Human lung epithelial BEAS-2B cells (68, 69)

NiCl2·6H2O Phagolysosome–cathepsin B pathway Mice BMDMs, bone marrow dendritic cells (BMDCs) (70)

Ni particles Disrupt phagolysosome Mice BMDMs, oropharyngeal aspiration exposed mice (71)

NiCl2 Mitochondrial dysfunction, mtROS production, mtDNA
release

Mice BMDMs (72)

ZrO2 TLR4 Human THP-1 cells (73)

Al2O3 Unknown Mice Intraperitoneal injection exposed mice (74)
f

TPEN, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine; ZnONPs, zinc oxide nanoparticles; MGL, magnesium isoglycyrrhizinate; TTM, tetrathiomolybdate; CuONPs, copper oxide
nanoparticles; MnSOD, manganese superoxide dismutase; MnTBAP, manganese tetrakis porphyrin chloride; PTD-Ngb, protein transduction domain–neuroglobin; CoPP, cobalt protoporphyrin;
ROS, reactive oxygen species; ASC, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain; MMP, mitochondrial membrane potential; MPTP, mitochondrial
permeability transition pore; mtDNA, mitochondrial DNA.
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inflammasome activation and IL-1b secretion (37). In addition, Zn

can inhibit high glucose-induced NLRP3 inflammasome activation in

peritoneal mesothelial cells by attenuating ROS production (38). Zn

also played a neuroprotective role by suppressing NLRP3

inflammasome activation through autophagy and ubiquitination in

an experimental spinal cord injury model (39, 83). Another study also

showed that Zn suppressed NLRP3 activation by inducing microglia

autophagy and played a neuroprotective role in spinal cord injury

(40). Moreover, Zn participated in LPS and hypoxia inducing NLRP3

inflammasome activation in the microglia (41). Zinc oxide

nanoparticles (ZnONPs) can suppress the NLRP3 inflammasome

using the NLRP3 inflammasome–autophagy–exosomal pathway (42).
3.3 Magnesium

Magnesium (Mg) is a degradable and absorbable biomaterial. It is

widely used in the clinic as its structural and mechanical

characteristics are similar to those of the trabecular bone, which is

beneficial to obtaining early fixation (84). Mg homeostasis in cells is

maintained by Mg channels and transporters, including Mrs2,

SLC41A1, SLC41A2, and TRPM6 (82).

It has been reported that Mg ions can suppress both the canonical

and non-canonical pyroptotic pathways in macrophages by inhibiting

the ATP-gated Ca2+ channel P2X7 and limiting the oligomerization

and membrane localization of GSDMD-NT, thus blocking the

GSDMD-NT-induced pyroptosis (43). In addition, magnesium

isoglycyrrhizinate (MGL), a new stereoisomer of glycyrrhizic acid,

performs immune modulation through its anti-inflammatory effect

and is clinically used as a hepatoprotective agent for the treatment of

liver diseases. The anti-inflammatory effects of MGL may involve

suppressing the activation of inflammasomes (44, 45, 85). MGL

inhibited both NF-kB activation and NLRP3 inflammasome

formation, thus alleviating liver inflammation in fructose-fed rats

with metabolic syndrome (44). MGL was also used to treat chronic

obstructive pulmonary disease by suppressing NLRP3 and cleaving

caspase-1 expression (85). In addition, MGL administration can

decrease the expression of NLRP3, NLRP6, and caspase-3 in mice,

suggesting its downregulatory inflammasome expression effect in liver

tissue (45).
3.4 Copper

Copper (Cu), an indispensable trace element in organisms, plays a

crucial role in a lot of physiological activities, including respiration,

iron metabolism, antioxidant activity, and tissue integrity (86). It is

well known that the addition of Cu can endow biomaterials with

antibacterial properties, osteogenesis, and angiogenesis (87). In

organisms, Cu exists in two states: Cu(I)/Cu+ (cuprous ion) and Cu

(II)/Cu2+ (cupric ion). Cu2+ is the predominant redox state in blood,

whereas Cu+ is the form found in the reducing environment of the cell

cytosol (88). Cu2+ can be reduced to Cu+ through the plasma

membrane reductase of the STEAP (six-transmembrane epithelial

antigen of prostate) family or DCYTB (duodenal cytochrome B) and

then transported into cells by CTR1 (copper transporter 1) or DMT1

(divalent metal ion transporter 1), which are located in the membrane
Frontiers in Immunology 06
(89). In addition, proteins called metallochaperones also distribute Cu

to specific sites in cells (90).

The dyshomeostasis of Cu has been reported to trigger

inflammasome activation. Metal chelators remove metal ions from

the body, reducing the metal concentration. Tetrathiomolybdate

(TTM) is a highly specific, clinically approved Cu chelator (91) that

can be used as an anti-inflammatory agent to prevent LPS-induced

inflammatory reactions in vivo. Deigendesch et al. showed that TTM

could prevent the activation of NLRP3 by removing Cu from the

active site of superoxide dismutase 1 (SOD1) in macrophages. This

regulation targets macrophages, not monocytes, in both mice and

humans (46). In addition, TTM did not block the NF-kB and

mitogen-activated protein kinase (MAPK) pathways or the other

major antimicrobial inflammasomes such as NLRC4, NLRP1, and

AIM2 (44). In vivo, depletion of bioavailable Cu led to a decreased

caspase-1-dependent inflammation and reduced the susceptibility to

LPS-induced endotoxic shock (44). Exposure to copper oxide

nanoparticles (CuONPs) also resulted in NLRP3 activation by

inducing lysosomal damage and the release of cathepsin B.

Moreover, after lysosomal deposition, CuONPs released Cu2+ due

to the acidic environment of lysosomes. Cu2+ then induced cellular

oxidative stress and further mediated the activation of the NLRP3

inflammasome (47).
3.5 Iron

Iron (Fe) is involved in many critical biological processes, such as

oxygen transport, ATP generation, and DNA biosynthesis. With

regard to tissue engineering, Fe has excellent mechanical properties,

making it a good candidate for implants requiring high structural

strength, such as bone defect repair and vascular stents (92). Fe has

redox activity, and a high Fe level can induce ROS, leading to

oxidative stress and signal pathways critical to cell survival and

death (93). The homeostasis of Fe metabolism in the human body

is strictly regulated by a variety of proteins, including, among others,

ferritin (FTH1 and FTL), a protein complex that stores Fe in cells for

future use; transferrin (TF), an Fe-binding serum protein; transferrin

receptor 1 (TfR1, TFRC), a plasma membrane protein that allows cells

to ingest transferrin; divalent metal transporter 1 (DMT1, SLC11A2),

a critical metal transporter for TfR1-mediated Fe uptake and dietary

Fe absorption; and ferroportin (Fpn, SLC40A1), the only known cell

Fe efflux pump (94).

The multi-target Fe chelator M30 has an Fe chelating/free radical

scavenging effect. It inhibits lipid peroxidation, which has been

proven to inhibit oxidative stress and inflammation in many

diseases, such as type 2 diabetes and Alzheimer’s disease. In an in

vitro ethanol-induced hepatocyte injury model, M30 inhibited the

activation of the AC/cAMP/PKA/HIF-1/NLRP3 inflammasome

pathway, ameliorated oxidative cell stress, and reduced cell damage

(48). Fe2+-specific chelators can also rescue peripheral blood

mononuclear cells from an LPS stimulation-induced Fe2+ increase

following an Fe2+ dose-dependent IL-1b production, which results

from NLRP3 inflammasome activation (49). Gelfand et al. found that

an Fe overload caused retinal degeneration by enhancing the stability

of Alu RNAs, thereby promoting retinal pigmented epithelium (RPE)

degeneration, thus inducing NLRP3 inflammasome activation (95).
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Moreover, Liu et al. explored how morphology affects the NLRP3

inflammasome-activating property of iron oxide nanoparticles

(IONPs). Research indicates that morphology is a critical

determinant of IONP-induced IL-1b release and pyroptosis, and

this process is not all mediated by NLRP3 (96).
3.6 Manganese

Manganese (Mn) is an essential metal required for proper

immune function, regulation of blood sugar and cellular energy,

reproduction, digestion, bone growth, blood coagulation and

hemostasis, and defense against ROS (27). Mn is used as an

additive of biomaterials because of its advantages in stabilizing and

promoting osteoblast differentiation and bone metabolism (97). In

biological systems, Mn exists in two oxidation states, Mn2+ and Mn3+,

which mediate the redox cycling of Mn and are involved in the

biological effects of metals, including the Fenton reaction, transferrin-

mediated transport, and interference, as well as interference with

other divalent metals (98). In addition, Mn forms various Mn-

dependent enzymes, including oxidoreductases, isomerases,

transferases, ligases, lyases, and hydrolases (27). Mn2+ is also an

essential component of some metalloenzymes, such as SOD,

glutamate synthetase, pyruvate carboxylase, arginase, hydrolases,

phosphatases, transferases, dehydrogenases, kinases, peptidases, and

decarboxylases (99). However, excessive levels of Mn can cause

cellular toxicity, which leads to oxidative stress, genotoxicity,

membrane perturbation, and protein dysfunction by catalyzing the

conversion of hydrogen peroxide (H2O2) into oxygen radical species

via the Fenton reaction (99). There are several Mn2+ importers in the

plasma membrane, including SLC39A14, SLC39A8, SLC30A10, and

DMT1. In addition, NRAMP1 transports Mn2+ from the phagosome

to the cytoplasm (99, 100).

Excessive Mn exposure can activate the NLRP3 inflammasome in

the microglia, the principal central nervous system (CNS) immune

cells, and may result in neurodegenerative disorders. Mn2+ activated

the NLRP3 inflammasome in the striatum of adult rats and induced

the release of ROS, triggering the NLRP3 inflammasome (50). In

addition, Mn exposure also resulted in mitochondrial defects that

drove the NLRP3 inflammasome signal amplification and

propagation and the exosomal release of ASC in microglial cells

(51). Another study also showed that Mn2+ binding on prion fibrils

was critical to inducing the priming signal in NLRP3 inflammasome

activation in the microglia (52). Sodium para-aminosalicylic acid

inhibited Mn-induced NLRP3 inflammasome by inhibiting NF-kB
activation and oxidative stress in the microglia (101, 102). On the

other hand, the SIRT3 activating enzyme manganese superoxide

dismutase (MnSOD) in the mitochondria significantly enhanced the

ability to scavenge ROS and suppressed the activation of the NLRP3

inflammasome to protect the heart against oxidative stress (53).

Anakinra, the recombinant form of the IL-1 receptor antagonist,

dampened the NLRP3 activity by increasing the MnSOD protein

longevity (103). Manganese tetrakis porphyrin chloride (MnTBAP), a

mitochondrial SOD2 mimic, suppressed NLRP3 inflammasome

activation by blocking the albumin-induced mitochondrial

dysfunction in renal tubular injury (54). MnTE-2-PyP, another

artificial mitochondrial SOD2 mimic, was also proven to suppress
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the pulmonary hypertension-induced NLRP3 inflammasome

activation in macrophages (55). Mn-TAT PTD-Ngb, an artificial

metalloprotein containing a TAT protein transduction domain

(TAT PTD), which was recombined from apo-neuroglobin (apo-

Ngb) with Mn porphyrin, suppressed both NF-kB and ROS-NLRP3

inflammasome activation in the microglia (27, 57).

To date, the role of Mn in NLRP3 inflammasome activation has

been examined mainly in relation to the brain neuroscience field. The

effect of Mn and the Mn-dependent enzymes on NLRP3

inflammasome activation in the bone healing process needs further

exploration, which is beneficial to the application of Mn in bone

tissue engineering.
3.7 Potassium

Potassium (K) is an essential element in the human body. As a

monovalent cation, the potassium ion directly controls other ionic

signaling pathways by regulating the membrane potential. In

addition, the balance between the intracellular and extracellular

fluids is maintained by Na+/K+ ATPase, which pumps sodium ion

(Na+) to extra cells while it uptakes K+ into the cell in reverse

concentration gradients (27, 104).

Activating the NLRP3 inflammasome inevitably leads to

potassium efflux, which can also induce NLRP3 inflammasome

activation. The molecular mechanisms underlying NLRP3

inflammasome activation through potassium efflux have been

extensively investigated. In this review, we only briefly summarized

the main mechanisms. For details of the studies, please refer to an

elegant review published previously (59). Two potential mechanisms

are acknowledged. Potassium efflux may be related to the interaction

of NLRP3–NEK7, which is essential to the activation of the NLRP3

inflammasome (58). Another theory is that potassium efflux might

promote NLRP3 inflammasome activation by inducing

mitochondrial dysfunction and mitochondrial ROS (mtROS)

production (105). P2X7 has been reported to be expressed in

immune cells such as macrophages, lymphocytes, mast cells, and

neutrophils. P2X7 appears to play a critical role in inflammation and

autoimmune diseases (82). Extracellular ATP can activate the P2X7

receptor and lead to the activation of the NLRP3 inflammasome.

Furthermore, it has also been reported that the non-canonical

inflammasome caspase-11 can cleave pannexin-1, followed by ATP

release, P2X7 receptor activation, potassium efflux, and NLRP3

inflammasome act ivat ion (60) . Another non-canonical

inflammasome activating the NLRP3 inflammasome mechanism is

potassium efflux through the GSDMD-NT-forming pores induced by

non-canonical inflammasomes, which further activates the NLRP3

inflammasome (61). The two-pore domain potassium (K2P) is

responsible for maintenance of the resting membrane potential in

almost all cells. It has been suggested to cooperate with the P2X7

receptor mechanistically (59).
3.8 Cobalt

Cobalt (Co) is essential for humans in the form of cobalamin

(coenzyme B12), which is tightly bound to a corrin ring and serves as
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a methyl group carrier with Co oxidation states (106). Co-based alloys

are considered one of the most successful materials used for implants

as they have satisfactory corrosion, wear, and mechanical properties

(107). The homeostasis of Co is maintained by Co2+ transporter

proteins, including CbiMNQO, NiCoT, HupE/UreJ, CorA, and

TBDT. Human serum albumin is considered the primary

transporter of Co2+ in the blood (108). Although humans are

exposed to Co2+, the most stable form under ambient conditions, in

the course of normal nutrition (109), a high level of Co2+ is toxic to

cells (104). Co2+ has also been reported to induce an immune

response by stimulating TLR4 (110).

Exposure to high levels of CoCl2 significantly increased the

NLRP3 expression, caspase-1 activity, and IL-1b secretion (64).

Although a high CoCl2 level can induce apoptosis in T

lymphocytes, CoCl2-treated monocytes did not undergo apoptosis

as the effect of p53 was counteracted by the anti-apoptotic activity of

the activation of NF-kB and the inflammasome danger signaling

pathway leading to the production of pro-inflammatory cytokines

(111). However, a study demonstrated that CoCl2-induced hypoxia

may negatively regulate the NLRP3 inflammasome signaling in brain

glial cells (65). Feng et al. found that exposure to Co nanoparticles

(Nano-Co) promoted intracellular oxidative stress damage and

mtROS, which activated the NLRP3 inflammasome in hepatocytes,

suggesting an essential role of the ROS/NLRP3 pathway in Nano-Co-

induced hepatotoxicity (66). A study also showed that hemin and

cobalt protoporphyrin (CoPP) inhibited NLRP3 inflammasome

assembly by reducing the amount of intracellular ASC in cultured

macrophages (67).
3.9 Chromium

Chromium (Cr), which belongs to the group of trace elements,

exists in many different oxidation states in the environment and is

essential in numerous functions of the human body. Cr deficiency can

cause various physical dysfunctions, while exposure to Cr at higher

concentrations is also toxic and may lead to neoplastic diseases. The

Co–Cr–Mo alloy is the most widely used combination of Co-based

alloys due to its unique combination of strength and ductility (107).

Cr(VI) and Cr(III) are the most stable forms of Cr. Cr(VI), the most

cancer-related among all Cr oxidation states, enters cells through the

sulfate anion transporter system and is reduced to the intermediate

oxidation states, e.g., Cr(V) and Cr(IV), in the process of forming

stable Cr(III) forms (112).

Adam et al. found the indirect effects of Cr(VI) compounds in

pro-inflammation activation. Cr(VI) compounds can induce NLRP3

inflammasome activation and IL-1b production, amplifying the

innate immune activation inflammatory response. The authors also

confirmed the production of mtROS upstream of the NLRP3

inflammasome assembly by treatment with NAC, suggesting that

Cr(VI) induces the production of mtROS and thus activates the

NLRP3 inflammasome. In addition, the Cr(III) compounds were also

examined. However, the Cr(III) compounds failed to induce these

reactions in cells, suggesting that oxidation state-specific differences

in mitochondrial reactivity may determine the activation of the

inflammasome (62). Jämsen et al. observed that Cr particles alone

were insufficient to induce NLRP3 inflammasome activation. Priming
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particles were discovered to induce the production of IL-1b, which
was significantly reduced by the NLRP3 inflammasome or cathepsin

B inhibitor, suggesting that Cr-induced NLRP3 activation is

lysosome/cathepsin B-dependent (63). In addition, Cr3+ can activate

both priming signaling and activation signaling of the NLRP3

inflammasome by inducing ROS accumulation (28).
3.10 Nickel

Nickel (Ni) is an abundant element in the earth’s core and is a

commonly used implant material as it grants necessary strength and

durability to the implant. However, it is also associated with metal

hypersensitivity reactions and can be found in trace amounts in

“commercially pure” Ti materials used in surgical implants (113, 114).

The uptake of Ni has a toxic effect on cell metabolism and physiology

in humans. The toxicity of Ni is dependent on the solubility of the Ni

compounds. Insoluble Ni compounds are phagocytosed by cells, while

Ni ions are delivered into cells and induce the production of free

radicals (68). Ni2+ triggers an inflammatory response by activating

human TLR4 (115).

Xin et al. found that Ni-refining fume particles can induce the

decrease of the mitochondrial membrane potential (MMP) and the

increase of the opening rate of the mitochondrial permeability

transition pore (MPTP) in human lung epithelial BEAS-2B cells, and

activation of the NLRP3 inflammasome induced by Ni-refining fume

particles can be significantly suppressed by NAC, an effective ROS

remover, suggesting that Ni-refining fume particles activate the NLRP3

inflammasome by causing mitochondrial dysfunction and ROS

production (68). Another study also showed that Ni-refining fumes

promoted the expression of the NLRP3 inflammasome by inducing the

Warburg effect in BEAS-2B cells (69). In addition, it has also been

confirmed that activation of the NLRP3 inflammasome by Ni ions is

independent of the phagolysosome–cathepsin B pathway (70).

However, in lung pathology, Ni-contaminated particles activated the

NLRP3 inflammasome by disrupting macrophage phagolysosomes,

which resulted in prolonged inflammation (71). In a study of Ni ions,

NiCl2 induced the accumulation of ROS and mitochondrial DNA,

resulting in the activation of the NLRP3 inflammasome. It was also

found that NiCl2-induced apoptosis is dependent on ROS generation,

suggesting that NiCl2 can induce both apoptosis and pyroptosis (72).
3.11 Metal element-bearing
ceramic materials

Ceramic materials are widely used in orthopedic implantations

because of their low osteolytic potential and friction coefficients and

high biocompatibility. The particles of ceramic materials can be taken

up by immune cells and can induce an immune response, including

inflammasome activation (31, 116). Titanium dioxide (TiO2),

zirconium oxide (ZrO2), and aluminum oxide (Al2O3) are widely

applied in bioceramic implantation due to their satisfactory properties

of wear, tear, hardness, biocompatibility, and corrosion resistance

(107). Cytotoxicity significantly increases when macrophages are

exposed to high concentrations of ZrO2 particles (≥107 particles/
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ml). However, compared to TiO2, ZrO2 particles produce less

inflammatory cytokines, suggesting that they are less toxic than

TiO2 (117). Jamieson et al. found that Al2O3 and ZrO2 treatment

can enhance the gene expression of IL-1b, which is TLR4-dependent.

Priming cells with LPS following Al2O3 or ZrO2 treatment can induce

cell death. In addition, LPS and ZrO2 treatment can also induce IL-1b
protein secretion, while treatment with LPS and Al2O3 was

insufficient to induce it. These results suggest that ZrO2, but not

Al2O3, may activate the inflammasome (73). In another in vivo study,

intraperitoneal injection of a water-soluble supernatant with Al2O3 in

mice revealed that the mRNA expression of NLRP3 decreased while

that of caspase-1 did not change (74).
4 Conclusion and perspective

Metals are widely used in the fabrication of implants due to their

advantage of having good mechanical properties and ductility

compared to other biomaterials. However, metal corrosion inducing

ion release and metal debris production is inevitable. At the same

time, the amount of metal released is highest after the operation,

which is also the acute inflammatory phase initiated by injury to the

tissue and is one of the factors that define the outcome of the implant

(118). A growing number of studies has provided new insights into

how these metals affect the early inflammatory response of bone

regeneration after metal implantation. However, whether the specific

ion activates inflammasomes synergistically or singly is still unclear.

The detailed mechanisms of metal ions activating inflammasomes are

still under investigation. Additional studies are also needed to further

understand the roles of metal implantation debris and the metal ions

released from implantation in mediating the process of

inflammasome activation. Immunomodulatory alloy biomaterials

based on the NLRP3 inflammasome activation mechanism could be
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developed, but the immune response of tissues to these biomaterials

needs to be further confirmed.
Author contributions

WH, ZZ, and YQ wrote the manuscript and created the figures

and the table. QZ and QW reviewed and edited the manuscript and

provided guidance. YG and YF provided important perspective of the

manuscript. All authors contributed to the article and approved the

submitted version.
Funding

This work is supported by the Natural Science Foundation Project

of Liaoning Province (2019-ZD-0775 and 2020-MS-150).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and
osseointegration. Periodontol 2000 (2019) 79(1):178–89. doi: 10.1111/prd.12254

2. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for
orthopaedic applications. Mater Sci Eng C Mater Biol Appl (2019) 102:844–62.
doi: 10.1016/j.msec.2019.04.064

3. Kuzyk PR, Schemitsch EH. The basic science of peri-implant bone healing. Indian J
Orthop (2011) 45:108–15. doi: 10.4103/0019-5413.77129

4. Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, et al.
Applications of metals for bone regeneration. Int J Mol Sci (2018) 19:e826. doi: 10.3390/
ijms19030826

5. McKee AS, Fontenot AP. Interplay of innate and adaptive immunity in metal-
induced hypersensitivity. Curr Opin Immunol (2016) 42:25–30. doi: 10.1016/
j.coi.2016.05.001

6. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and
signalling. Nat Rev Immunol (2016) 16:407–20. doi: 10.1038/nri.2016.58

7. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a
better understanding of complex mechanisms. Cell Discov (2020) 6:36. doi: 10.1038/
s41421-020-0167-x

8. Chen H, Agrawal DK, Thankam FG. Biomaterials-driven sterile inflammation.
Tissue Eng Part B Rev (2022) 28:22–34. doi: 10.1089/ten.TEB.2020.0253
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Glossary

AIM2 melanoma 2

ASC apoptosis-associated speck-like protein containing a CARD

bBox zinc finger domain

BMDMs bone marrow-derived macrophages

CARD caspase recruitment domain

CTR1 copper transporter 1

DMT1 divalent metal ion transporter 1

DAMPs damage-associated molecular patterns

FL-
GSDMD

full-length gasdermin D

GSDMD-
NT

N-terminal GSDMD

HPMCs human peritoneal mesothelial cells

HEK human embryonic kidney

LPS lipopolysaccharide

LRR leucine-rich repeat

MGL magnesium isoglycyrrhizinate

MMP mitochondrial membrane potential

MnTBAP Mn tetrakis porphyrin chloride

MnSOD manganese superoxide dismutase

MPTP mitochondrial permeability transition pore

mPTCs mouse proximal tubular cells

mtROS mitochondrial reactive oxygen species

NOD nucleotide-binding oligomerization domain

NLR NOD-like receptor

NLRP1 NLR family pyrin domain containing 1

NEK7 NIMA-related kinase 7

NLRC4 NAIP-NLR family caspase-associated recruitment domain-
containing protein

PAMPs pathogen-associated molecular patterns

PBMCs peripheral blood mononuclear cells

PRRs pattern recognition receptors

PYD pyrin domain

rMSCs rat mesenchymal stem cells

ROS reactive oxygen species

SOD superoxide dismutase

TNF-a tumor necrosis factor alpha

TPEN N,N,N′,N′-tetrakis (2- pyridylmethyl)ethylenediamine

TTM tetrathiomolybdate

TF transferrin

ZnONPs zinc oxide nanoparticles
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