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Kuśnierczyk P (2023) Genetic differences
between smokers and never-smokers with
lung cancer.
Front. Immunol. 14:1063716.
doi: 10.3389/fimmu.2023.1063716

COPYRIGHT
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Genetic differences between
smokers and never-smokers
with lung cancer

Piotr Kuśnierczyk*

Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and
Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
Smoking is a major risk factor for lung cancer, therefore lung cancer

epidemiological trends reflect the past trends of cigarette smoking to a great

extent. The geographic patterns in mortality closely follow those in incidence.

Although lung cancer is strongly associated with cigarette smoking, only about 15%

of smokers get lung cancer, and also some never-smokers develop this

malignancy. Although less frequent, lung cancer in never smokers is the seventh

leading cause of cancer deaths in both sexes worldwide. Lung cancer in smokers

and never-smokers differs in many aspects: in histological types, environmental

factors representing a risk, and in genes associated with this disease. In this review,

we will focus on the genetic differences between lung cancer in smokers versus

never-smokers: gene expression, germ-line polymorphisms, gene mutations, as

well as ethnic and gender differences. Finally, treatment options for smokers and

never-smokers will be briefly reviewed.
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Saru mo ki kara ochiru [(Even monkeys fall from trees; a Japanese proverb (1)]
1 Introduction

Lung cancer is the leading cause of cancer mortality globally. In 2019, there were almost

24 million cancer cases worldwide, and 10 million deaths, of which 15-20% were caused by

lung cancer (2, 3). In 2020, lung cancer occurred in 2.2 million people and resulted in 1.8

million deaths (4) which shows that most patients eventually die of the disease, the ratio of

mortality to incidence being 0.87 (5).

Lung cancer, according to histological type, is divided into two broad categories: non-

small cell lung carcinoma (NSCLC), the majority of cases, and small cell lung carcinoma

(SCLC). NSCLC is, in turn, classified as adenocarcinoma, squamous cell carcinoma, and large

cell carcinoma, which differ in therapy requirements and outcome (6). These histological

types differ in smoking and smoking cessation effects on lung cancer risk: in the Nurses’

Health Study on 1,062 women with lung cancer, increasing smoking duration was associated

with a higher increase in the risk of small cell and squamous cell carcinoma than other

histological types of lung cancer, while smoking cessation decreased most strongly the risk of

small cell carcinoma (7). Lung adenocarcinoma has been further divided into the terminal
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transpiratory unit (TRU, or bronchioid), the proximal-inflammatory

(PI, squamoid), and the proximal-proliferative (PP, magnoid)

subtypes based on gene transcription. These subtypes differ in

prognosis and response to therapy (8, 9). Detection and

classification of lung cancers is now becoming facilitated by

computer techniques including Artificial Intelligence (10–12).

Cigarette smoking as a risk factor of lung cancer was first

described more than 70 years ago (13–15). In those years it was

predominantly a man’s disease, as much fewer women than men

smoked at that time (15). In many countries, the peak of the smoking-

related lung cancer epidemic was reached by generations born in the

1930–1940s. Recently, with increasing numbers of female smokers, we

observe increasing numbers of deaths of women from lung cancer per

100 000 people in many countries, particularly in Europe, including

Poland. Simultaneously, this growth is associated with a decrease in

lung cancer death among men in the same countries (16). In Poland,

ever-smokers accounted for 51.8% (25.8% former smokers and 26%

present smokers) of the adult population in 2019. These values were

different for men (32% and 31%, respectively) and women (20.3 and

21.3%) (17, 18). Both the number of cigarettes per day (expressed in

packyears) and duration of smoking influence lung cancer risk, even

after smoking cessation. Almost all cases of SCLC, squamous cell

carcinoma and large cell carcinoma are due to long-term tobacco

smoking. Lung adenocarcinoma, although also more frequent in

smokers due to higher numbers of smokers among lung cancer

patients, occurs also in never-smokers and is the prevalent

histological type in this group. As the smoking rate in developed

countries decreases, not only the percentage of never-smokers but

also the absolute numbers of lung cancer cases in never-smokers is

rising, the reason for which is not clear (19) but may be caused by

increasing air pollution. Never-smokers with lung cancer have a

longer 5-year survival rate than smokers, and those with a smoking

history of > 20 pack-years have lower survival rate than those with

lower pack-years value (20). Risk factors contributing to lung

cancerogenesis in never-smokers may exert an additional,

synergistic effect with tobacco smoke in smokers, increasing the

probability of cancer in these individuals (21).

Never-smokers are devoid of the strongest cancerogenic agent,

tobacco smoking, except for second-hand smoke. However, even

these latter patients were not similar to smokers in mutation

burden, although some mutations in passive smokers may appear

below the detection level (22). As these authors write, “Second-hand

tobacco smoke has been causally linked to lung cancer, but it is a weak

carcinogen compared to active smoking” (22). Studies on the effects of

second-hand smoke are usually less precise, as it is difficult in this case

to measure quantitatively the exposure to smoke. Exposure in public

places is evaluated simply by asking if respondents saw people

smoking. Limiting the analysis to exposure at home gives a

possibility of more quantitative establishment of a spouse’s or other

cohabitant’s smoking (23).

Environmental factors, in addition to second-hand smoke and

stronger from it, contributing to lung cancerogenesis in never-

smokers are multiple: exposure to occupational carcinogens,

outdoor pollution, X-ray radiation and radon (19). In Asia, most

women with lung cancer are never-smokers; however, they are

frequently exposed to a household coal combustion. Particularly

high frequency of lung cancer, one of the highest in the world, is
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observed in the Xuanwei/Fuyuan areas of the Yunnan Province,

China; it frequently shows familial aggregation (24–27). Childhood

exposure to high household coal smoke levels, even after later move to

lower exposure place, had much higher contribution to lung cancer

risk than the other way round, and tobacco smoking had small

additional effect in coal smoke heavily exposed individuals (28).

The bituminous coal mined in the Xuanwei area is releasing large

amounts of toxic smoke. In the traditional agrarian society in this

region women are exceptionally highly exposed because of cooking

with unvented fire pits (29). Gene expression, mutations and

associations of gene polymorphisms in these, mostly tobacco never-

smoking women with lung cancer differ from those in control, cancer-

free women, and from smokers with lung cancer, mostly men (see

next sections).

Chronic inflammation increases lung cancer risk by raising the

chance of mutations, by blocking apoptosis, and by increasing

angiogenesis (30). Normally, inflammation induced by irritant

agents or infection, after acute and subacute phases, ends with

resolution. However, sometimes this resolution phase is not

reached, resulting in persistent lung inflammation, which may lead

to cancerogenesis (30–32).

Many proteins are engaged in multiple cell activation pathways

responsible for cell proliferation and malignant transformation (33,

34). There are so many differences between lung cancer in smokers

and never-smokers - in gene expression, genetic polymorphisms and

mutations in tumor cells – that it was proposed that lung cancer in

these two groups of patients are distinct diseases from genomic and

molecular point of view (35–37).
2 Gene expression

Strong differences between smokers and never-smokers in gene

expression patterns in lung cancer were observed. Thus, a

significantly higher expression in adenocarcinoma of EGFR, Ki-67

and HTERT in smokers, and p-AKT and p27 in never-smokers was

described (38), but numbers of patients in that study were

relatively low.

Using RNA microarrays, Powell et al. (39) found that the

noncancerous lungs of smokers already had many alterations in

gene expression, not seen in nonmalignant lungs of never-smoking

patients. Four times as many genes changed their expression in the

transition between nonmalignant lung tissue and tumor in never-

smokers as in smokers. This suggests that tumors in smokers arise in

already genetically altered tissue, while in never-smokers

cancerogenesis may start in normal tissue and requires more

changes in gene expression. Thus, smoking “prepares” lung tissue

for tumor formation, which may explain the much higher frequency

of smokers over never-smokers among lung cancer patients.

Examining long noncoding RNAs (lncRNAs) interacting with

mRNAs and micro-RNAs, Li et al. (40) identified differentially

expressed RNAs of these three categories, constructed a network of

competing endogenous RNAs and established a seven-lncRNA

prognostic signature which, together with the traditional TNM

system, gave superior performance in predicting the patients’

overall survival compared to the clinical model with the TNM

staging system only. In patients with stage I/II NSCLC after
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surgery, Ma et al. (41), using a bioinformatic algorithm, identified 15

survival-related gene transcripts and classified the patients as high

risk or low risk in relation to this expression. Again, the combined

model of the fifteen-mRNA signature and tumor stage had a higher

precision in survival prediction than the tumor stage alone.

Unfortunately, smoking status was not included in the analyses by

Li et al. (40) and Ma et al. (41) mentioned above. It may be fruitful if

their approaches will be applied to the analysis of cohorts containing

information about smoking.

Recent multi-omic study on familial lung cancer in Xuanwei area

in Yunnan, China, mentioned in Introduction as a region with very

high lung cancer prevalence among never-smoking women, revealed

that smoking and indoor air pollution from the coal smoke

dramatically decreased specific biodiversity of lung microbiome. In

normal situation, it should be in a healthy balance, but inhaled

carcinogens or hazardous microbes may cause cell mutations and

chronic inflammation, leading to cancerogenesis. Microbiome gene

expression diversity seemed to be higher than that of their human

hosts because individual subjects could have different microbiomes,

but all patients shared the same set of human genes, albeit frequently

different alleles (26).

Recent meta-analysis using systems biology tools for a meta-

transcriptome analysis of publicly available data found, among 22

differentially expressed genes, the AKR1B10 gene from the aldo-keto

reductase superfamily (AKR) which had higher expression in lung

tumors in smokers than in never-smokers, and also a higher

expression in tumor tissue than in normal lung tissue in never-

smokers. The AKR1B10 (Aldo-Keto Reductase Family 1, Member

B10) reduces aromatic and aliphatic aldehyde substrates and was

shown to promote cancer cell survival. It was postulated as the initial

critical step in the cascade of events leading to lung cancer (42).

Epidermal growth factor receptor, EGFR, regulates multiple cellular

processes including proliferation, differentiation, and survival.

Overexpression of EGFR may lead to oncogenic transformation. In

NSCLC, EGFR is overexpressed in 50% to 81% of tumors (43).

Gene expression is regulated by promoter methylation of CpG

islands (44); differences between smokers and never-smokers in

methylation of some genes associated with smoking and lung

cancer risk were recently described. Thus, Fasanelli et al. (45) found

that smoking decreases methylation of several genes, particularly

AHRR and F2RL3, and that their hypomethylation patterns

paralleled their associations with gene expression and lung cancer

risk; this was dependent on smoking status: the longer smoking

cessation was, the higher the methylation of these genes and the

lower the risk of cancer, approaching that of never-smokers.

Subsequently, these authors found four additional CpG sites in

other loci, which behaved in a similar way (46).

Multiple other reports described differences between smokers and

never-smokers in promoter methylation of many genes affecting lung

cancerogenesis, with sometimes conflicting results (35, 47–60).

Nevertheless, cytosine hypermethylation in promoters of several

genes, affecting their expression, was generally observed more

frequently in never-smokers than in smokers (35) which, together

with differences in gene mutations and germ-line polymorphisms (see

the following sections), indicates that lung cancer in smokers and in

never-smokers are two different diseases.
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3 Gene mutations

Lung cancer in smokers and never-smokers differs also in somatic

mutations occurring in cancer cells. Chromosome aberrations, e.g.,

loss of heterozygosity by the deletion of a chromosome segment, are

more frequent in smokers than in never-smokers (35).

Mutation numbers are lower in never-smokers, but most of them

are suspected to be causative for malignant transformation, whereas

mutations in smokers, although more numerous, are believed to be

mostly passengers without effect on the transformation induced by

cigarette smoke (51–53). The tumor mutational burden was found to be

more than 7 times lower in never-smokers than in smokers. Loss of

heterozygosity (i.e., deletion of one allele) of human histocompatibility

antigen (HLA) gene, encoding an antigen-presenting molecule,

frequent in smokers, was rare in never-smokers (22), suggesting

higher importance of specific tumor antigen presentation in smokers,

consistent with a higher mutation number which produces more

tumor-specific antigens. Three genetically different subtypes of lung

cancer were found, based on somatic copy number variation: “piano”,

dominant in never-smokers and rare in smokers, characterized by a low

mutational burden, lack of somatic copy number variation, high intra-

tumor heterogeneity, long telomeres, frequent KRAS mutations, and

slow growth; “mezzo-forte”, enriched with chromosome arm-level

amplifications and EGFR mutations; and “forte”, with whole genome

doubling.HLA loss of heterogeneity was observed in “mezzo-forte” and

“forte” types (22).

The mutation status in two genes differentiate NSCLC in smokers

versus never-smokers, namely: EGFR and KRAS (see below).

Epidermal growth factor receptor (EGFR) is a cell signaling

molecule engaged in many cellular functions: cell proliferation,

differentiation, motility, and survival. The binding of epidermal

growth factor (EGF) by this receptor induces receptor dimerization,

autophosphorylation and activation which initiates several molecular

pathways leading to cell activation. Normally, EGFR activation ends

with the exhaustion of a ligand (EGF, but also transforming growth

factor alpha, TGF-a and other growth factors). However, mutations

of the EGFR gene leading to independence from the ligand binding

result in constant stimulation of uncontrolled cell proliferation and,

as a result, tumor growth (54).

EGFR belongs to a family of cell membrane receptors with

tyrosine kinase activity. After ligand (i.e., EGF or TGF-a in this

case) binding and autophosphorylation, it transmits a signal, through

a chain of intermediary molecules, among them guanine nucleotide

exchange factors, to the KRAS molecule (or other RAS molecules:

HRAS, NRAS), where a bound GDP is exchanged to GTP. This

activates KRAS which then interacts with a multitude of effector

families, initiating several pathways leading to expression of genes

engaged in cell proliferation, prevention of apoptosis, actin skeleton

function, transportation through Golgi, and calcium mobilization

(34). Mutation in molecules (EGFR, KRAS) located at the beginning

of cell activation may “fix” cellular signaling, leading to uncontrolled

cell proliferation even in the absence of a ligand, and the block of

apoptosis, which may result in malignant transformation.

EGFR mutations were associated with lung cancer in never

smokers, and increasing smoke exposure was negatively correlated

with mutation number (55). There are common (e.g., Ex19del and
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Leu858Arg) and uncommon primary mutations of the EGFR gene

(56, 57). However, a recent finding (58) showed that only common

EGFR mutations were more frequent in never-smokers, while

uncommon single and complex mutations were more characteristic

for smokers.

Other transmembrane cell-surface growth factor receptors with

tyrosine kinase activity, four fibroblast growth factor receptors,

FGFR1-4, activated by fibroblast growth factor (FGF) binding, also

control fundamental cellular processes. Aberrations in the FGF/FGFR

axis signaling may lead to many disorders, including lung cancer. In

about 13% cases of lung cancer, genetic alterations (gene

amplifications, mutations and rearrangements) of one of four genes

from the FGFR family were detected, and, in patients with NSCLC,

are associated with poor survival (60).

A junction of several pathways initiated by EGFR and other

tyrosine kinase receptors, activated by ligand binding or mutation, is

occupied by KRAS [34]. It is a GTPase, converting guanosine

triphosphate (GTP) into guanosine diphosphate (GDP). When it is

bound to GDP, it is inactive and does not relay signals to the cell’s

nucleus. Gain-of-function KRAS mutations keep the protein

permanently in its active state, leading to uncontrolled cell

proliferation and cancerogenesis (34, 59, 61, 62).

KRAS mutations were found in NSCLCs (predominantly

adenocarcinomas), more frequently in smokers but not in small cell

lung carcinomas (32, 59, 62). In more detail, the most common KRAS

mutations, Gly12Cys and Gly12Val, are characteristic for smokers,

while other mutations appear in never-smokers, suggesting different

mechanisms of carcinogenesis (61). EGFR and KRAS mutations are

mutually exclusive, i.e., generally, they were not observed in the same

tumor (32, 34, 61, 63). This may be explained in two ways: First, EGFR

and KRAS mutations happen preferentially in never-smokers and

smokers, respectively, and therefore in different individuals. Second, it

seems that neoplastic cells do not need such a double mutation for

uncontrolled growth; one is enough, and then there is no selection for

the second one. Nevertheless, studies found a concomitant KRAS and

EGFR mutation in 1.1% of NSCLC patients. However, the smoking

status of these double-mutated cancers was not reported (33, 34, 64).

KRAS mutations are usually not associated with mutations of other

drivers of lung cancer development, ALK and ROS1; however, co-

mutations of KRAS and other genes such as TP53, STK11, KEAP1 and

NFE2L2 are more frequent (61).

KRAS mutations in NSCLC are more frequent (about 30% of cases)

than EGFR mutations (15%), which is in agreement with smoking

frequency in lung cancer patients. Above 80% of KRAS-mutated

tumors display a single nucleotide variation in codon 12. Glycine to

cysteine (Gly12Cys) transversion in this codon is predominant (in about

12% of patients, and making up about 40% of all KRAS mutations,

particularly in women); other mutations (Gly12Val, Gly12Asp) are less

frequent in smokers, while the rare KRASmutants in never-smokers and

light smokers are usually Gly12Asp (61, 62).

Tumor suppressor TP53 mutations lead to the generation of

mutant forms with altered amino acid sequences that lack DNA

binding activity; they occur less frequently in tumors of never-

smokers (65). Its role is described in the next section.

NSCLC genomes exhibit hundreds of nonsilent mutations

together with copy number aberrations and genome doublings. De

Bruin et al. (66) observed statistically significant shifts in the mutation
Frontiers in Immunology 04
spectra during cancer evolution. They found branched evolution, with

driver mutations arising before and after subclonal diversification and

pronounced intratumor heterogeneity in copy number alterations,

translocations, and mutations associated with activity of APOBEC

cytidine deaminases which cause predominately C!T mutations.

These enzymes normally function as restriction factors of DNA-based

pathogens. However, they are, unfortunately, also a significant

endogenous source of genomic mutation in cancer (67, 68). They

cause kataegis, which is a hypermutation confined to small genomic

regions, and contribute to the large mutational burden in NSCLC. In

smokers, a relative decrease in smoking-related mutations over time

was observed, accompanied by an increase in APOBEC-associated

mutations (66). Air pollution by fine dust such as PM10 may cause

kataegis as shown in vitro on lung cancer cell lines (69). This may

contribute to lung cancer both in never-smokers and, as an additional,

synergizing factor, in smokers.

Another kind of somatic mutations in lung cancer are gene fusions.

Anaplastic lymphoma kinase (ALK; see Online Mendelian Inheritance

in Man, *105590) is a receptor tyrosine kinase playing a role in

regulation of cell signaling and involved in the development of many

cancer types, especially NSCLC. The ALK gene can be oncogenic by

fusion with one of several other genes, by gene duplication, or by a

mutation changing the genetic code. In NSCLC it may form the EML4-

ALK fusion gene. This rearrangement is mutually exclusive with EGFR

and KRASmutations. Generally, it is detected in 3-5% of NSCLC cases

(https://en.wikipedia.org/wiki/Anaplastic_lymphoma_kinase).

However, in the high lung cancer prevalence Xuanwei area in China,

mentioned erlier, it was found in 12.4% of NSCLC patients (7.9% men,

21.8% women). The highest EML4-ALK rate (35.1%, 33/94) occurred in

female patients with both familial lung cancer (FLC) history and high

tobacco and coal smoke exposure (25). CD74-ROS1 fusions were less

frequent than EML4-ALK (24, 25). The consequences of each mutation

or other genetic alteration are frequently dependent on molecular

changes already present in the cell. Therefore, they determine the

phenotype, prognosis and response to therapy together rather than

individually. A study of this broad network of functional dependence

between genomic alterations requires sufficiently large and

homogeneous datasets. This has been provided in the last decade by

The Cancer Genome Atlas (TCGA) (70). Comparisons between cancer

and non-cancer cell clones may detect the differences between benign

clonal expansion and cancerous transformation (71, 72). Using only

genomic features (driver genes, molecular and intratumor

heterogeneity features), Chen et al. (52) divided patients evenly into

three survival groups based on the predicted hazard from the

multivariate Cox model. These survival models can clearly stratify

patient survival outcome even within early or late stage patients,

indicating the prediction power of genomic features independent of

clinical features.

Thus, the differences between smokers and never-smokers in

tumor mutation burden suggest again two distinct diseases, and the

third one possibly in Asian women induced by a coal smoke.
4 Germ-line polymorphism

In addition to the somatic mutation of cancer cells, germ-line

polymorphisms of the host also contribute to cancer risk.
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Transcription factor p53 encoded by the TP53 gene regulates

expression of genes engaged in many cellular processes such as cell

cycle, apoptosis, senescence and DNA repair. Its activity is

ubiquitously lost in human cancer cells either by mutation of the

TP53 gene itself or by loss of cell signaling upstream or downstream of

p53 (73, 74). TP53 single nucleotide polymorphism c.639A>G was

reported to have a statistically significant association with NSCLC

(75). This variant does not induce changes in splicing (76), therefore

other mechanisms should be studied.

Recently Zhang et al. (77) using large UK cohort data showed that

gene polymorphisms associated with lung cancer risk have a

remarkably weaker effect than smoking, particularly heavy smoking

(>40 pack-years). Nevertheless, genes encoding subunits of nicotinic

acetylcholine receptors were associated with the number of cigarettes

smoked per day, nicotine dependence, and/or lung cancer risk

(78–80).

On the other hand, gene polymorphisms affect lung cancer riskmuch

stronger in never-smokers, where a strong effect of smoking is lacking.

Suboptimal DNA repair capacity, measured by the host-cell reactivation

assay, was found to be a lung cancer risk factor in never-smokers, and to

synergize with the second-hand smoke effect in this group (81).

Among polymorphisms in the cytochrome P450 genes, one,

Ile462Val, in the CYP1A1 gene, is associated with lung cancer risk in

never-smokers, whereas the other, Leu432Val, in the CYP1B1 gene,

carries a risk of cancer independently of smoking status. The

glutathione S-transferase GSTT1 null genotype, if combined with the

CYP1A1 variant, may confer an increased risk of lung cancer in never

smokers. The Arg399Gln polymorphism of the DNA repair gene

XRCC1 was suggested to be a risk factor in never-smokers and

protective in heavy smokers. Some other polymorphisms in this and

other DNA repair genes were described, but sometimes with conflicting

results. Chronic inflammatory lung diseases, accompanied by

polymorphisms of interleukin genes IL1 or IL-6, may contribute to

increased risk of lung cancer in never-smokers (35).

Associations of many genetic polymorphisms with lung cancer risk

were detected in Asian traditional agrarian societies where women

spend long time on cooking using a coal in unventilated hearths. These

polymorphisms involve immunoregulatory genes IL1B, IL8RA, ICAM1

and IL12A (82), four cell cycle pathway genes PLA2G6, CCNA2, GSK3b

and EGF (83) and major histocompatibility complex HLA class II

(involved in antigen presentation to CD4+ T cells which stimulate

antibody production by B cells) and TP63 which is involved in the p53

pathway (84). A meta-analysis of publications from China, Taiwan,

Japan and South Korea confirmed described earlier associations of

TP63, TERT, FOXP4, HLA class II and VTI1A with lung

adenocarcinoma in never-smoking Asian women, and detected two

new associations: with BPTF for overall lung adenocarcinoma risk, and

for BTNL2 in cases with EGFR mutation. Also HLA-DPB1 and ROS1-

DCBLD1 were associated with lung adenocarcinoma in EGFR

mutation-positive cases stronger than in negative ones (85). It would

be interesting to compare genetic associations of lung cancer in never-

smoking Asian women exposed to coal smoke in rural areas with those

living in urban areas without such exposure and therefore free of a

strong environmental factor, be it tobacco or coal smoke. In this latter

group the genetic factors should have stronger effect; however, these

women may be too few to reach statistical significance.
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Cancer cells may be eliminated by two types of killer cells:

cytotoxic T lymphocytes recognizing, via T cell receptors, tumor

peptides presented by class I HLA molecules (HLA-I), and natural

killer (NK) cells detecting, via polymorphic killer immunoglobulin-

like receptors (KIRs) and some other receptors, a lack of or decreased

cell surface expression of HLA-I (86–88). NK-HLA-I recognition can

be also disturbed by HLA-presented peptide, not allowing for

successful KIR-HLA-I interaction (89, 90). Some KIRs recognize

epitopes of some HLA-I molecules: thus, KIR2DL1 interacts with

the C2 epitope on some HLA-C molecules, KIR2DL2 and KIR2DL3

with the C1 epitope on other HLA-C molecules, and the former

interaction is stronger than the latter (91). In addition, KIR3DL1

recognizes the Bw4 epitope on some HLA-B and HLA-A molecules

(92). Inhibitory KIR (such as KIR2DL1, KILR2DL2, KIR2DL3 and

KIR3DL1) interaction with its ligand may protect cancer cells from

NK cell-mediated killing. Indeed, Al Omar et al. (93) described in

NSCLC an increased frequency of the KIR2DL1-C2 and KIR3DL1-

Bw4(Thre80) combinations but decreased frequency of the KIR2DL3-

C1/C1 combination, suggesting the protection of cancer cells by

strong KIR-HLA interactions. In our study, we observed a

decreased frequency of the C1/C2 heterozygotic genotype and

increased frequencies of both C1/C1 and C2/C2 genotypes in

NSCLC, suggestive of the presentation of a wider repertoire of

tumor antigens to T cells by a larger panel of HLA-C molecules, or

wider KIR repertoire of NK cells maturing in the C1/C2 context. In

addition, patients possessing KIR2DL2 and/or KIR2DS2 and C1/C1

genotype (weaker KIR-HLA-I interactions) responded better to

treatment and survived longer than patients with other genotypes

(94). We also observed associations with NSCLC risk of some

polymorphisms of non-classical HLA-I gene, HLA-G, and of

LILRB1 encoding an inhibitory cell surface receptor expressed by

lymphoid and myeloid cells, which binds a broad range of HLA-I

molecules, but preferentially interacts with HLA-G (95).

The repertoire of peptides presented by a given HLA-I molecule,

or immunopeptidome, depends, first of all, on the exceptional

polymorphism of HLA genes (96–99), particularly on HLA-I

evolutionary divergence: the higher differences of physicochemical

properties of amino acids in the peptide-binding groove between two

allotypes of the same HLA class I locus, the wider the spectrum of

antigenic peptides they present to CD8+ T cells, increasing the chance

of an anti-tumor immune response (99).

Immunopeptidome depends also on several other molecules

which contribute to antigen processing (100–103). Among these,

polymorphic endoplasmic reticulum aminopeptidases ERAP1 and

ERAP2 play an important role, shaping the peptide repertoire by

trimming too long peptides to make them fit the HLA-I peptide-

binding groove (epitope production) or overtrimming them to a

length too short for HLA-I binding (epitope elimination) (102). In

this way, ERAPs may influence the immune response to cancer cells.

ERAP gene polymorphisms change activity and expression of

encoded enzymes (102). We have not found any influence of

particular ERAP1 polymorphisms on the NSCLC risk in non-

stratified Polish patient population (104). However, effects of these

polymorphisms were revealed after stratification of patients according

to smoking status: namely, they were different in smokers and never-

smokers, and frequently in opposite directions (105). Thus, in this
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respect, NSCLC in smokers and never-smokers appears again as two

genetically different diseases.
5 Sex differences

Men and women differ by sex chromosomes: women have two X

chromosomes, while men have one X and one Y chromosome. The X

chromosome is larger and contains more than 1,000 genes, whereas

the Y chromosome is small and has almost four times lower number

of genes. To compensate for only one X in males, one of two X

chromosomes in females is inactivated stochastically in each cell.

Therefore, roughly 50% of cells in a woman express the X

chromosome inherited from her mother, and second 50% express

the X chromosome inherited from her father. If one X has a defective

allele, then only this can be expressed in a male inheriting it, while a

normal allele may be expressed in nearly every second cell in a

heterozygotic woman. In contrast to chromosomally determined sex,

gender refers to the socially constructed roles and behaviors that

influence self-identity and self-expression and is affected by social,

environmental, cultural, and behavioral factors. Gender, if not

identical with sex, may also affect susceptibility to some diseases by

influencing human behavior (106–108). In addition, sex

chromosomes influence expression of multiple genes encoded in

autosomal chromosomes as well. It is not surprising then, that

many diseases have different frequencies, outcome, and genetic

associations in males and females – both, for example, in

autoimmune diseases (109) and in cancers (110), including lung

cancer (111–114).

There are multiple differences between men and women in lung

cancer: men display higher smoking status in terms of both numbers

of active and former smokers and numbers of smoked cigarettes;

among NSCLC patients, squamous cell carcinoma is more frequent in

men, and adenocarcinoma in women; higher tumor mutational

burden is observed in men (112); different genes preferentially

undergo mutations and other alterations in men (TP53, APC, EPRS,

LYST, KEAP1, STK11, RBM10, SMARCA4) and in women (KRAS

G12C, ALK, ROS1, HER2, BRAF) (115); men have higher PD-L1

expression while women have more frequently PD-L1-negative

tumors; men have higher CD8+/CD4+ ratios and Th1 CD4+ T

cells; men respond better to immune checkpoint inhibitors, while

women respond better to chemo- and mutation-targeted

therapy (112).

Particularly big differences in gene expression, mutations and

polymorphisms between men (frequently smokers) and women

(mostly never-smokers) occur in rural areas in Asia where women

are continuously exposed to a smoke from coal combustion for

cooking and heating, as described already in previous sections.
6 Ethnic differences

Most genome-wide association studies were performed on

populations of European origin. In studies on non-Europeans and

their comparisons with Europeans, several interesting differences

were observed.
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30% to 40% of Asian patients with lung cancer are never-smokers,

compared with 10% to 20% of Caucasian patients (52, 59, 116). KRAS

mutations are less frequent in never-smoking patients, and as a

consequence, they are also less frequent in lung cancers from East

Asia (59, 65). Genomic ERAP1 single nucleotide polymorphism

associations with NSCLC were detected in Chinese Han but not in

Caucasian Poles, as mentioned already in Section 4 (Germ-line

polymorphisms), before stratification according to smoking status

(104, 105).

When lung adenocarcinoma patients, smokers and never-

smokers, of European (EUR) and East Asian (EAS) ancestry were

compared, more stable genomes with fewer genomic alterations

(mutations and copy number variations) were found in EAS, and

this difference was more pronounced in smokers. Consequently, EAS

patients had better outcome prediction accuracy. EGFR mutations

were much more frequent in EAS than in EUR patients. Intra-tumor

heterogeneity was higher in EAS EGFR-mutant-bearing never-

smokers than in their EUR equivalents, On the other hand, EUR

patients were characterized by more frequent mutations in other

driver genes, among them KRAS, as mentioned above. In spite of

these differences, in both populations tumor mutation burden was

much lower in never-smokers than in smokers (52). Concordant with

results of others (9), mutations in EGFR and KRAS were mutually

exclusive (52).

Further differences between EAS and EUR lung cancer patients,

concerning never-smoking women inhaling coal smoke, were already

described in earlier sections.

As the standard of living and medical care increases in so called

third world countries, we may expect different genetic associations of

lung cancer (both in smokers and never-smokers) in sub-Saharan

Africans or in Latin Americans with strong native American

background, who have not been so extensively examined so far.
7 Treatment options

Early diagnosis by screening high-risk populations using low-dose

computed tomography scan and effective biomarkers may improve

the survival of lung cancer patients (5, 117). In smokers, smoking

cessation may decrease the chance of dying from cancer, and can help

cancer treatment to work better (118–120). This shows that the effect

of smoking may be reversible to some extent, and suggests that

smoking cessation should be included in cancer treatment in order

to improve patient survival (118, 120). In addition, an inverse

association was observed between vegetable and fruit intake and

lung cancer risk in current smokers, but not in former smokers and

never-smokers (121).

The frequency of smoking fortunately continues to fall, at least in

developed countries, while lung cancer frequency increases in never-

smokers. Therefore, although this population has no such obvious

strong risk factor like smokers, it should be screened for lung cancer

more carefully than it was so far (19).

NSCLC is not homogenous; in contrast, there is remarkable

heterogeneity within the tumor in one patient, resulting in regions

differing not only in genomic variation but even in histologic type of

the tumor tissue. Therefore, a biopsy limited to one region of the
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tumor may not give information on its nature in other regions, which

may lead to unsuccessful therapy (66).

About half of never-smoking patients have mutations that may be

treated using targeted therapies currently or in the near future, while

potentially only 10% of ever smokers would respond to such therapy

(35). Identification of targetable mutations by next-generation

sequencing is important for application of directed therapy; the

survival benefit of such treatment was shown to be similar in

never-smokers and in former and even some actual smokers (73),

although never-smokers, due to higher probability of targetable driver

mutations, have better prognosis (32). A panel of small chemical

inhibitors targeting EGFR mutations has already been elaborated and

approved for medical use both in the USA and European Union.

These clinical trials, which are focused on never-smoker NSCLC

patients, are listed and described in detail by de Alencar et al. (32).

Due to anti-EGFR targeted therapy, patients with EGFR

mutations survived longer than those with wild-type EGFR (119).

However, not all EGFR mutations are sensitive to tyrosine kinase

inhibitors (TKIs). A secondary T790M mutation arising as a response

to negative selection by TKI treatment is resistant to TKIs. There are

also other, less frequent mutations, called uncommon mutations,

most of which are much less sensitive to TKIs than common ones.

Generally, exon 20 mutations and insertions are resistant to TKIs,

while mutations and deletions in other exons are more or less

sensitive to this treatment (57).

Alterations of other receptor tyrosine kinases may also bring

uncontrolled cell growth and cancerogenesis. One such example, as

mentioned earlier (Section 4. Gene mutations), are fibroblast growth

factor receptors (FGFRs). In addition to primary FGFR mutations,

components of the FGFR pathway have also been shown to be altered

in response to EGFR- or KRAS-targeted therapy as a compensatory

bypass mechanism to induce drug resistance in cancer cells. Clinical

trials are currently being performed to evaluate FGFR inhibitors for

the treatment of lung cancers harbouring FGFR amplification,

mutations and translocations (60, 122). Besides point mutations,

fusions of the FGFR gene with other genes were detected in

NSCLC; if the FGFR kinase domain is retained, the cell may

become constantly activated, leading to malignancy (60).

Alterations of the FGFR2 gene resulting in deletion or otherwise

perturbing exon 18 was recently described as a single driver of

cancerogenesis. This exon encodes the C-terminal tail of FGFR2

which is proposed to moderate receptor tyrosine kinase signaling

by interactions with several intracellular pathways. In contrast, other

FGFR gene alterations, not encompassing exon 18, require co-drivers

(i.e., mutations in other genes) to induce malignancy. Therefore,

patients with exon 18-truncated FGFR2 variants displayed a much

better response to FGFR2 inhibitors than patients with other FGFR2

alterations (122). Unfortunately, smoking status was not noted in

this study.

Mutations of another molecule, KRAS, result in shorter overall

survival and progression-free survival alongside the presence of liver

and brain metastases. About half of KRAS mutant NSCLC cases

possess concomitant mutations in other genes (TP53, STK11,

KEAP1), which may be reflected in different (better or worse)

response to treatment. Updated reviews concerning the therapy of

KRASmutant lung cancers are given in detail by Ceddia et al. (59) and

Cekani et al. (61). As the Gly12Cys mutation of KRAS is most
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frequent (particularly in smokers), the design of its inhibitors

targets the mutated cysteine residue as a covalent tether to bind to

KRAS in the so called Switch II pocket. Oxidation of this cysteine

residue blocks covalent binding of KRAS Cys12 inhibitors. Therefore,

assessment of KRAS Cys12 oxidation status in tumors prior to

treatment may facilitate finding the optimal therapy for patients

with this mutation (123). New computational methods enable the

determination of receptor molecular structure and flexibility in order

to design direct inhibitors of KRAS Cys12 (124). However, secondary

mutations, arising after treatment of KRAS Cys12 mutant with

specific inhibitors such as sotorasib and adagrasib, may confer

resistance to these inhibitors. Other components of the MAPK

pathway, downstream from KRAS, may also cause such resistance

(62, 125). Results of an in vitro study on mutated cell clones suggest

one possible strategy to overcome such acquired resistance (126).

Oncogenic KRAS induces feedback inhibition of wild-type RAS

signaling. Therapeutic inhibition of oncogenic KRAS disengages

this negative feedback pathway, leading to wild-type RAS activation

and triggering adaptive drug resistance. This may be overcome by

attacking either upstream or downstream molecules in the KRAS

pathway. Many clinical trials are currently underway to achieve this

goal (125), It is, therefore, a matter of time to see whether smokers

and never-smokers respond differently to such treatment.
8 Immunology and immunotherapy

Lungs are one of the places (together with the skin,

gastrointestinal tract and urogenital tract) where our body comes

into contact with external factors, some of which may be harmful.

Therefore, the recognition of foreign substances and microbes and

their elimination is needed. Several types of antigen-presenting cells

(dendritic cells, macrophages, but also epithelial and endothelial cells)

activate antigen-specific CD8+ and CD4+ T cells in the lung; their

subpopulations and functions have recently been described in detail

by Kawasaki et al. (127). The effect of smoking, air pollution and other

factors on the immune system, leading to changes in abundance and

activity of particular immunocyte subpopulations in the lung and to

higher risk of lung cancer is reviewed deeply in great detail in our

Research Topic “Comparison of lung cancer and chronic obstructive

pulmonary disease in smokers and never-smokers” by Taucher et al.

(21) and de Alencar et al. (32).

The immune system evolved to defend the organism against foreign

pathogens as well as against arising neoplastic cells, but it must be

tolerant to healthy self cells and their structures (86, 87). Central tolerance

is established by deleting autoreactive T and B lymphocyte clones during

their differentiation in the thymus and bone marrow, respectively, before

they develop into fully immunocompetent cells (128–130). Peripheral

tolerance, preventing activation of these autoreactive clones which

escaped from the central tolerance mechanism, is provided by

regulatory T cells (Tregs) suppressing antigen-specific responses (131),

as well as by immune checkpoints (132). These latter molecules perform

their regulatory function by interacting with their receptors on activated

T cells and inhibiting their effector functions. The physiological role of

immune checkpoints is to prevent the organism from anti-self response

which could lead to autoimmune disease or exaggerated immune

response to innocent antigens. However, they may also be used by
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cancer cells to directly suppress host immune responses (32, 132–134).

Four years ago, the Nobel Prize in Physiology or Medicine was awarded

to James Allison and Tasuku Honjo, discoverers of Cytotoxic T-

Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Death 1

(PD-1) protein, respectively. Since the time of their discoveries, a new

direction in cancer immunotherapy, namely the use of immune

checkpoint inhibitors, has developed and achieved great success (135–

137). However, lung adenocarcinomas in never-smokers respond poorly

to immune checkpoint inhibitors; due to a lower number of mutations

they do not produce many neoantigens, but secrete many

immunosuppressive factors, and the tumor microenvironment is non-

permissive (32).

A meta-analysis of anti-PD-1 and anti_PD-L1 treatment of

NSCLC patients supplemented or not with chemotherapy showed

greater effect of anti-PD-1 alone in men, whereas women

benefitted better from anti-PD-1 and anti-PD-L1 together with

chemotherapy (112). Even in patients of both sexes selected for

high PD-1 expression on their NSCLC cells, the effect of anti-PD-

1/anti-PD-L1 monotherapy was much stronger in men than in

women who required chemotherapy additionally to achieve

similar benefit (112). Unfortunately, in all studies included in

these analyses, never-smokers were a small minority or were

excluded, so the effect of smoking could not be assessed here.

Therefore, the lack of a large contribution of never-smokers may

explain why the immune checkpoint inhibition monotherapy was

effective, at least in men.

KRAS mutants express higher levels of the PD-L1 molecule and

attract T cell infiltration, which is important for immunotherapy

(34, 61).

The immune response to tumor antigens and the result of

immunotherapy depends, among other factors, on the diversity of

HLA alleles of the patient. Effect of HLA-I evolutionary divergence on

immunotherapy was first described in metastatic melanoma and

NSCLC (99). Increased sequence divergence of HLA-I alleles was

associated with increased diversity of self, tumor and viral

immunopeptidomes. Patients with both high tumor mutational

burden (frequently smokers) and high HLA-I evolutionary

divergence responded better to immune checkpoint inhibitors than

those with lower HLA-I allele divergence (99).

Immune surveillance mechanisms aiming at elimination of cancer

cells may result in immunoselection, i.e., survival of non-

immunogenic clones, not recognized by the immune system. This

may be achieved by cancer cells directly by mutation of genes

encoding epitopes recognized by CD8+ T cells and by mutation of

HLA-I genes or antigen-presenting machinery genes, or indirectly by

epigenetic silencing of HLA-I and antigen-presenting machinery gene

expression. Endoplasmic reticulum aminopeptidases mentioned in

Section 4 (Germline polymorphisms) are important elements of

antigen-presenting machinery, and their polymorphisms affect their

expression and activity (102). ERAPs and other antigen-presenting

machinery molecules may enhance or destroy presentation of tumor

antigens to CD8+ T cells (138). Targeting ERAPs with small

molecular inhibitors can be potentially used in therapy of many

diseases including cancer (138–140).

Burr et al. (141) showed a transcriptional silencing of both HLA-I

and antigen-presenting machinery genes by polycomb repressive
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complex 2 in small cell lung cancer. This histone methyltransferase

plays a physiological role in stem cell differentiation and early

embryonic development, but is also sometimes used by cancer cells

to avoid eradication by the immune response. This process is

potentially reversible and might become a target of cancer

therapy (142).

Combinations of EGFR-tyrosine kinase inhibitors with anti-

vascular endothelial growth factor monoclonal antibodies in

NSCLC patients with different EGFR mutations gave inconsistent

results so far (31). In patients with the EGFR T790M mutation, anti-

vascular endothelial growth factor monoclonal antibody

(bevacizumab) with a covalent third-generation EGFR-tyrosine

kinase inhibitor (osimertinib) failed to show prolongation of

progression-free survival and overall survival compared with

osimertinib alone (142). A comprehensive review of the latest

reports on lung cancer immunotherapy in never-smokers is given

by de Alencar et al. (32).

The tumor microenvironment, consisting of several cell types,

plays a significant role in immune evasion, resistance to therapy and

the promotion of malignancy; this has been recently described in

detail by Khalaf et al. (143).

Lung cancer research in the past has long focused on smokers, as

smoking has been an obvious strong risk factor since 1950 (13–15).

Such studies in never-smokers are delayed, but with growing

percentages and numbers of lung cancer cases in never-smokers the

data started to accumulate. With growing knowledge of genetic and

non-genetic factors contributing to this disease, we may suppose in

future a personalized treatment of each patient, based on his/her

genetic background and environmental exposure.
9 Conclusion

Multiple features differentiate lung cancer in smokers and never-

smokers, suggesting that they are two different diseases, and smokers

suffer from this cancer much more frequently than never-smokers.

Inhalation of coal smoke during cooking and heating in some areas

carries additional risk of lung cancer, even in never-smokers.

Altogether, over 2 million people in the world are diagnosed with

lung cancer every year, most of whom die, unfortunately. However,

the world population recently approached 8 billion. Therefore, new

lung cancer patients make only 0.025% of the total human population.

Our organisms are protected against lung cancer by multiple immune

and non-immune mechanisms. Although “even monkeys fall from

trees”, but only some of them; most monkeys persist on tree branches,

and most humans are free from lung cancer, although their activities

(smoking, air pollution etc.) increase the probability of suffering from,

like monkeys jumping from branch to branch and from tree to tree

increase the probability of falling. Some of us, unfortunately, have a

combination of unfavorable alleles of genes predisposing us to lung

cancer; they may receive targeted treatment which has improved in

recent years together with the progress of science. But they and also

others should not artificially increase their risk of lung cancer by

smoking and non-ecological behavior both individually and as a

society. It depends on our wisdom whether we increase or decrease

cancer risk by changing our way of life and ecosystem.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1063716
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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