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Graves’ orbitopathy (GO) is an organ-specific autoimmune disease, but its

pathogenesis remains unclear. There are few review articles on GO research

from the perspective of target cells and target antigens. A systematic search of

PubMed was performed, focusing mainly on studies published after 2015 that

involve the role of target cells, orbital fibroblasts (OFs) and orbital adipocytes (OAs),

target antigens, thyrotropin receptor (TSHR) and insulin-like growth factor-1

receptor (IGF-1R), and their corresponding antibodies, TSHR antibodies (TRAbs)

and IGF-1R antibodies (IGF-1R Abs), in GO pathogenesis and the potentially

effective therapies that target TSHR and IGF-1R. Based on the results, OFs may

be derived from bone marrow-derived CD34+ fibrocytes. In addition to CD34+

OFs, CD34- OFs are important in the pathogenesis of GO and may be involved in

hyaluronan formation. CD34- OFs expressing Slit2 suppress the phenotype of

CD34+ OFs. b-arrestin 1 can be involved in TSHR/IGF-1R crosstalk as a scaffold.

Research on TRAbs has gradually shifted to TSAbs, TBAbs and the titre of TRAbs.

However, the existence and role of IGF-1R Abs are still unknown and deserve

further study. Basic and clinical trials of TSHR-inhibiting therapies are increasing,

and TSHR is an expected therapeutic target. Teprotumumab has become the latest

second-line treatment for GO. This review aims to effectively describe the

pathogenesis of GO from the perspective of target cells and target antigens and

provide ideas for its fundamental treatment.
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Introduction

Graves’ orbitopathy (GO), also known as thyroid eye disease and

thyroid-associated ophthalmopathy, is relatively rare, with an incidence

of 0.54-0.9 cases/100,000/year in males and 2.67-3.3 cases/100,000/year

in females (1). Approximately 25%-50% of patients with Graves’ disease

(GD) have GO, with the incidence varying based on the testing tool used

to diagnose GO, such as clinical signs and symptoms, physical

examination, and imaging studies. Common symptoms of GO include

eye pain, photophobia, blurred vision, excessive tear production and

double vision. GO can cause periorbital oedema, exophthalmos, eyelid

recession and changes in eye movement, affecting one or both eyes.

Approximately 5–6% of patients with GO have severe disease with

compressive optic neuropathy or sight-threatening corneal ulceration,

and these patients may experience vision loss. GO occurs at any age, but

women 30-50 years of age are most commonly affected (2). Nevertheless,

the severity of GO tends to be worse in men and in patients who are first

diagnosed when they are older than 50 years old (3). Traditional risk

factors for GO include smoking, hypercholesterolaemia, thyroid

dysfunction, radioiodine therapy, high thyrotropin receptor antibodies

(TRAbs), and low thyroid peroxidase antibodies (TPOAbs) and

thyroglobulin antibodies (TgAbs). New risk factors for GO include

high thyroglobulin (Tg) (4), selenium deficiency, intestinal flora

imbalance, and increased levels of both Yersinia enterocolitica and

Escherichia coli in the digestive tract (5).

GO is characterized by inflammation in retrobulbar tissues,

increased adipogenesis, and accumulation of extraocular

intramuscular glycosaminoglycans (GAGs), which result in expansion

and remodelling of the orbital contents (6, 7). The pathogenesis of GO

is unclear. Orbital fibroblasts (OFs) and orbital adipocytes (OAs) are

important cells that are targeted by the autoimmune response, and

thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor

(IGF-1R) are key target antigens. Moreover, increased production of

TRAbs is associated with the prevalence and severity of GO. This

review describes recent advances in GO research related to primary

target cells (OFs and OAs), primary target antigens (TSHR and IGF-

1R) and associated antibodies, and targeted antigen-specific therapies

for GO. Data acquisition was based on PubMed search strategies, with a

particular focus on papers published after 2015.
Immune cells and GO

Both cellular and humoral immunity play important roles in the

pathogenesis of GO. High expression of HLA-DR and adhesion

molecules on the vascular endothelium of the orbital tissues of GO

patients leads to strong infiltration of orbital immune cells, such as

dendritic cells (DCs), macrophages, mast cells, B lymphocytes and T

lymphocytes. Most of the current evidence indicates that the level of T

and B lymphocyte infiltration correlates with GO disease activity (8,

9). Antigen-presenting cells (APCs), such as DCs and macrophages,

present TSHR to CD4+ T lymphocytes in the context of MHC-II

molecules. Subsequently, CD4+ T lymphocytes release cytokines to

activate CD8+ T lymphocytes or autoantibody-producing B

lymphocytes, and a cascade of effects amplifies the immune

response and promotes the autoimmune process. CD4+ T

lymphocytes are the main cells dominating orbital inflammatory
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infiltration and are classified into various subtypes, including T

helper (Th) 1, Th2, Th17, and Treg cells (10). Different subgroups

of T lymphocytes play dominant roles in different stages of GO. Th1

cells, which produce interleukin (IL)-1b, IL-2, TNF-a, and IFN-g,
induce a cell-mediated immune response in the early stage, whereas

Th2 cells, which release IL-4, IL-5, IL-10, and IL-13, activate humoral

reactions and promote the production of IgG in the late stage. A

recent study showed that increased concentrations of Th2

chemokines (CCL2) in plasma from patients with GO may reflect

disease activity (11). Additionally, Fang et al. (12) reported that

compared with healthy control individuals, patients with GO have

significantly higher levels of IL-17A-producing T lymphocytes and

recruitment of both CD4+ and CD8+ T lymphocytes in the orbits.

Furthermore, orbital tissues from patients with GO express more IL-

17A receptor, IL-17A and its related cytokines, with severe fibrotic

changes, compared with healthy control individuals. Another study

by Fang et al. (13) showed that IFN-g- and IL-22-expressing Th17

cells are increased in patients with GO, which was positively related to

the clinical activity score (CAS), and that IL-17A promotes TGF-b-
induced fibrosis in CD90+ OFs from patients with GO (GO-OFs).

These findings suggest the potential pathogenic role of Th17 cells in

the inflammatory response and fibrosis associated with GO. However,

uncertainty remains as to whether Treg cell levels correlate with the

severity and activity, clinical course, or treatment response of GO

(14, 15).
Target cells of GO

Orbital fibroblasts

OFs are target cells of the autoimmune response in GO. They

participate in proliferation, adipogenesis and overproduction of

extracellular matrix GAGs, including hyaluronan (HA), which are

involved in GO pathogenesis (16). Recently, reported proteomics and

DNA methylation data indicate that OFs from patients with active GO

are involved in inflammation, adipogenesis, and GAG production, and

OFs from patients with inactive GO are more inclined to play an active

role in extracellular matrix remodelling (17). MicroRNAs have been

reported to be involved in HA production. The results of one study

indicated that overexpression of miR-146a reduces the production of

HA and collagen I in GO-OFs, and it was demonstrated that miR-146a

downregulates the secretion of HA and collagen I in GO-OFs in vitro

(18). A recent study showed that the LPAL2/miR-1287-5p axis

modulates TGF-b1-induced increases in cell adhesion factor levels

and GO-OF activation via EGFR/AKT signalling (19). OFs express

MHC-II molecules (20, 21), and the study showed that GO-OFs present

their own antigens to T lymphocytes via MHC-II molecules and

employ CD40-CD40 L signalling, leading to activation of T

lymphocytes and further stimulating fibroblast proliferation.

According to the literature, most OFs are positive for CD90 (Thy-1)

expression and negative for CD45 expression (22); these proteins are

positive and negative markers of mesenchymal stem cells, respectively.

Activated OFs differentiate according to the expression of Thy-1 on

their cell surface. Thy-1+ OFs are mainly present in extraocular

muscles; they differentiate into myofibroblasts and overproduce HA.

This leads to extraocular muscle oedema and enlargement. A recent
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study showed that simvastatin inhibits TGF-b-induced myofibroblast

differentiation by inhibiting the RhoA/ROCK/ERK and p38 MAPK

signalling pathways, suggesting that simvastatin is a potential

therapeutic drug for the prevention and treatment of GO orbital

fibrosis (23). Thy-1- OFs, which are called preadipocytes, are mainly

present in connective tissue and differentiate into adipocytes (24); Thy-

1+ OFs suppress adipocytic differentiation of Thy-1- OFs by producing

antiadipocytic factors. Therefore, the balance and relative proportion of

Thy-1- and Thy-1+ OFs modulate tissue remodelling in GO (25).

Bone marrow-derived CD34+ fibrocytes are a monocyte

subpopulation of peripheral blood mononuclear cells that infiltrate

orbital tissues and promote the onset of GO (26). A recent study

showed that the concentration of circulating fibrocytes is significantly

higher in patients with GO than in patients with GD and healthy

control individuals, and in GO patients, these fibrocytes express a

significantly higher level of TSHR (27). CD34+ OFs have been

reported to express major thyroid autoantigens, including TSHR,

thyroperoxidase (TPO), thyroglobulin (Tg) and sodium-iodide

symporter (NIS) (28). In response to inflammatory factors, CD34+

OFs further differentiate into myofibroblasts or adipocytes (29).

CD34- OFs coexist with residential CD34+ OFs, but little was

previously known about the role of CD34- OFs until CD34- OFs and

CD34+ OFs were recently sorted separately by cytometry. The

expression of cytokines and HA synthases (HASs) differs in these

cell subsets. HAS1, HAS2, and HAS3 are differentially inducible in

various cell types by several cytokines and growth factors (30). These

enzymes differ from each other in catalytic activities (HAS3 > HAS2 >

HAS1) and the sizes of their final products. HAS1 and HAS2

polymerize long stretches of GlcAGlcNAc disaccharide chains,

whereas HAS3 polymerizes relatively short stretches (<300 kDa)

(31). IL-12p35 is mainly expressed in CD34- OFs, and IL-23p19,

IL-6 and TNF-a levels are higher in CD34+ OFs (32, 33). Basal and

TSH-induced HAS1 expression occurs in CD34+ OFs, and HAS2 and

UDP-glucose dehydrogenase are mainly expressed by CD34- OFs

(33). HAS2 appears to be responsible for HA synthesis in both cell

subpopulations, and the relatively low levels of HAS2 in CD34+ OFs

appear to represent the basis for the substantially higher levels of HA

synthesized in CD34− OFs (33). Slit2, an axon guidance glycoprotein,

is expressed and released by CD34- OFs and dampens the

inflammatory phenotype of CD34+ OFs. Specifically, rhSlit2

dramatically represses the expression of TPO, Tg, TSHR, AIRE

(Autoimmune regulator) and NIS and represses that of TNF-a, IL-
6, and IL-23 induced by TSH in CD34+ OFs (33, 34). Slit2

knockdown enhances HAS1 expression in CD34- OFs but reduces

basal and TSH-dependent HAS2 expression (33). Hence, Slit2 may

represent a factor that was previously unrecognized for its capacity to

modulate immune responses and HA synthesis in human tissues.
Orbital adipocytes

Adipogenesis contributes to orbital adipose tissue expansion. A

fibroblast has an approximate diameter of 30 microns; the diameter of

a mature adipocyte is approximately 150 microns, which is 5 times

larger. According to the literature, increased expression of TSHR

during adipogenesis and binding of TRAb to TSHR on adipocytes
Frontiers in Immunology 03
leads to upregulation of HAS gene expression and excessive

production of HA (35). Signalling pathways, including those for

cAMP, PI3K-AKT, AGE-RAGE, lipolysis regulation, and thyroid

hormone, are enriched in orbital fat isolated from patients with

GO. The IGF-1R and Wnt signalling pathways appear to be

enriched early in adipogenesis (36), and Wnt signalling inhibits

adipogenesis in GO-OFs (37). PI3K can be activated by TSH, IGF-

1, or multiple cytokine receptors, resulting in AKT activation.

Activated AKT inhibits FOXO1 and activates mTOR to promote

HA production and adipogenesis via peroxisome proliferator

activator gamma (PPARg) (38). PPARg belongs to the nuclear

receptor family of transcription factors and is expressed in

adipocytes; it acts as a transcription factor and regulates the

homeostasis of lipids and glucose. A recent study demonstrated that

the mRNA level of protein kinase RNA-like endoplasmic reticulum

kinase (PERK) is significantly higher in orbital tissues from patients

with GO than in those from patients without GO. The expression of

PPARg is downregulated and oxidative stress and adipogenesis are

reduced in PERK siRNA-transfected GO-OFs (39). One study showed

that the expression of glycogen synthase kinase-3b (GSK-3b) in GO

orbital tissues is significantly higher than that in control orbital

tissues. During adipocyte differentiation, fibroblasts treated with the

GSK-3b inhibitor CHIR 99021 showed decreased lipid droplets and

decreased expression of PPARg and c/EBPa and -b. Moreover,

inhibition of Wnt and b-catenin in adipogenesis is reversed by

CHIR 99021 (40). MicroRNAs have also been reported to be

involved in adipogenesis; miR-130a is upregulated in Thy-1-OFs,

inhibits AMPK activation, and promotes lipid accumulation in GO-

OFs, leading to excessive fatty tissue accumulation in the orbit (41).

Another recent study demonstrated that TGF-b-treated human

placental mesenchymal stem cells (hPMSCs) suppress adipogenesis

and lipogenesis in GO-OFs and in GO mice; the effects are mediated

by the SMAD 2/3 pathways, suggesting that these cells may be a new

and safe method to promote the antiadipogenic function of hPMSCs

to treat GO (42). HA overproduction and adipogenesis have been

observed in fibroblasts from orbital adipose tissue (OAT) but not in

those from white adipose tissue (WAT) (43). This finding can be

explained by the fact that human OAT is derived from the neural crest

in the orbit (44) but that WAT is derived from the mesoderm (45). A

schematic of the theoretical pathogenesis of GO is shown in Figure 1.
Autoantigens in the pathogenesis
of GO

TSHR

TSHR is a G protein-coupled receptor (GPCR) that contains 3

domains (an ectodomain, transmembrane domain, and intracellular

domain). It is composed of an A subunit, comprising a large

extracellular domain, and a B subunit, which consists of a short

extracellular fragment anchored in the cell membrane and an

intracellular part. TSHR is a common target autoantigen of GD and

GO (46). A new preclinical model of GO has been established in female

BALB/c mice. This mouse model was established via immunization

with the human TSHR a subunit by electrotransfection of a plasmid
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expressing human TSHR. This model exhibits infiltration of a large area

around the optic nerve, increased adipogenesis, orbital muscle

hypertrophy, extraocular muscle hypertrophy, and conjunctival

oedema (47). TSHR is expressed in thyroid cells, which regulate

thyroid function, and studies have shown that preadipocyte

fibroblasts and myofibroblasts in the orbital tissues of patients with

GO also express TSHR (48, 49). TSHR activation of OFs by signalling

through cAMP–protein kinase A (PKA) to cAMP response element-

binding protein-binding sites in the promoters of HAS1 and HAS2

increases HA production (50). mRNA expression of TSHR in orbital

fat/connective tissue in patients with active GO is higher than that in

patients with inactive GO, with the levels being directly related to

mRNA levels of IL-1b (51). The expression level of TSHR in fibroblasts

has been found to be much lower than that in thyroid cells. Indeed, one

study showed that TSHR levels are 11-fold higher in GO or control

thyrocytes than in fibroblasts (52). The exact mechanism by which

TSHR, a specific antigen in thyroid cells, is ectopically expressed in the

orbital tissues of patients with GO and becomes the target of the

immune response is still unclear. However, this outcome likely occurs

because OFs originate from monocyte progenitor cells in the bone

marrow and have the ability to express TSHR (49). It has also been

shown that preadipocyte fibroblasts express TSHR after stimulation

with TSH, TRAb, and IL-6, and the adenylate cyclase/cAMP and PI3K/

pAKT pathways become activated. Thus, the differentiation of

fibroblasts to adipocytes and HA production are promoted (53). The

findings of Woeller et al. (54) also demonstrate that TSHR signalling in

GO-OFs stimulates proliferation indirectly through induction of miR-

146a and miR-155, reducing the expression of ZNRF3 and PTEN that

normally block cell proliferation. The latest interesting study by

Draman MS et al. suggests a variant in TSHR that might explain the

antigenic role of this receptor in OF even prior to adipogenesis (55). In
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conclusion, TSHR plays a specific role in GO pathogenesis and has

become a therapeutic target.
IGF-1R

Although data show that TSHR plays an important role in GO,

IGF-1R may also have a key function. IGF-IR is a membrane-

spanning receptor tyrosine kinase (RTK) that binds IGF-I and IGF-

II and activates two important downstream signalling pathways,

MAPK and PI3K/AKT. Evidence indicates that compared with a

normal control, GO-OFs exhibit increased HA synthesis after IGF-1

treatment. Pretreatment with an IGF-1R blocking monoclonal

antibody (1H7) or AKT inhibitor significantly decreased the HA

concentration. IGF-1 treatment increases the level of pAKT

expression; 1H7 and PI3K blockers decrease the expression of PI3K

and pAKT protein, and AKT inhibitors decrease the expression of

PI3K, AKT and pAKT (56). A study has shown that IGF-IR is

overexpressed by OFs and T and B lymphocytes in patients with

GO; IGF-1R regulates HA synthesis and adipogenesis in the orbit and

defines the phenotype and function of T and B lymphocytes (57). A

recent study indicated that 1H7 inhibits autophagy and induces

apoptosis by suppressing IGF-1R signalling. This leads to retro-OF/

OA death, which may be the main mechanism by which

teprotumumab (a human monoclonal IGF-1R blocking antibody)

reduces ocular protrusion in patients with GO (58). Teprotumumab

has also been reported to attenuate constitutive expression and

induction by TSH of MHC-II and B7 family members, including

CD80, CD86, and programmed death-ligand 1 in CD34+ fibrocytes

(59). At present, teprotumumab is a second-line treatment for GO,

which is discussed in detail below.
FIGURE 1

Schematic of the theoretical pathogenesis of GO Bone marrow mononuclear cell-derived CD34+ fibroblasts enter the orbit from the circulation and
express low levels of TSHR, thyroglobulin and other thyroid antigens. APCs, such as B lymphocytes or macrophages, present antigens to antigen-specific
T lymphocytes and activate them. Activated T lymphocytes release cytokines and chemokines, further causing B lymphocytes to produce antibodies.
These processes form an inflammatory microenvironment in the orbit. OFs can also act as APCs. In the inflammatory microenvironment, activated T
lymphocytes activate OFs. Activated OFs further secrete cytokines and chemokines and produce excessive levels of GAGs, leading to swelling of the
orbital tissue. CD34+ fibroblasts are found in orbit with CD34− fibroblasts. CD34+ fibroblasts further differentiate into myofibroblasts or adipocytes,
resulting in thickening of the extraocular muscles and exophthalmos. TSHR expression is increased during adipogenesis. IGF-1R, TSHR, IL-6R, CD20 and
TNF-a are current therapeutic targets for GO. APC, antigen-presenting cell; GAG, glycosaminoglycan; GO, Graves’ orbitopathy; OFs, orbital fibroblasts;
TSHR, thyrotropin receptor; IGF-1R, insulin-like growth factor-1 receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1062045
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2023.1062045
TSHR and IGF-1R complex

Although TSHR and IGF-1R are two independent receptors, there

is a certain connection.

A study in an animal model showed that mice can develop a

hyperthyroid state with inflammation and fibrosis of the orbital tissue

after being transfected with plasmids expressing IGF-1Ra and TSHR

(60). Tsui et al. (52) found that TSHR and IGF-1R colocalize by

performing confocal microscopy of OFs and cultured human thyroid

epithelial cells. Simultaneous activation of TSHR and IGF-1R causes

rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in

primary cultures of GO-OFs and human thyrocytes as well as human

embryonic kidney (HEK) 293 cells overexpressing TSHR (61).

Tramontano et al. (62) reported a possible interaction between IGF-1

and TSH and that IGF-1 enhances the proliferation and DNA synthesis

of FRTL-5 thyroid epithelial cells induced by TSH in culture. IGF-1 has

also been reported to increase the expression level of TSHR in GO-OFs

(63). Conditional knockout of the IGF-1R gene in the thyroid gland

significantly reduces the response to TSH (64). Krieger et al. (65) showed

that IGF-1R activation by GO immunoglobulins (Igs) occurs via TSHR/

IGF-1R crosstalk after binding to TSHR and not through direct binding

to IGF-1R. Research has revealed that nuclear FOXO transcription

factors serve as convergence points for the IGF-1R and TSHR

signalling pathways in GO (66, 67). FOXO1 and FOXO3a act as

repressors to prevent excessive fat and HA production in OFs,

respectively (66). FOXOs may be an alternative target for

nonimmunosuppressive therapy.

Nevertheless, the manner in which TSHR and IGF-1R interact is

not clear. They may interact by activating overlapping signalling

pathways or physically through direct heterodimerization.

Additionally, b-arrestin 1 and b-arrestin 2 have been reported to be

key factors in the regulation of TSHR-mediated signalling (68): b-
arrestin 2 plays a major role in TSHR desensitization (69), and b-
arrestin 1 is primarily involved in activating TSHR signalling (70).

Krieger et al. (71) showed that b-arrestin 1 is a member of a

preformed complex that includes TSHR and IGF-1R and that its

presence is necessary for stability of the complex in GO-OFs, human

thyrocytes and U2OS cells. Knockdown of b-arrestin 1 reduces

TSHR/IGF-1R colocalization, blocks TSHR/IGF-1R crosstalk and

prevents teprotumumab-mediated inhibition of HA production by

GO-Igs and M22 (72). These findings support a model of TSHR/IGF-

1R crosstalk that may be a general mechanism underlying GPCR/

RTK crosstalk that depends on b-arrestin 1 (Figure 2).
Autoantibodies in GO pathogenesis

TRAbs

Three types of TRAbs have been identified in recent decades:

stimulatory (TSAbs), blocking (TBAbs) and neutral TRAbs (73).

Although all three types of TRAbs can be found in patients with

GD, TSAbs serve as a marker of the disease (74). Considerable

experimental evidence supports the concept that the shedding of

the TSHR A subunit in genetically susceptible individuals is a
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contributing factor to the induction and/or affinity maturation of

pathogenic TSAbs, which are the direct cause of GD (75). In recent

years, clinical research on TRAbs has gradually moved from general

to detailed and now includes research on TSAbs, TBAbs and their

titres. A retrospective study confirmed that 70% of euthyroid patients

with GO are positive for both TSBAbs and TSAbs at their initial visit

(76). A recent study detected TSAb activity in 85 of 91 (93.4%)

patients with GO (P < 0.001). The sensitivity rates for differentiating

between clinically active versus inactive and mild versus moderate-to-

severe GO are both 100% for TSAbs. This finding suggests that TSAbs

are highly prevalent in patients with GO and exhibit superior clinical

features and predictive potential (77). One study showed a shift from

TSAbs to TBAbs in 8 GD patients with/without GO during

methimazole treatment that led to remission (78). According to in

vitro experiments, TSAbs exhibit selectivity in activating TSHRs, as

TSAbs from patients with GO are more effective in stimulating OFs,

and TSAbs from patients with GD are more effective in stimulating

thyrocytes (79). The study by Kahaly et al. (80) confirmed that TRAb

titres, as determined by dilution analysis, significantly differentiate

between patients with GD and patients with GO. Although these data

are potentially interesting and suggestive of a pathogenic role in GO,
FIGURE 2

Schematic of the TSHR and IGF-1R signalling pathways in the
pathogenesis of GO In OFs and OAs of GO patients, TSH and TRAb
bind to TSHR to induce activation of AC. This causes an increase in
cAMP production and activates PKA. Activated PKA inhibits FOXOs and
activates the transcription factor CREB. CREB further acts on the
promoters of HASs to increase HA production. Binding of IGF-1 to
IGF-1R activates PI3K, resulting in AKT activation. Activated AKT
inhibits FOXOs and activates mTOR to promote adipogenesis via
PPARg. TSHR/IGF-1R crosstalk depends on b-arrestin 1 acting as a
scaffold, leading to interaction of the two signalling pathways. This
figure is adapted from Draman Mohd Shazli,Zhang Lei,Dayan Colin
et al. Front Endocrinol (Lausanne), 2021, 12: 739994. AC, adenylate
cyclase; AKT, protein kinase B; cAMP, cyclic adenosine monophosphate;
CREB, cAMP response element-binding protein; FOXOs, Forkhead box O;
GO, Graves’ orbitopathy; HA, hyaluronan; HASs, hyaluronan synthases;
mTOR, mammalian target of rapamycin; OAs, orbital adipocytes; OFs,
orbital fibroblasts; PI3K, phosphatidylinositol-3-kinase; PKA, protein kinase
A; PPARg, peroxisome proliferator activator gamma; TRAb, thyrotropin
receptor antibody; TSH, thyrotropin; TSHR, thyrotropin receptor.
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these experiments have not been compared with the standard

bioassay for TSAbs (CHO cells/cAMP stimulation). Therefore,

further confirmation is needed. TRAb binding to TSHR induces

GAG production through cAMP and the PI3K/AKT signalling

pathway, which overlaps with the signalling pathway downstream

of IGF-1R. A recent study found that TSAbs are able to induce IGF-

1R phosphorylation and initiate both TSHR and IGF-1R signalling in

human and mouse fibroblasts. These findings indicate that TSAbs

enhance IGF-1R activity and contribute to retroorbital cellular

proliferation and inflammation (58). Kumar et al. (81) showed that

treatment of orbital preadipocytes from patients with GO with M22, a

human monoclonal TSAb, during adipocyte differentiation results in

enhanced mRNA expression levels of IL-6. Furthermore, treatment of

orbital cultures with M22 after adipocyte differentiation increases

secretion of the IL-6 protein into the medium. These results suggest

that M22 increases IL-6 expression in orbital preadipocyte fibroblasts

and increases IL-6 release by mature adipocytes and that circulating

TRAbs might play a direct role in the clinical activity of GO.
Anti-IGF-1R antibodies

A role for IGF-1R in the pathogenesis of GO has been proposed,

but the presence and function of IGF-1R antibodies (IGF-1R Abs) are

controversial (82). The findings of Marcus-Samuels et al. (83)

demonstrated that knockdown of IGF-1R causes a 6.3-65% decrease

in IGF-1-stimulated pAKT but has no effect on GO-Ig stimulation of

pAKT, suggesting that GO-Igs contain factors that stimulate pAKT

formation but that this factor does not directly activate IGF-1R. It was

concluded that there is no evidence of stimulating IGF-R Abs in

patients with GO. However, other studies have shown the presence

of IGF-1R Abs. A study from Weightman DR et al. first demonstrated

that IgG prepared from patients with GD with or without overt

ophthalmopathy interacts with IGF-1 binding sites on OFs,

suggesting that antibodies may occur in GD that bind to IGF-1R

(84). Minich et al. (85) detected IGF-IR Abs in 10 serum samples from

control subjects (11%) and 60 serum samples from patients with GO

(10%). They found a similar prevalence of IGF-1R Abs in GO patients

and controls, with an obvious lack of correlation between IGF-1R Ab

concentrations and CAS or NOSPECS status. Therefore, this study

suggested that IGF-1R Abs in the blood of patients with GO do not

exacerbate the disease and are in fact antagonistic. In addition, this

study confirmed that IGF-IR Abs fail to stimulate autophosphorylation

of IGF-1R and instead inhibit IGF1-induced signalling in HepG2

hepatocarcinoma cells (85). Another study showed that regardless of

the presence of GO, a quarter of patients with GD have IGF-IR Abs in

their sera. In patients with GO, there is no relationship between GO

severity and IGF-1R Ab levels, although the levels of these antibodies

correlate inversely with CAS (86). Lanzolla et al. (87) further designed a

cross-sectional investigation to measure IGF-1R Ab levels in patients

with GD, with or without GO, who underwent radioiodine therapy

followed by glucocorticoid treatment and found higher IGF-1R Ab

levels in GD patients without GO than in those with GO. These results

suggest a putative protective role for IGF-1R Abs with respect to the

development of GO, which is consistent with the beneficial effects of

teprotumumab on GO (87). In contrast, Varewijck et al. (88) found that
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GO patients with high TSAb titres are more likely to have stimulatory

IGF-1R Abs. In summary, whether IGF-1R Abs exist and their role

deserve further study.
Treatments that target TSHR
and IGF-1R

TSHR antagonists

Because fibroblast production of cAMP, pAKT, and HA is

activated via TSHR signalling, future inhibitory therapies targeting

TSHR may be effective for GO. K1-70, a human monoclonal

autoantibody, has considerable promise as a new drug for blocking

the actions of thyroid stimulators on TSHR. In a recent case report,

K1−70 was injected intramuscularly at 3 weekly intervals in a patient

with follicular thyroid cancer, GD and GO, TSAb activity in the

serum decreased, and proptosis and inflammation improved (89). In a

phase I clinical trial, 18 patients with stable GD that were given

antithyroid drug medication received a single intramuscular dose of

25 mg or a single intravenous dose of 50 mg or 150 mg of K1-70. In

these patients, the thyroid function, GD and GO clinical

manifestations improved after the injection. No immunogenic

reaction, death or serious adverse events occurred (90). Currently,

several small TSHR antagonists have also been studied in vitro in

human samples. For example, in an in vitro human experiment, a

small TSHR antagonist (NCGC00229600, also called ANTAG2)

inhibited basal cAMP, pAKT, and HA production and that

stimulated by TSAb (M22 and MS-1) and bTSH in primary

cultures of undifferentiated GO-OFs (91). Another in vitro study

found that a low-molecular-weight TSHR antagonist (Org-274179-0)

completely blocks cAMP production in differentiated GO-OFs

induced by human recombinant GD-IgG, TSH or M22 (92).

Marcinkowski et al. (93) showed that a novel, highly selective

inhibitor of TSHR (S37a) inhibits TSHR activation not only via

TSH but also via stimulatory monoclonal TRAbs M22 (human),

KSAb1 (murine) and the allosteric small-molecule agonist C2 in

HEK293 cells expressing TSHR in vitro. Moreover, the addition of 50

µM S37a inhibited cAMP accumulation induced by sera from patients

with GO by 50‐60% compared to bTSH-treated stable HEK-TSHR

cells. In vivo experiments in mice are also being studied and may

provide new ideas for treating GO. The findings of in vivo

experimental studies by Fassbender et al. (94) demonstrate that

novel peptides distinctly reduce serum thyroxine levels, thyroid size,

retro-orbital fibrosis and tachycardia in Ad-TSHR289-immunized

mice. In immunologically naïve mice, the administration of peptides

did not induce any immune response. This evidence also indicates

that intravenous administration of TSHR-derived cyclic peptide 19 to

Ad-TSHR-immunized mice significantly improves thyroid function,

the levels of TRAbs and acidic mucins and the collagen content in

orbital tissue, offering a potential novel therapeutic approach for GD

and GO (95). A recent study indicated that GO mice intraperitoneally

injected with siRNA targeting TSHR exhibited marked improvements

in weight loss, serum thyroxine (T4) levels, TSAb levels, TSBAb levels

and thyroid uptake of 99mTcO4 (96). Potential novel therapies for

GO that directly target TSHR are provided in Table 1.
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IGF-1R blockers

Recently, the FDA-approved drug teprotumumab (a human

monoclonal anti-IGF-1R Ab) was identified as a breakthrough drug

for treating active GO. Teprotumumab reduces proptosis and the need

for orbital decompression surgery. Teprotumumab mainly inhibits the

IGF-1R pathway through two mechanisms. First, upon binding to

the cysteine-rich domain of human IGF-1R, teprotumumab blocks the

binding pocket for both endogenous ligands (IGF-1 and IGF-2) and

prevents them from activating the signalling cascade. Second, binding

of teprotumumab induces internalization and subsequent degradation

of IGF-1R, leading to a 95% reduction in cell surface-accessible IGF-1R

(97, 98). Teprotumumab does not bind to TSHRs and inhibits IGF1R-

dependent M22-induced HA production, which is mediated by TSHR/

IGF-1R crosstalk but not IGF-1R-independent M22 stimulation (72).

Fibrocytes from patients with GD display a robust reduction in surface

IGF-1R and TSHR expression after teprotumumab treatment (99).

A randomized, placebo-controlled, multicentre, double-masked

trial was performed to investigate the efficacy of teprotumumab in

patients with active, moderate-to severe GO (100). Eighty-eight

patients were randomly assigned to receive the active drug or

placebo administered intravenously once every 3 weeks for a total

of eight infusions. Compared with patients who received the placebo,
Frontiers in Immunology 07
those who received teprotumumab showed a response at week 24. The

therapeutic effects were rapid; at week 6, 18 of the 43 patients in the

teprotumumab group and 2 of the 45 patients in the placebo group

showed a response. These data indicate that teprotumumab therapy

provides clinical benefits to patients with active, moderate-to-severe

GO by reducing proptosis and CAS and by improving quality of

life (100).

Another randomized, double-masked, placebo-controlled, phase

3 multicentre trial was carried out in 2020. Forty-one patients were

assigned to the teprotumumab group and received intravenous

infusions of teprotumumab (10 mg/kg for the first infusion and 20

mg/kg for subsequent infusions). Forty-two patients were assigned to

the placebo group and received intravenous infusions of placebo once

every 3 weeks for 21 weeks. The last trial visit for this analysis

occurred at week 24, at which the percentage of patients showing a

proptosis response was higher in the teprotumumab group. All

secondary outcomes, including overall response, the proportion of

patients with CAS of 0 or 1, the mean change in proptosis, the

diplopia response, and the mean change in Graves’ ophthalmopathy-

specific quality-of-life overall score, were significantly better after

treatment with teprotumumab than with placebo. These findings

demonstrate that among patients with active GO, teprotumumab

resulted in better outcomes than placebo with respect to proptosis,
TABLE 1 Potential novel therapies for GO that directly target TSHR.

Type Inhibitor Model Main effect Reference

Human monoclonal autoantibody K1–70 Human
(a patient with
FTC, GD and GO)
in vivo

Decreased the TSAb activity in the
serum and improved proptosis and
inflammation

(89)

K1–70 Human
(in a phase I
clinical trial,
n=18)
in vivo

Improved thyroid function, GD and
GO clinical manifestations

(90)

Small TSHR antagonists NCGC00229600
(ANTAG2)

Human
(GO-OFs)
in vitro

Inhibited basal cAMP, pAKT, and
HA production and that stimulated
by TSAb and bTSH

(91)

Org-274179-0 Human
(GO-OFs)
in vitro

Blocked the cAMP production of
differentiated GO-OFs induced by
human recombinant TSH, GD-IgG,
or M22

(92)

S37a HEK cells (stably
expressing TSHR)
in vitro

Inhibited the cAMP accumulation
induced by sera from patients with
GO

(93)

Peptide TSHR-derived peptide 836 13-mer, peptide 19, peptide 12 Mice
(Ad-TSHR289-
immunized mice)
in vivo

Reduced thyroid size, serum
thyroxine levels, retro-orbital
fibrosis, and tachycardia

(94)

TSHR-derived cyclic peptide 19 (P19) Mice
(Ad-TSHR-
immunized mice)
in vivo

Improved thyroid function, TRAbs
and orbital mucine/collagen content

(95)

siRNA siRNA targeting TSHR Mice
(BALB/c mouse
model of GD)
in vivo

Improved weight loss, T4 levels,
TSAb levels, TSBAb levels and
thyroid uptake of 99mTcO4

(96)
f

cAMP, cyclic adenosine monophosphate; GO, Graves’ orbitopathy; GO-OFs, orbital fibroblasts from patients with Graves’ ophthalmopathy; HA, hyaluronan; TSAb, TSHR stimulatory antibody;
TSH, thyrotropin; TSHR, thyrotropin receptor.
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CAS, diplopia, and quality of life. The most common adverse events

(AEs) reported with teprotumumab included muscle spasms,

alopecia, nausea, diarrhoea, hearing impairment, fatigue and

hyperglycaemia, but they were mild-moderate during treatment.

Serious AEs, such as Hashimoto’s encephalopathy, were uncommon

(101). A summary of two teprotumumab clinical trials for GO is

shown in Table 2.

Currently, high-dose intravenous methylprednisolone combined

with oral mycophenolate is the preferred therapy for moderate-to-
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severe and active GO, as cited by the 2021 EUGOGO. Other biological

agents, such as tocilizumab (a humanized monoclonal antibody

against IL-6R) (102–109), rituximab (a monoclonal antibody that

targets CD20+ B cells) (108, 110–116), and adalimumab (a TNF-a
blocking monoclonal antibody) (117), have proven to be useful and

safe therapeutic options as treatments in refractory GO. These agents

have produced promising results, including improved proptosis and

diplopia and reduced CAS scores. Other biological agents of GO are

listed in Table 3.
TABLE 3 Other clinical therapeutic targets for GO.

Agent Type Target Main effect Research
method

Clinical conclusion Adverse
reactions/
Relapse

References

Tocilizumab Humanized
monoclonal
antibody

IL-6
receptor

Inhibition of the
pro-inflammatory
effects of IL-6

Retrospective
case reports
(n=3)

Improved ocular symptoms (diplopia and
proptosis) and functional prognosis in
severe or corticosteroid-resistant GO.

One relapse
approximately
two months after
the end of the
treatment.

(102)

Double-masked
RCT (n=32)

Improved activity and severity in
corticosteroid-resistant GO.

Moderate
increase in
transaminases
(n=1);
acute
pyelonephritis
(n=1).

(103)

Observational
single-centre study
(n=10)

Rapidly effective and well-tolerated in
patients with GC-refractory GO.

Neutropenia,
hyperlipidaemia,
and infections
(n=4);
nearly one-third
developed cancer
during the
follow-up.

(104)

(Continued)
TABLE 2 Summary of two teprotumumab clinical trials for GO.

Reference (100) (101)

Group Teprotumumab (n=43)
Placebo (n=45)

Teprotumumab (n=41)
Placebo (n=42)

Primary end
points

Reduction of 2 points or more in the CAS at week 24
Reduction of 2 mm or more in proptosis at week 24

Proptosis response at week 24

Secondary end
points

At week 6, 12, 18, and 24
Proptosis
CAS
CAS of 0 or 1
GO-QOL
Diplopia

Overall response at week 24
CAS of 0 or 1 at week 24
The mean change in proptosis across trial visits
Diplopia response at week 24
The mean change in overall score on GO-QOL across trial visits

Result for
primary end
points

In total, 29 of 42 patients who received teprotumumab (69%), compared with
9 of 45 patients who received placebo (20%), had a response at week 24

At week 24, the percentage of patients with a proptosis response was
higher with teprotumumab than with placebo

Result for
secondary end
points

At week 6, a total of 18 of 42 patients in the teprotumumab group (43%) and
2 of 45 patients in the placebo group (4%) had a response

All secondary outcomes were significantly better with teprotumumab than
with placebo

Conclusion In patients with active ophthalmopathy, teprotumumab was more effective
than the placebo in reducing proptosis and the CAS and improving the
patients’ quality of life

Among patients with active thyroid eye disease, teprotumumab resulted in
better outcomes with respect to proptosis, CAS, diplopia, and quality of
life than placebo
GO, Graves’ orbitopathy; CAS, Clinical Activity Score; GO-QOL, Graves’ ophthalmopathy–specific quality-of-life questionnaire.
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TABLE 3 Continued

Agent Type Target Main effect Research
method

Clinical conclusion Adverse
reactions/
Relapse

References

Retrospective
longitudinal study
(n=54)

Provided a significant benefit to patients
with active moderate-to-severe steroid-
resistant GO.

– (105)

Open-label
multicentre study
(n=48)

A useful and safe therapeutic option in
refractory GO treatment.

No serious
adverse events.

(106)

Retrospective
longitudinal study
(n=9)

As a therapy for the inflammatory phase
of GO.

Elevated
cholesterol
(n=1).
No patients had
recurrence of
active disease.

(107)

Retrospective
longitudinal study
(n=7)

A significant improvement in the CAS,
visual acuity, diplopia, and proptosis.

Significant
relapse (n=1).

(108)

A case series report
(n=8)

A therapeutic option for glucocorticoid-
resistant orbitopathy.

– (109)

Rituximab Chimeric
human and
mouse
monoclonal
antibody

CD20 Immunosuppression
through B-cell
depletion

Retrospective
longitudinal study
(n=9)

A significant improvement in the CAS,
visual acuity, diplopia, and proptosis.

Significant
relapse (n=4).

(108)

Retrospective
analysis (n=15)

Sustained anti-inflammatory effect in
most patients with active GO resistant to
conventional treatment.

No significant
effect.

(110)

Retrospective audit
(n=12)

An efficacious, well-tolerated and safe
treatment for active GO; reduced disease
activity and allowing reduced
administration of systemic steroids.

A transient
infusion-related
rash (n=4).

(111)

Retrospective case
(n=14)

A well-tolerated treatment with a good
safety profile but offered limited and
partial improvement for active moderate-
to-severe GO with a long duration of
disease.

Moderate
adverse event
(n=1).

(112)

A post hoc analysis
of two open label
studies and one
prospective trial
randomized (n=40)

500 mg RTX in the treatment of active
moderate-to-severe GO.

– (113)

Open-label
prospective study
(n=17)

A dose of 100 mg RTX is effective in
patients with active moderate-to-severe
GO.

Cytokine release
syndrome (n=1).

(114)

Multicentre
retrospective study
(n=40)

Effective as a second-line treatment for
the inflammatory component of GO,
especially if the disease is highly active
and recent.

Cytokine release
syndrome (n=1).

(115)

Double-blind RCT
(n=32)

A better therapeutic outcome in active
moderate-to-severe GO, eye motility
outcome, visual functioning of the quality
of life assessment, and the reduced
number of surgical procedures.

– (116)

Adalimumab TNF-a
blocking
monoclonal
antibody

TNF-a Inhibition of HA
production and
inflammation

Retrospective study
(n=10)

Has a role in the treatment of active GO
with prominent inflammatory symptoms.

Sepsis (n=1). (117)
F
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GO, Graves’ orbitopathy; HA, hyaluronan; RCT, randomized clinical trial; GC, glucocorticoids; CAS, Clinical Activity Score; RTX, rituximab.
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Conclusions

The following important points were obtained from the review. In

addition to CD34+ OFs, CD34- OFs are crucial for GO pathogenesis

and may be involved in HA formation. CD34- OFs expressing Slit2

suppress the phenotype of CD34+ OFs, and b-arrestin 1 is involved in

TSHR/IGF-1R crosstalk. In recent years, research on TRAbs has

gradually shifted to TSAbs and TBAbs, but the existence and role of

IGF-1R Abs remain unclear, and further exploration is warranted.

The results of clinical trials targeting TSHR inhibition are expected.

Teprotumumab has become the latest second-line treatment for GO.

Tocilizumab and rituximab hold great promise in the future

management of GO and can be useful in cases if intolerance or

resistance to standard immunosuppressive treatment.
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