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Chimeric antigen receptor T-cell (CAR-T-cell) therapy has been well researched to

date because of its ability to target malignant tumor cells. Themost common CAR-

T cells are CD19 CAR-T cells, which play a large role in B-cell leukemia treatment.

However, most CAR-T cells are associated with relapse after clinical treatment, so

the quality and persistence of CAR-T cells need to be improved. With continuous

optimization, there have been four generations of CARs and each generation of

CARs has better quality and durability than the previous generation. In addition, it is

important to increase the proportion of memory cells in CAR-T cells. Studies have

shown that an immunosuppressive tumor microenvironment (TME) can lead to

dysfunction of CAR-T cells, resulting in decreased cell proliferation and poor

persistence. Thus, overcoming the challenges of immunosuppressive molecules

and targeting cytokines in the TME can also improve CAR-T cell persistence. In this

paper, we explored how to improve the durability of CAR-T cell therapy by

improving the structure of CARs, increasing the proportion of memory CAR-T

cells and improving the TME.
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CAR-T cells, relapsed/refractory, the structure of CARs, the proportion of memory CAR-T
cells, tumor microenvironment
Abbreviations: AP-1, Activator protein 1; BATF, Basic leucine zipper ATF-like transcription factor ; CAR,

Chimeric antigen receptor; CM, Costimulatory domain; IL-1RA, Recombinant IL-1 receptor antagonist;

IL1RAP, IL1 receptor accessory protein; iPS, induced pluripotent stem cell; IRF4, Interferon regulatory

factor 4 ; ITAM, Immunoreceptor tyrosine-based activation motif; LSCs, leukemia stem cells; NFAT,

Nuclear factor of activated T cells; NR4A, Interferon regulatory factor 4; ScFv, Single-stranded variable

region; TALEN, Transcription activator-like effector nucleases; TCM, Central memory T cells; TEF T cells,

Terminal effector (TEF) T cells; TF, Transcription factors; TILs, Tumor-infiltrating lymphocytes; TN, Naive T

cells; TOX, Thymocyte selection-associated HMG BOX; TSCM, Stem cell memory T.
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1 Introduction

In recent years, great progress has been made in chimeric antigen

receptor T cell (CAR-T cell) therapy for hematological and solid

tumors, but patients still experience recurrence after treatment. Poor

persistence of CAR-T cells in vivo is an important cause of relapse (1).

This review summarizes three factors limiting why CAR-T cells

persistence in vivo: the structure of CARs, the proportion of memory

CAR-T cells and the TME. The CARs structure of CAR-T cells has

undergone four generations of evolution. Second-generation CARs

include additional costimulatory domains that are lacking in first-

generation CARs, third-generation CARs have two costimulatory

domains, and fourth-generation CARs have both costimulatory

domains and other domains that can regulate cytokines or other

molecules. With the structural additions of each generation of CARs,

the survival and persistence of CAR-T cells in vivo has improved (2–

11). Studies have shown that the higher the percentage of memory T

cells, the more durable the T cells are in the vivo (12). Therefore, it is

essential to improve the proportion of memory CAR-T cells, which can

be increased in four ways: preventing T cell differentiation (13–17);

reprogramming terminally differentiated T cells (18, 19); shortening the

culture time of CAR-T cells (20) and delaying the senescence of CAR-T

cells (21). In addition, immune checkpoint molecules and certain

cytokines in the TME can also shorten the lifespan and reduce the

function of T cells (22–24).
2 The structure of CARs can
influence CAR-T cell proliferation
and persistence

CAR-T cell therapy consists of editing T cells to express specific

CARs and reinjecting the cells expanded in vitro into the patient to

eradicate tumors (4). A CAR is a receptor consisting of three main

portions: an extracellular antigen recognition domain, a

transmembrane domain, and an intracellular signaling domain

(25) (Figure 1).
2.1 First-generation CARs of CAR-T cells

First-generation CARs contain a single-chain variable fragment

(scFv) that is linked to the intracellular signaling domain of CD3z,
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providing the signal that is necessary to activate T cells; however,

these CARs only provide the T cell priming signal and have no

costimulatory molecules. The lack of costimulatory molecules results

in low activation and antitumor effects of T cells in vivo (2, 3)..
2.2 Second-generation CARs of CAR-T cells

Developed based on first-generation CARs, second-generation

CARs include a costimulatory domain (CD28, 4-1BB, OX-40, ICOS

and CD134) that provides a second signal for T-cell activation (4, 5).

The second signal prevents the exhaustion of CAR-T cells and

promotes their continued proliferation and cytokine secretion,

resulting in increased potency in the killing of target cells in vivo

(6, 7). This review focuses on the CD28 and 4-1BB costimulatory

domains (Figure 2).

CD28 is a transmembrane protein and a member of the

immunoglobulin superfamily (26). The CD28 costimulatory

receptor is expressed on both CD8+ T and CD4+ T cells. The

extracellular portion of CD28 binds to the B7 family of ligands

[CD80, CD86 (B7-2), and CD275 (B7-H2) (27–29)] to activate
FIGURE 1

Evolution of chimeric antigen receptors (CARs). Each CAR generation
contains an extracellular single-stranded variable region (scFv), an
intracellular CD3 domain (CD3z) and a T-cell receptor transmembrane
domain. The first generation of CARs has only the CD3 domain in the
cell. The second generation of CARs includes the CD3 domain and the
costimulatory domain (CM). Developed on the basis of second-
generation CARs, the third generation of CARs has two different
costimulatory domains in the cell. Developed based on the structure
of second-generation of CARs, fourth-generation of CARs have an
additional intracellular domain that regulates the expression of
cytokines or other costimulatory molecules.
FIGURE 2

A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains.
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intracellular signaling cascades, such as the PI3K, NF-kB,AP-1 and

NFAT signaling pathways, which can regulate T-cell proliferation and

survival and promote IL-2 production (26, 30, 31).

4-1BB (also known as CD137 and TNFRSF9) is also a

transmembrane protein and a member of the tumor necrosis factor

receptor superfamily (TNFRSF). 4-1BB is found on antigen-activated

CD8+ and CD4+ T cells (32). 4-1BB binds to its sole ligand (4-1BBL)

to activate downstream signaling by recruiting TRAF proteins (33).

The CD28 signaling domain represents an “early” costimulatory

signal that promotes the proliferation of T cells, accelerates the

differentiation of effector memory T (TEM) cells and CD8+ T cells,

and leads to increased more IL-2 production. Encoding a fully

functional CD28 signaling domain on the CAR polypeptide chain

may produce overstimulation, increase the incidence of cytokine

release syndrome (CRS), promote T-cell exhaustion, and reduce

persistence (33–35)..

The 4-1BB signaling domain is responsible for the “late”

costimulatory signal that promotes T cell differentiation into central

memory T(TCM) cells, increases the oxidative metabolism and

glycolysis of CAR-T cells, enhances T cell persistence and improves

the antitumor ability of T cells (34, 36).

Studies showed that the 4-1BB domain in CAR activated ncNF-

kB signaling in human T cells, thereby increasing the expansion and

the survival of 4-1BBz CAR-T cells in vitro (37).

In preclinical studies of CAR-T cells in pre-B cell acute

lymphoblastic leukemia (pre-BALL) mice, compared with CD28

costimulation or CD3z signaling alone, 4-1BB costimulation of

CAR-T cells improved the survival of tumor-bearing mice (7, 38).

In relapsed or refractory B-cell acute lymphoblastic leukemia (r/r

B-ALL), 4-1BB-based CAR-T cells have been shown to show higher

antitumor efficacy, longer persistence, and fewer serious adverse

events than CD28 CAR-T cells (39).

It has been shown that CAR-T cells can live approximately 30

days in patients who are treated with CD28z CAR-T cells, while CAR-

T cells can persist for more than 4 years in those who are treated with

4-1BBz CAR-T cells (40–42).

These results indicate that compared to CD28zCAR-T cells, 4-

1BBzCAR-T cells are more persistent but have weaker killing effects

in vivo. To improve the shortcomings of both CAR-T cells, studies

have been conducted to integrate the two costimulatory molecules

into the structure of CARs, leading to the development of third-

generation CARs of CAR-T cells.
2.3 Third-generation CARs of CAR-T cells

To increase T cell survival, cytokine production, and antitumor

potential, researchers have modified the second-generation CARs by

adding another costimulatory domain to the CARs. These

modifications include the combination of CD28 and OX40

costimulatory molecules in CD30 CAR-T cells, CD28 and 4-1BB

costimulatory molecules in CD19 CAR-T cells and 4-1BB and DAP10

costimulatory molecules in NKG2D(z) CAR-T cells. All of these

factors enhance the expansion and persistence of CAR-T cells in

vivo (8, 43, 44).

Nevertheless, third-generation CARs have risks of off-target

effects and excess cytokine production. In addition, there is a lack
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of clinical data for third-generation CARs. There was clinical efficacy,

but the treatment did not cause serious side effects in patients who

were not cured (45–47). Hence the fourth-generation of CARs have

been generated.
2.4 Fourth-generation CARs of CAR-T cells

Fourth-generation CARs which were developed on the basis of

second-generation CARs, include not only costimulatory domains

but also domains that regulate the expression of cytokines or other

costimulatory molecules.

IL-12 is a proinflammatory cytokine with strong tumor inhibitory

activity, that not only stimulates T cells to secrete IFN-g to enhance

the cytotoxicity of CAR-T cells, but also limits the activation of

regulatory T (Treg) cells, reshaping the TME in an IFN-g-dependent
manner (48). Yingmei Luo, Giulia Agliardi and Hollie J Pegram et al.

found administration of CAR-T cells with autocrine IL-12 in the TME

significantly improved the killing effect of CAR-T cells and achieved

long-lasting antitumor effects (49–51).

IL-18, a member of the IL-1 family of cytokines, enhances T-cell

toxicity and promotes IFN-g secretion. Markus Chmielewski et al. and

Mauro P Avanzi et al. developed CD19 CAR-T cells capable of

secreting IL-18 for the treatment of solid and hematologic tumors,

respectively. The researchers included an anti-CD19 scFv, a CD28

costimulatory domain and a human IL-18 domain. The new CD19

CAR-T cells promoted T cell proliferation and had more CD8+ T cells

and TCM cells. Furthermore, compared with second-generation

CAR-T cells, they showed better survival in a mouse model (9, 52).

IL-21 plays an important role in the differentiation of memory T

cells, and can promote the expansion of CAR-T cells after antigen

stimulation, prevent the terminal differentiation of CAR-T cells, and

reduce the apoptosis of CAR-T cells. Markley et al. (10) and Harjeet

Singh et al. (53) constructed CAR-T cells that can secrete IL-21. The

structure of the CARs consisted of an anti-CD19 scFv, a CD28

costimulatory domain and a human IL-21 domain. The research

found that the new CD19 CAR-T cells exhibited greater expansion

and greater expression of the cytokine IFN-g when stimulated by

tumor cells than conventional CD19 T cells. The cells promoted the

differentiation of T cells into a memory phenotype and r had lower

levels of apoptosis. CAR-T cells are retained longer in

experimental animals.

IL-23 is a two-subunit cytokine composed of the IL-23ap19 and

IL12b p40 subunits, both of which are expressed by activated

macrophages and dendritic cells (54). In chronic lymphocytic

leukemia, IL-23-activated STAT3 contributes to the enhanced

function of CAR-T cells (13). IL-23-producing CAR-T cells (P40-

TD CAR-T) have been constructed and show higher antitumor

ability, increased granzyme B expression and decreased PD-1

expression (55).

The above studies have added domains that can regulate cytokine

expression to the structure of second-generation CARs, and the

expression of these cytokines increases the persistence of CAR-T

cells in vivo by improving the TME or promoting the generation of

memory T cells. More different cytokine domains can be added to the

structure of CARs in the future to increase the persistence of CAR-T

cells in vivo.
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2.5 Others

In addition, targeting transcription factors can reduce the depletion

of CAR-T cells and increase their persistence. CAR-T cells lacking the

NR4A1, NR4A2 and NR4A3 transcription factors have downregulated

expression of PD-1 and TIM3 and stronger antitumor effects (56).

CAR-T cells overexpressing c-Jun have increased secretion of IL-2 and

IFN-g an increased the proportion of memory T cells, and prolonged

the survival of tumor-bearing mice (57).

In the report, the persistence of CAR-T cells was positively

correlated with the number of memory T cells. Researchers have

found that weak TCR signaling favors memory T cell differentiation,

while strong TCR signaling promotes differentiation into effector T

cell subsets. The amount and type of immunoreceptor tyrosine-based

activation motif (ITAM) domains in CD3 and the TCR complex are

related to TCR signal intensity (58). Feucht et al. found that knockout

of CD3 ITAMs could induce a memory T-cell phenotype, which

demonstrating better antitumor ability. The study demonstrated that

the CAR-T cell therapy achieved a lasting and complete tumor

response (59–61).

In addition, the persistence of CAR-T cells can be improved by

changing the length and composition of extracellular spacers.

Modifying long IgG4/IgG2-derived spacers in CAR constructs

reduced antigen-independent tetanic signaling in anti-GPRC5D

CAR-T cell models, thereby increasing specific antigen-dependent

CAR activation (62).

In addition, researchers have designed CD22 CAR and CD133

CAR with either a short or long scFv linker, and found that the short

scFv CAR (CART22-short or CD133 CAR-short) had excellent

cytotoxicity, secreted more IFN-g, IL2 and TNF-a, resulted in lower

expression of exhaustion-associated surface proteins, exhibited

significant anti-leukemia activity and improved animal survival.

Thus CD22 CAR and CD133 CAR improved the persistence of

CAR-T cells in vivo (63).

In addition, the persistence of CAR-T cells can be improved by

using humanized CAR-T cells instead of mouse CAR-T cells due to

poor immune responses related to the antigen binding domain.

These studies suggest that T cell persistence can also be increased in

vivo by adding domains that regulate transcription factors to the CARs

structure or by attenuating TCR signaling in the CARs structure.

In conclusion, first-generation to the fourth-generation CAR

structures have mainly been developed with costimulatory signaling

molecules and cytokine secretion in mind, while there have been few

studies of the signal strength of the TCR itself. In the future, the

relationship between TCR signal strength and persistence of CAR-T

cells in vivo should be further explored.
3 Increasing the proportion of memory
T cells in CAR-T cells to improve CAR-
T cell persistence

There are many subsets of T cells, each with different proliferative

potential. Naive T (TN, CD45RA+CCR7+CD62L+) cells, stem

memory T (TSCM, CD45RA+CCR7-CD62L+) cells and central

memory T (TCM, CD45RA-CCR7+CD62L+) cells have a higher
Frontiers in Immunology 04
proliferation potential than effector T cells, and higher proportions

of these cells increase the persistence of CAR-T cells in vivo (12).

Therefore, to increase the persistence of CAR-T cells, it is necessary to

increase the proportion of memory T cells in CAR-T cells, which can

be achieved by the following four methods: (1) preventing T cell

differentiation, (2) reprogramming T cells into terminally

differentiated cells, (3) shortening the culture time of CAR-T cells,

(4) delaying CAR-T cell senescence.
3.1 Preventing T cell differentiation

3.1.1 Cytokines
In a study of CD19 CAR-T cell therapy for chronic lymphocytic

leukemia (CLL), Fraietta.et. al. found that CAR-T cells in CLL

patients with complete remission were rich in the markers IL-6/

STAT3, which increased the proportion of memory T cells

(CD27+CD45RO- CD8+) (13).

It is well known that T cells can differentiate into effector T cells

under the action of self-secreted IL-2 (64), but IL-2 secretion is not

good for the persistence of T cells in vivo. Therefore, Fei Mo et al.

designed a IL-2 partial agonist (H9T) that can promote the stemness

of CD8+ T cells through the STAT5 signaling pathway (65).

IL-7 promotes the expansion of primitive T cells and maintains

the TCM T cell pool by increasing expression of the anti-apoptotic

molecules Bcl-2. Studies have shown that CD19 CAR-T cells

expressing IL-7R have a better ability to expand in vivo and resist

apoptosis, thus improving the persistence of CAR-T cells in vivo (65).

IL-15 can regulate the homeostatic proliferation of memory CD8

+ T cells, and can improve the lytic ability of memory CD8 + T cells

by increasing the expression of perforin, granzyme B and IFN-g. The
survival of memory CD8 + T cells can also be promoted by increasing

the expression of the anti-apoptotic molecules Bcl-2 and Bcl-X L as

well as that of the costimulatory molecule 4-1BB (17). The addition of

a IL-15 domain into the CAR improved the survival rate of GD2

CAR-T cells and prolong antitumor activity (66).

Recently, it was found that culturing naive CD19 CAR-T cells with

IL-7 and IL-15 promoted their differentiation into CAR-TSCM cells

and showed antitumor activity in vitro and in mouse models (67).

IL-21 can not only direct CD8+ T cells to express L-selectin

during secondary stimulation to promote the secondary proliferation

of CAR-T cells (68), but also inhibit Treg cells (14).

The combined expression of IL-15 and IL-21 maintained the

expression of T cytokine 1 (TCF-1), a transcription factor essential for

T cell development and survival. Research shows that Gpc3 CAR-T

cells coexpressing IL-15 and IL-21 enriched poorly differentiated T

cells pools, exhibited the strongest peak amplification and persistence

in vivo, and mediated increased tumor control and survival in

hepatocellular carcinoma (HCC) tumor-bearing mice compared to

cytokines alone or controls (69).The above studies show that the

expression of IL-7, IL-15 and IL-21 can promote the expansion of

memory CD8+ cells and improve their antitumor activity.

3.1.2 Medicine
Many small molecule drugs can enhance the effect of T cell

therapy by regulating TCR, cytokines, costimulatory ions and growth

factor receptors to alter T cell differentiation. For example, the mTOR
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inhibitor rapamycin can promote the formation of memory CD8+ T

cells by regulating the expression of the transcription factors T-bet

and eomesodermin, thereby enhancing antitumor function (70). In

addition, metformin, a drug forn anti- type 2 diabetes drug, can

restore CD8+ memory cells and enhance survival in TRAF6-deficient

mice by regulating AMPK-activation and mitochondrial fatty acid

oxidation (FAO) (71). Besides, immunomodulatory drugs (IMiDs;

lenalidomide and pomalieradomide), which bind to the bispecific T-

cell engager molecule AMG 701, can not only induce T-cell-

dependent cytotoxicity (TDCC) in multiple myeloma (MM) cells,

but also improve the proportion of TSCM cells in vitro and have long-

lasting antitumor effects in MM mice (72). Furthermore, GSK3b
inhibitors can promote the self-renewal of memory T cells through

upregulation of the Wnt/b-catenin pathway (60). A small molecule

inhibitor of lactate dehydrogenase (LDH) can inhibit aerobic

glycolysis and maintain a metabolically quiescent state, and can

inhibit CD8+ T cell depletion by regulating the mRNA expression

of members of the NR4A family of nuclear receptors, as well as Prdm1

and Xbp1, and can promote TSCM cell production and produce

powerful antitumor effects in collaboration with IL-21 (73).

These studies suggested that small-molecule drugs can regulate

the proliferation and differentiation of memory T cells through

different mechanisms. Therefore, these small-molecule drugs can be

used in combination with CAR-T cell therapy to prolong the

persistence of CAR-T cells in vivo.

3.1.3 Proportion of CD4+ T cells and CD8+ T cells
in injected CAR-T cells

The ratio of CD4+ and CD8+ T cells is highly variable in patients

with B-ALL and NHL, and studies have shown that the injection a 1:1

ratio of CD4 to CD8 CAR-T cells can ameliorate this phenomenon,

resulting in predictable polyclonal proliferation of CD4 + and CD8 +

T cells in patients, thereby increasing the persistence of CAR-T cells

(15, 16).
3.2 Reprogramming terminally
differentiated T cells

In response to the constant stimulation of tumor cells, CAR-T

cells injected in vivo continued to differentiate into tumor-infiltrating

lymphocytes (TILs), going down the terminal differentiation a path of

terminal differentiation and no longer providing sustained and

effective antitumor effects. Therefore, the persistence of CAR-T cells

could be improved by modifying the terminal differentiation status of

CAR-T cells using gene editing. Studies have shown that TILs can be

forced into induced pluripotent stem (IPS) cells capable of

maintaining the variables (V), diversity (D), and junction (J)

rearrangement region of the TCR chain via expression of the SOX2,

OCT4, MYC and KLF4 transcription factors. However, this approach

is inefficient, and thus a method to reverse terminal differentiation by

forcing late differentiated terminal effector T (TEF) cells to express

TN and TSCM cell related transcription factors through direct

reprogramming has also been developed (18, 19). Studies have used

MEK1/2 inhibition (MEKi) to reprogram CD8+ T cells into TSCM

cells, so that they can self-renew, longer existence in vivo, and stronger

antitumor effect (74). It has also been reported that the NOTCH-
Frontiers in Immunology 05
FOXM1 axis can be reprogrammed by mitochondrial metabolism to

transform traditional human CAR-T cells into TSCM-like CAR-T

cells, thus increasing longevity and achieving greater antitumor

potential in vivo (75).
3.3 Shortening the culture
time of CAR-T cells

Currently, most T cell engineering regimens typically amplify T

cells in vitro for 9 to 14 days. CD19 CAR-T cells show less

differentiation and improved effector function when harvested from

cultures at earlier time points (day 3 or day 5) than at later time points

(day 9) in vitro. The results of studies in mouse models have also

indicated that CAR-T cells that are cultured for a shorter time have

better therapeutic potential (20).
3.4 Delaying CAR-T cell senescence by
preventing telomere loss

Transient addition of a modified mRNA encoding telomerase

reverse transcriptase to the CAR structure of CD19 CAR-T cells

increases telomerase activity in these cells. Compared to conventional

CD19 CAR-T cells, these cells have increased proliferation, enhanced

persistence and improved antitumor ability (21).

Therefore, there are many ways to promote the maintenance of

CAR-T cells: adding specific cytokines such as IL-5, IL-7, and IL-21 to

CAR-T cell therapy or adding small-molecule drugs; reprogramming

terminally differentiated CAR-T cells; shortening the culture time of

CAR-T cells in vitro; and preventing the loss of telomerase in CAR-T

cells to slow aging. In the future, we can continue to explore ways to

help CAR-T cells differentiate into TSCM cells with these

four strategies.
4 Improving the TME to increase CAR-
T cell persistence

CAR-T cell therapy has shown remarkable therapeutic efficacy

against leukemia and lymphoma. However, over time, T cell

exhaustion appears in the TME. This is related to the overexpression

of inhibitory molecules such as PD-1, TIM-3, CTLA-4 and LAG-3 by

dysfunctional T cells, as well as cytokines in the TME.
4.1 Overcoming checkpoint inhibition to
increase CAR-T cell persistence

PD-1, LAG3 and CTLA-4 are common immune checkpoint

molecules in the TME. There are some common ways to inhibit

these molecules. The first way is to use checkpoint inhibitors

(nivolumab, atezolizumab and pembrolizumab) combined with

CAR-T cells (23, 76, 77). The second way is to construct CAR-T

cells that can directly express immune checkpoint inhibitors (PD-1/

CD28 CD19 CAR-T cells) (78–80). The third way is to utilize gene
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editing technology (CRISPR-Cas9, TALEN) to directly knock out

immune checkpoint related genes (76, 81, 82). All of these approaches

have demonstrated better T cell proliferation, cytokine production,

killing capabilities and persistence in vitro than CAR-T cells alone.

In addition to the use of immune checkpoint inhibitors and the

construction of novel CAR-T cells by knockout of immune checkpoint

genes using gene editing methods, the expression of immune

checkpoint molecules can also be regulated by transcription factors

(BATF, NFAT, AP-1, and downstream molecules).

In the TME, CAR-T cells overexpressing BATF have increased

expansion capacity and cytotoxicity, produce more cytokines and

granzymes, prevent T cell depletion and reduce the secretion of the

depletion-related transcription factor thymocyte selection-associated

HMG BOX (TOX) (83). The high-mobility group (HMG)-box

transcription factors (TOX and TOX2) and the NR4A family of

orphan nuclear receptors are downstream targets of the transcription

factor NFAT. Inhibiting the expression of these cytokines increases the

expression of cytokines in CAR-TILs while decreasing the expression

of inhibitory receptors. It also has the advantages of inhibiting tumor

growth and prolonging the survival of tumor-bearing mice (66, 84).

Deficiency of c-Jun transcription factors of the AP-1 family is

associated with T cell depletion. Therefore, CAR-T cells

overexpressing c-Jun show enhanced expansion potential, reduced

terminal differentiation, and improved antitumor efficacy (57).
4.2 Utilizing cytokine signaling to increase
CAR-T cell persistence

IL-1 is a major proinflammatory cytokine in the TME and is

involved in the development and invasion of several tumors (102). In

chronic myeloid leukemia (CML), recombinant antibodies targeting

IL-1 receptor antagonist (IL-1RA) and IL-1 receptor accessory

protein (IL1RAP) can block IL-1 signaling in CML leukemia stem

cells (LSCs) and inhibit their growth (85, 86). The combination of IL-

1 signaling blockade with a tyrosine kinase inhibitor (TKI)

significantly inhibited LSCs growth compared to the TKI alone. In

acute myeloid leukemia (AML) and CML, blocking IL-1 signaling (for

example, with anti-IL-1RA or anti-IL1RAP antibodies, IRAK1/4

inhibitors, IL-11/4 inhibitors, AP antibodies) eliminates LSCs in the

TME, thereby preventing recurrence in patients (85–88).

IL-4 can induce apoptosis of AML cells in vitro and in vivo

through Caspase-3 activation and STAT6 phosphorylation, and can

also mediate P53-dependent apoptosis via IL-4 on LICs through the

endogenous CyPG-PPARg axis, which is a negative regulator of

normal AML cells (89–91).

IL-6 family cytokines are defined as those that use the common

signaling receptor subunit glycoprotein 130 kDa (gp130), which is

associated BCR/ABL activity in the TME (92). Disrupting IL-6

paracrine signaling of can inhibit the activity of BCR/ABL, and IL-6

inhibitors combined with PD-1 inhibitors can have an antitumor

effect, thus contributing to the clearance of cancer cells in the CML

TME (93, 94). In CAR-T therapy, IL-6/STAT3 blocked reduced CAR-

T cell proliferation (55).

IL-10 is a V-shaped homodimer that can be generated by multiple

cell types, and IL-10 has important effects on the TME (103). In the

CLL TME, IL-10 is highly expressed, which disrupts the synergy
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between NFAT and AP-1 through IL-10R-STAT3 signaling, thereby

increasing the expression of PD-1 on CD8+ T cells and preventing T

cells from playing an antitumor role (95, 96). CAR-T cells targeting

the interleukin-10 receptor (IL-10R) also have strong tumor

cytotoxicity in AML treatment (97).

IL-12 is a proinflammatory cytokine with strong tumor inhibitory

activity that not only stimulates T cells to secrete IFN-g to enhance the
cytotoxicity of CAR-T cells, but also generates resistance to Treg cells

effects, reshaping the TME in an IFN-g-dependent manner (48).

Autocrine IL-12 with CAR-T cells in the TME significantly

improved the killing effect of CAR-T cells and achieved long-lasting

antitumor effects (49–51).

In the TME, studies have shown that the secretion of IL-21 can

increase memory and affect CD8+ T cells, inhibit Treg cells, and can

cooperate with immune checkpoint inhibitors to improve the

depletion of T cells (14, 24, 69, 98).

TGF-b is a common cytokine in the TME and is secreted by

malignant cells and their stroma. It promotes tumor growth and

metastasis, and potently inhibits APCs and the growth and effector

function of T cells and NK cells. TGF-b interacts with TGF-b receptor
I (TGF-bRI) or TGF-bII to form type I and type II receptor dimers,

resulting in phosphorylation of TGF-b RI and endowing it with the

ability to phosphorylate Smad2 and Smad3, which then enter the

nucleus to interact with transcription factors. On the one hand, TGF-

b can regulate cell growth and inhibit tumor-specific cellular

immunity, on the other hand, TGF-bcan inhibit the effects of

perforin, granzyme A, granzyme B, Fas ligand and IFN-g, and
inhibit the cytotoxicity of CTLs (104). In Hodgkin’s lymphoma,

depletion of endogenous TGF-negative EBV-positive Hodgkin’s

CAR-T cells using the CRISPR/Cas9 technique reduced induced

Treg transformation and prevented CAR-T cell depletion (99). The

specific kinase inhibitor SD-208 can also be administered to block

TGF-b-receptor signaling, synergizing the antitumor effects in the

TME with CAR-T cells in the TME (100) (Table 1).

In summary, there are many factors in the TME that inhibit the

function of CAR-T cells, such as immunosuppressive molecules,

inhibitory cytokines, and Treg cells. Ways to optimize the TME for

via these factors and improve the persistence of CAR-T cells in vivo.
5 Concluding remarks

This review focuses on ways to increase the persistence of CAR-T

cells in vivo by modifying the structure of CAR-T cells, increasing the

proportion of memory CAR-T cells, and improving the TME.

Although memory T cells are required in CAR-T cell therapy to

increase their persistence in vivo, terminally differentiated effector T

cells are still required to kill tumor cells. Therefore, how to increase

the proportion of stem cells while ensuring the proportion of effector

T cells needed to kill tumor is a problem worth thinking about.

In the TME, the expression of inhibitory immune checkpoint

proteins on the surface of CAR-T cells was increased, thereby affecting

the function of CAR-T cells. The current research focuses on the

suppression of immune checkpoint proteins, including the use of

immune checkpoint inhibitors, the construction of suppressant-

producing CAR-T cells and the construction of CAR-T cells that

knock out the genes related to the immune checkpoint proteins. The
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first two methods are to directly inhibit immune checkpoint proteins,

while the latter method is to directly block the expression of immune

checkpoint molecules at the gene level. The knockout of related genes

using gene editing technology (CRISPR-Cas9, TALEN) can

fundamentally reduce the expression of immunosuppressive molecules,

which will be a popular method in the future immunotherapy.

Gene editing technology can not only knock out the genes

associated with immune checkpoints, but also the genes associated

with inhibitory cytokine secretion. It can also insert genes regulated to

memory T cells. Therefore, the structure of CARs can be modified by

this technology in many aspects to enhance the persistence of CAR-T

structure. However, the stability and security of these domains should

also be considered.

In addition, the persistence of CAR-T cells in vivo is not always

better. For example, CD19 CAR-T cells can target both malignant

cells and non-normal B cells. If the persistence of CAR-T cells is

increased, it will have adverse effects on normal B cells in the patient.

While attention should be paid to the persistence of CAR-T cells in

vivo, treatment side effects (such as CRS and neurotoxicity) should

also be paid. In the future, there is an urgent need to observe the side

effects and safety of novel CAR-T cell therapies in clinical trials to

determine whether they can be safely applied to clinical treatment.
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Intratumoral il-12 delivery empowers car-T cell immunotherapy in a pre-clinical
model of glioblastoma. Nat Commun (2021) 12(1):444. doi: 10.1038/s41467-020-20599-x

51. Luo Y, Chen Z, Sun M, Li B, Pan F, Ma A, et al. Il-12 nanochaperone-engineered
car T cell for robust tumor-immunotherapy. Biomaterials (2022) 281:121341.
doi: 10.1016/j.biomaterials.2021.121341

52. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, et al.
Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly
and through activation of the endogenous immune system. Cell Rep (2018) 23(7):2130–
41. doi: 10.1016/j.celrep.2018.04.051

53. Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K, et al.
Reprogramming Cd19-specific T cells with il-21 signaling can improve adoptive
immunotherapy of b-lineage malignancies. Cancer Res (2011) 71(10):3516–27.
doi: 10.1158/0008-5472.Can-10-3843

54. Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: A key
cytokine in inflammatory diseases. Ann Med (2011) 43(7):503–11. doi: 10.3109/
07853890.2011.577093

55. Ma X, Shou P, Smith C, Chen Y, Du H, Sun C, et al. Interleukin-23 engineering
improves car T cell function in solid tumors. Nat Biotechnol (2020) 38(4):448–59.
doi: 10.1038/s41587-019-0398-2
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