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Cold-inducible RNA-binding protein (CIRP) is an intracellular stress-response

protein and a type of damage-associated molecular pattern (DAMP) that

responds to various stress stimulus by altering its expression and mRNA stability.

Upon exposure to ultraviolet (UV) light or low temperature, CIRP get translocated

from the nucleus to the cytoplasm through methylation modification and stored in

stress granules (SG). During exosome biogenesis, which involves formation of

endosomes from the cell membrane through endocytosis, CIRP also gets

packaged within the endosomes along with DNA, and RNA and other proteins.

Subsequently, intraluminal vesicles (ILVs) are formed following the inward budding

of the endosomal membrane, turning the endosomes into multi-vesicle bodies

(MVBs). Finally, the MVBs fuse with the cell membrane to form exosomes. As a

result, CIRP can also be secreted out of cells through the lysosomal pathway as

Extracellular CIRP (eCIRP). Extracellular CIRP (eCIRP) is implicated in various

conditions, including sepsis, ischemia-reperfusion damage, lung injury, and

neuroinflammation, through the release of exosomes. In addition, CIRP interacts

with TLR4, TREM-1, and IL-6R, and therefore are involved in triggering immune

and inflammatory responses. Accordingly, eCIRP has been studied as potential

novel targets for disease therapy. C23 and M3, polypeptides that oppose eCIRP

binding to its receptors, are beneficial in numerous inflammatory illnesses. Some

natural molecules such as Luteolin and Emodin can also antagonize CIRP, which

play roles similar to C23 in inflammatory responses and inhibit macrophage-

mediated inflammation. This review aims to provide a better understanding on

CIRP translocation and secretion from the nucleus to the extracellular space and

the mechanisms and inhibitory roles of eCIRP in diverse inflammatory illnesses.
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GRAPHICAL ABSTRACT
1 Introduction

Cold-inducible RNA-binding protein (CIRP) were first

discovered in mouse testis more than two decades ago (1). It came

to the attention of researchers as a result of its expression during

moderate cold stress. The RG/RGG region of CIRP is critical for

mediating CIRP phase separation in vitro and stress granules (SGs)

association in cells (2). As a RNA-binding protein (RBP), CIRP plays

important roles in transcription, pre-mRNA processing/transport,

mRNA degradation, translation, and non-coding RNA processing.

Studies have shown that the 3`-UTR binding sites of CIRP are

enriched within 100 nucleotides upstream of the polyadenylation

sites, and UU and UUU are most likely the core recognition

sequences of CIRP (3). CIRP consists of an N-terminal RNA-

recognition motif (RRM) and a C-terminal arginine-rich region.

The X-ray quaternary structure of the CIRP RRM has been

resolved recently and four important residues with possible

involvement in protein-nucleic acid binding have been identified

(4). Expression of CIRP during cold stress modulates RNA stability

and translation in hibernating mammals that reduce their body

temperature from 37°C to as low as 0~5°C during bouts of dullness

(5). CIRP is translocated from the nucleus to the cytoplasm, whereby

they stabilize mRNAs. They can regulate mRNA transcripts and

protect them from degradation for future protein synthesis. Studies

have also shown that the expression of CIRP can also be regulated by
Frontiers in Immunology 02
several kinds of stress conditions suggesting that CIRP is generally

expressed as stress-response proteins. Besides, CIRP is widely

expressed in a large variety of tissues and cells.

According to the literature, iCIRP has been implicated in multiple

cellular processes such as cell proliferation (6), cell survival (7, 8),

telomere maintenance (9), circadian modulation (10), DNA repair

(11) and tumor formation and progression (12, 13). Intracellular

CIRP (iCIRP) can migrate from the nucleus to the cytoplasm via

methylation-dependent mechanism in response to stress and regulate

the stability of mRNA through their binding sites on the 3′-UTR of

their target mRNAs (3). The translocation of CIRP is dependent on

GSK3b and CK2. Both GSK3b and CK2 cause phosphorylation of

CIRP and affect its cellular localization and pretreatment of cells with

either CK2 inhibitors or GSK3b inhibitors prior to UV treatment

significantly reduce CIRP localization to the cytosol (14). These

results suggest that both methylation and phosphorylation of CIRP

is required for CIRP translocation to the cytosol upon stress stimulus.

Some studies have demonstrated that both CK2 sites and GS3Kb sites

on CIRP have overlapping functional role in regulating CIRP

translocation to the cytosol, but only GSK3b sites are involved in

the RNA-binding activity of CIRP, in response to UV radiation

(14, 15).

In contrast to its functions in the intracellular space, extracellular

CIRP (eCIRP) has been discovered recently as a damage-associated

molecular pattern (DAMP) capable of triggering inflammation in
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various inflammatory conditions (16), including sepsis (17),

neuroinflammation (18)and ischemia-reperfusion injury (19–24).

For example, administering exogenous CIRP to healthy mice was

shown to induce lung injury through vascular leakage, neutrophil

infiltration, local production of pro-inflammatory cytokines, and

activating the NLRP3 inflammasome in the vascular endothelial

cells of the lung (25). Altogether, a fair number of studies have

investigated the potential role of eCIRP in different models of

inflammatory diseases, such as sepsis (16, 26–29), acute pancreatitis

(30), and Alzheimer’s disease (31). The important pro-inflammatory

role of eCIRP suggests that targeting eCIRP may be of potential

therapeutic importance in controlling inflammatory diseases.

Nevertheless, the translation of such findings into clinical practice

still remains nascent field to be explored.

Here, we summarize how eCIRP, especially exosome derived

CIRP, amplify inflammation in different inflammatory conditions

with the aim of providing new insights for the development of novel

targeted therapies.
2 Conventional secretion mechanisms
of eCIRP

CIRP release mechanisms include necrosis, lysosome-mediated

release, extracellular traps, and exosomes (32).CIRP can be released

either via inflammasome activation or passively following cell death

(33). Necroptosis, apoptosis, pyroptosis, and ferroptosis might

contribute to the passive release of the CIRP (32). Studies have

shown that CIRP is among the main factors that induces

mitochondrial DNA (mtDNA) fragmentation in damaged tissues

(34). However, according to an in-vitro study on macrophages, it

has been shown that cell necrosis does not trigger the passive release

of CIRP (16).

Active release of CIRP is mediated mainly by lysosomes and

exosomes. When cells are stimulated by oxidative stress, hypothermia,

ultraviolet (UV) radiation, etc. CIRP are transferred to the

extracellular space through the lysosomal pathway (12, 33). CIRP

migrates from the nucleus to cytoplasmic SGs via a methylation-

dependent mechanism and act as translational repressors. Stressors

such as oxidative stress, endoplasmic reticulum (ER) stress, osmotic

shock, and heat shock may lead to the methylation of iCIRP (35).

Oxidative stress leads to CIRP migration to SGs without altering their

expression (36). SGs are dynamic cytoplasmic foci in which stalled

translation initiation complexes accumulate in cells that are subjected

to environmental stress. The relocation of CIRP to the SG also occurs

in osmotic stress, heat shock and in response to endoplasmic

reticulum stress (36). CIRP/hnRNP A18 is an RNA-binding factor

consisting of an RNA recognition motif (RRM) at the N-terminus and

a region at the c-terminus containing multiple repeats of the RGG

motif. Methylation is important for the recruitment of CIRP from the

nucleus to the SGs. As mentioned earlier, TIA-1 has been shown to be

the main mediator of SGs formation (37). In the absence of TIA-1 or

TIAR proteins, CIRP is still recruited to SGs. Since CIRP does not

contain any signaling peptides, their secretion cannot be mediated by

the classical Endoplasmic Reticulum-Golgi-dependent pathway. In

one study, biochemical fractionation revealed that CIRP is enriched in
Frontiers in Immunology 03
the lysosomal compartment of macrophages undergoing hypoxia,

suggesting that CIRP is released through lysosomal secretions (16,

35). As a class of DAMPs, eCIRP conforms to the general mechanism

of the extracellular release of DAMPs (32). The well-studied carriers

of DAMPs during active release are the secreted lysosomes and

exosomes, both of which are normally secreted by exocytosis (16, 38).

Lysosomal secretion is a typical feature of stressed cells and has

been also demonstrated to be a release pathway for eCIRP (16, 32).

The synaptotagmin (Syt) assay found that lysosomal secretion can be

initiated by stimulating cell surface receptors as well as through

increasing intracellular Ca2+. Syt mobilizes lysosomes to the

microtubule organizing center, where lysosomes are associated with

kinesin motility (39). The motor proteins further transport the

lysosome near the secretion site, where the lysosome travels to the

docking site using actin-based movements. The docking and fusion of

lysosomes with the plasma membrane are mediated by Rabs and

SNARE (Soluble NSF Attachment Protein Receptors) complexes,

respectively (39, 40).
3 Regulation of CIRP expression

The overexpression of CIRP has been consistently witnessed in

different organs and species (from amphibians to humans) upon mild

hypothermia or cold stress (10), which supports the plausible

protective role of CIRP in adaptation of these species to cold stress.

However, CIRP homologs in different species responded differently to

different environmental stresses. Besides this, CIRP is also

overexpressed upon UV radiation, mild hypoxia and low glucose

conditions, but is under expressed in response to heat stress stimulus

and upon treatment with inflammatory cytokines such as TNF-a and

TGF-b (12), underscoring that CIRP is general stress responsive

protein. While, CIRP is overexpressed upon mild hypoxia, the

chronic hypoxia results in completely opposite genetic outcome,

that is low CIRP expression (13). Glycogen synthase kinase 3b
(GSK3b) is an important serine/threonine kinase, which is involved

in various biochemical processes in cells, for instance cell metabolism,

cell cycle, transcription, vesicular transport and others (41).

Activation of GSK3b has shown to increase the transcription of

CIRP (16). CIRP is also upregulated by IGF1 (17). As expected, the

transcription of the CIRP homolog in Salmon can be upregulated by

osmotic stress, but not by cold stress (18) as expected to be respond

differently in a species-specific manner. Similar to this, there exist

different homologs of CIRP in Xenopus cells including xCIRP,

xCIRP-1 and xCIRP-2. All homologs express and respond

differently to different environmental stimulus. For instance, low

temperature (cold stress) induces overexpression of xCIRP and

xCIRP 2, but not xCIRP-1 (9, 19, 20). This implies that the CIRP is

a general stress protein and its expression and response to a particular

stress differs significantly between species.
4 Exosomal CIRP

An essential mode of intercellular communication is the transport

of information components such as proteins, nucleic acids, and lipids
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via exosomes (42, 43), extracellular vesicles measuring between 40

and 100 nm in diameter and found in various bodily fluids (44).

Exosomes support the interior environment’s balance under normal

physiological settings (45). However, these exosomes may have

radically altered contents in a state of excessive inflammation.

Many studies have shown that miRNAs such as miR-155 (46) and

miR-21 (47) transported by exosomes play a crucial role in

inflammation. It has been shown that CIRs can be mainly released

outside the cell in two ways: passively through necrosis and actively

through lysosomes (32). However, Murao et al. (48), discovered that

CIRP might stimulate inflammatory cell aggregation and activation

through the exosome secretion.

Murao and colleagues found that the serum exosomes of LPS-

injected and CLP-operated mice contained significantly higher

amounts of eCIRP than those in control animals. Similarly,

activation of macrophages with LPS resulted in a significant

increase in the release of exosomal CIRP. Based on these findings,

it appears that exosome-carried CIRP are a substantial source of

eCIRP. Accordingly, the presence of eCIRP in exosomes could be

justified by the presence of the lipid bilayer on the surface of

exosomes, which can protect proteins or microRNAs from being

degraded during transport process. CD63 is a well-known marker

used to identify exosomes (49). Studies have revealed that CIRP can

stably bind to CD63. Furthermore, they discovered that exosome

biogenesis and release inhibitors (50) could not only block exosome

release but also simultaneously decrease the expression of eCIRP.

With the exposure of inflammatory cells to exosomes, eCIRP present

on the surface of the exosomes stimulates the release of pro-

inflammatory cytokines and migration of neutrophils by binding to

cell surface receptors (48) (Figure 1). However, there is no direct

evidence of eCIRP release from the interior of exosome/luminal

vesicles to the surface. Through literature review, it was found that

there were transmembrane proteins on the exosome surface, such as

lysosome-associated membrane protein (LAMP) and transferrin

receptor (TfR) (51).Therefore, we hypothesized that proteins

carried in exosomes cross the phospholipid bimolecular wind of

exosomes through the stimulation of specific signaling molecules to

reach the surface, and CIRP is no exception. Taken together, these

findings support the notion that exosomes are mediators of CIRP

release that targeting exosomal CIRP may represent a novel

treatment strategy.
5 Role of eCIRP in inflammatory
diseases

In inflammatory diseases, eCIRP acts as an inflammatory

amplifier by binding to its receptors. TLR4, TREM-1, and IL-6R are

three receptors to which CIRP binding occurs, as mentioned in the

Table 1. TLR4 is a member of an important class of molecules

involved in adaptive immunity and acts as a bridge between

adaptive and innate immunity. CIRP binds to TLR4-MD2, a

complex formed in systemic inflammation induced by hemorrhagic

shock and sepsis (16). Hemorrhagic shock increases eCIRP levels and

activates STING through the TLR4/MyD88/TRIF pathway to

exacerbate inflammation (55). In lung fibroblasts, eCIRP amplifies
Frontiers in Immunology 04
pro-inflammatory cytokines in a TLR4-dependent manner, triggering

pulmonary fibrosis (54). As a receptor for eCIRP, TREM-1 plays a

vital role in ischemia-reperfusion in the liver, intestine, and other

organs (60), and induces inflammation in macrophages and

neutrophils (35), forming NETs (61). In hemorrhagic shock and

sepsis, TREM-1 can also be a key target of eCIRP (16, 56, 62). In the

alveoli, TREM-1 can act as a target to trigger inflammation in alveolar

type II cells (57). One study showed a strong binding affinity between

eCIRP and IL-6R (58). Supporting this finding, it is well known that

CIRP can skew the macrophages towards the M2 phenotype and that

using IL-6R antibodies CIRP can inhibit M2 polarization (58). In

neurological diseases, eCIRP activates the IL-6Ra/STAT3/Cdk5
pathway in neurons, inducing neuroinflammation (59). Combining

the above two studies, we can find that IL-6R plays a double-edged

sword role in inflammation. It can improve the tolerance of

macrophages to endotoxin in sepsis, and can also promote

microglial inflammation in the nervous system.
5.1 Sepsis

Sepsis is a life-threatening inflammatory disorder caused by a

dysregulated host immune response to infection (63). In a recent

survey, the annual global incidence of sepsis has been estimated at 31.5

million cases resulting in 5.3 million deaths worldwide every year (64).

According to a previous study (16), CIRP translocates from the nucleus

to the cytoplasm and are subsequently released into the circulation

during sepsis (33). As a well-described member of the DAMP family,

there is evidence that eCIRP plays a crucial role in regulating sepsis.

eCIRP has long been the subject of great interest in sepsis.

In this context, the regulatory effects of eCIRP on neutrophils has

received extensive attention due to the vital roles of neutrophils in

sepsis. For instance, ICAM-1-positive neutrophils, via increased

production of neutrophil extracellular traps (NETs) and inducible

nitric oxide synthase (iNOS), play a major role in the induction of

exaggerated inflammation during sepsis (65). Furthermore, eCIRP

has been shown to promote the formation of NETs by inducing PAD4

expression in the lungs of a mouse model of sepsis (66). By activating

TREM-1 on the surface of neutrophils, eCIRP induces NET-forming

ICAM-1-positive neutrophils (61). In addition, ICAM-1-mediated

Rho activation further promotes the formation of NETs as a novel

pathway (61). Another study showed that eCIRP could induce

neutrophil reverse transendothelial migration (rTEM) in sepsis by

increasing neutrophil elastase (NE) and decreasing the junctional

adhesion molecule-C (JAM-C) (27). The reversely migrated (RM)

neutrophils showed a prolonged lifespan and were associated with

systemic inflammation in the cremaster muscle ischemia-reperfusion

(I/R) injury in a mouse model (67). These studies consistently indicate

that RM neutrophils may contribute to the exacerbation of a local

inflammation into a systemic inflammatory status. CIRP also

triggered endoplasmic reticulum (ER) stress via TLR4 activation in

preclinical models of sepsis and promoted inflammation, apoptosis,

and histological injury (52). Induction of ER stress due to CIRP

release in sepsis can be blocked by creating knockout of TLR4 or CIRP

in mice, suggesting that CIRP can modulate ER stress through TLR4

signaling pathway (52). Besides this, the CRIP release in sepsis is also
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reported to trigger adaptive immune system in the spleen by

activating T-lymphocytes such as CD4+ and CD8+ T cells in a

TLR4-depentent manner (28). Most importantly, the plasma level

of CIRP of patients with sepsis is also correlated with the survival as

the non-surviving patients have high level of serum CIRP than the

survivors, suggesting that CIRP may act as a potent prognostic

marker of sepsis in human (17). Altogether, it can be ruled out that

CIRP plays acts as a mediator in organ dysfunction during sepsis by

amplifying inflammation in immune cells and damaging vascular EC

in all vital organs.
5.2 Lung injury

Acute lung injury (ALI)/acute respiratory distress syndrome

(ARDS) is a complex clinical syndrome. eCIRP, as a type of

DAMP, triggers inflammation in various inflammatory conditions

including inflammatory lung injury (16, 68, 69). eCIRP can promote

ALI by activating macrophages (16), neutrophils (57), pneumocytes

(57), and pulmonary vascular endothelial cells (25).

A recent study (25) related to CIRP has shown that administering

exogenous CIRP to healthy mice causes lung injury through vascular

leakage, neutrophil infiltration, local production of pro-inflammatory
Frontiers in Immunology 05
cytokines, and activating the NLRP3 inflammasome in lung vascular

endothelial cells. During the past years, a fair amount of studies have

investigated the potential role of eCIRP in different models of

inflammatory lung injury such as ALI caused by various diseases

(52), chronic obstructive pulmonary disease (COPD) (70, 71), and

pulmonary fibrosis (72). Recently, CIRP’s elevated expression was

found in the bronchi in patients suffering from chronic obstructive

pulmonary diseases and corresponding in-vitro study demonstrated

that CIRP induces expression of inflammatory cytokines and mucin

in human airway epithelial cells through activation of activating ERK

and TLR4/NF-kB signaling pathway (70, 73). The important pro-

inflammatory role of eCIRP suggests that targeting eCIRP may have a

therapeutic potential in controlling inflammatory lung injury.

Lately, a study (74) has revealed the possible regulation pathway

of eCIRP in ALI. It was found that the expression of CIRP increased

in lung tissues of the LPS-induced ALI/ARDS mice and inhibited the

polarization of M2 macrophages and increased the inflammatory

response. eCIRP-neutralizing antibodies attenuated the M1

phenotype and enhanced the M2 phenotype in macrophages.

eCIRP controls inflammation by regulating the phenotypic changes

in macrophages. Inhibition of eCIRP was able to attenuate local and

systemic inflammation like AP-associated acute lung injury

(APALI) (68).
FIGURE 1

Exosome-derived CIRP: an amplifier of inflammatory cascades.
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5.3 Neuroinflammation

Neuroinflammation is a disorder observed in the central nervous

system (CNS) in response to infection, toxic metabolites, trauma, or

autoimmune stimuli. Recent research (18) has revealed that CIRP has

a considerable effect on neuroinflammation.

Alcohol, as an exogenous stimulant, affects the CNS and causes

memory loss.Some researchers believe that eCIRP might be a key

player in the relationship between alcohol and Alzheimer’s disease

(AD) (31). Besides, both alcohol (31) and cerebral ischemia (19)

resulted in the expression of eCIRP in microglial cells as well as its

release. CIRP is a potential novel mediator of alcohol-induced brain

inflammation, leading to local inflammation and neuronal cell

damage via the TLR4 pathway (75). A recent study (59) reported

that eCIRP activated neurotoxic cyclin-dependent kinase-5 (Cdk5)/

p25 through the induction of the IL-6Ra/STAT3 pathway in neurons,

and C23 subsided the eCIRP-induced increase in neuronal STAT3

phosphorylation and p25 level. Additionally, CIRP may activate TLR4

signaling and further induce NF-kB activation (75). In a mouse model

of stroke induced by middle cerebral artery occlusion (MCAO)in

CIRP deficient mice (19), TNF-a induction and microglial activation

were significantly reduced, and the volume of cerebral infarction was

attenuated after MCAO.
5.4 Ischemia-reperfusion Injury

Ischemia-reperfusion (I/R) injury is defined as the impaired tissue

function after ischemia (76), which can occur in multiple organs

causing organ damage and failure. CIRP has been shown to be an

important factor involved in the regulation of I/R injury, and that it

plays vital roles in the pathways of the liver (20), kidney (21, 22), and

intestinal I/R injury (23, 24).

Following ischemic tissue damage and subsequent reperfusion,

endogenous DAMPs, which are normally intracellular, are released

extracellularly and trigger sterile inflammation (77). M3, an eCIRP-

derived peptide (62), can inhibit TREM-1 by protecting mice against
Frontiers in Immunology 06
intestinal I/R injury and showed good therapeutic effects after

reperfusion. The severity of organ injury was mitigated, serum

levels of systemic inflammation markers such as IL-6, and TNF-a
were reduced and the inflammation in the intestinal tissue itself was

also improved.

Interestingly, recent evidence has established a causal link

between CIRP and ALI during intestinal I/R injuries. In an adult

male CIRP knock-out (CIRP -/-) mouse model, pro-inflammatory

cytokine, myeloperoxidase, and apoptotic cells were significantly

lower than in C57BL/6J wild-type mice, which led to decreased

lung injury (24). In another parallel experiment (23), the

intraperitoneal injection of C23, 60 minutes after the ischemic

insult, could mitigate the systemic inflammation, extent of injury

and the ALI of intestinal I/R mice.

According to the results from an adult male C57BL/6J mouse

model of hepatic I/R, circulating levels of CIRP were increased and

the treatment of an anti-CIRP antibody reduced the inflammatory

storm and cellular damage in the liver and significantly inhibited

neutrophil infiltration into the liver (20).

There is also some evidence that CIRP may affect renal injury

after I/R. The deficiency of CIRP reduces renal injury after renal I/R

by reducing inflammation and oxidative stress (21). A study (22)

showed that the expressions of kidney injury molecule-1 and

neutrophil gelatinase-associated lipocalin were significantly

decreased in C23-treated mice.
5.5 Idiopathic pulmonary fibrosis

Pulmonary fibrosis is a devastating sequela of many chronic

inflammatory diseases characterized by a progressive decline in

lung volume capacity and high mortality. eCIRP induces pro-

inflammatory cytokines and differentially-expressed pathways in

lung fibroblasts in a TLR4-dependent manner, and the accessory

pathways MD2 and Myd88 are involved in the induction of the

inflammatory phenotype (54). Furthermore, CIRP is involved in the

regulation of pulmonary fibrosis, as eCIRP can directly activate and
TABLE 1 eCIRP-related receptors and their biological functions.

Receptor Studied model Organ Biological function References

TLR4 Cecal ligation and puncture (CLP) Lung Induces endoplasmic reticulum stress (52)

CLP Heart and
liver

Promotes macrophage inflammation (16)

Pseudo fracture trauma – Triggers macrophage cell death (34)

Ischemia-reperfusion injury Liver Mediates mitochondrial fission, inflammatory responses, and
apoptosis.

(53)

Bleomycin-induced pulmonary fibrosis Lung Promotes proinflammatory pulmonary fibroblast phenotype (54)

Hemorrhagic shock Lung Induces inflammation and tissue damage (55)

TREM-1 CLP Lung Induces systemic inflammation and lung injury (56)

– Lung Promotes alveolar type II cells inflammation (57)

IL-6R CLP – Promotes macrophage endotoxin tolerance (58)

Amyloid b (Ab)-mediated microglial
inflammation

Neurons Upregulation of neuronal inflammation (59)
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induce inflammatory phenotype fibroblasts (IPF) in the lung. In a

recent research with bleomycin-induced pulmonary fibrosis in a

mouse model, C23 alleviated pulmonary fibrosis and molecular

markers of fibrosis were ameliorated in TLR4-/-mice (54),

suggesting that eCIRP acts as a key a key promoter of PF, and

blockage eCIRP with C23 can significantly attenuate this

inflammatory PF.
6 Inhibitors of CIRP

6.1 Polypeptides

Focusing on the previously shown mechanisms of action of

eCIRP, there are also some studies on novel therapeutic drugs. C23,

an oligopeptide derived from the human CIRP protein, binds to the

CIRP receptor with high affinity (16). Studies have shown that

treatment with C23 decreased systemic inflammation in adult or

neonatal sepsis mouse models (78, 79). Although C23 is the best

polypeptide known thus block CIRP from its interaction, there exist

many more inhibitors as well. C23 stands out among several short

sequences derived from CIRP with a higher affinity for TLR4-MD2

receptor complexes compared to CIRP in terms of binding activity

(16). As of today, C23 has been shown to act as a protective agent (22)

against tissue damage resulting from hemorrhagic shock (78), sepsis

(29), and intestinal ischemia-reperfusion (23) by inhibition of CIRP-

induced inflammatory response. Remarkably, C23 has a far greater

affinity to the TLR4-MD2 receptor complex than LPS and HMGB1,

suggesting that C23 derived from CIRPmay be a potential therapeutic

approach for tissue and organ damage caused by cytokine storm.

M3 is another interesting CIRP-derived polypeptide with slight

differences compared to C23. M3 acts on TREM-1, a receptor for

eCIRP. During hepatic I/R, the binding of eCIRP to TREM-1

increases the number of inflammatory cells in the liver leading to

increased tissue damage therein. M3 treatment, on the other hand,

had an increased effect on the survival rate of mice after hepatic I/R

(60). When M3 competes with TREM-1, it also blocks the eCIRP

signaling pathway in the heart (80) and kidney (81). M3 exerts

protective effects against sepsis-induced myocardial injury and

acute kidney injury after renal I/R by inhibiting the eCIRP/TREM-1

interaction (81).

Similarly, pre-treating with M3, a human eCIRP-derived ligand-

dependent 7-amino acid (aa) peptide, acts as an antagonist of TREM-

1 (56), and LP17, a TREM-1 decoy peptide (82), significantly

decreased the production of IL-6 and CXCL2 in the cuboidal type

II cells (ATII) (57). MicroRNAs (miRNAs) have already been

identified in the extracellular space and are involved in different

physiological or pathological processes (83). Recent research also

identified a novel interaction between miR-130b-3p and eCIRP via

the TLR4 pathway. miRNA 130b-3p (84) serves as a new endogenous

inhibitor of eCIRP-mediated inflammatory responses.
6.2 Natural products

Due to their anti-inflammatory properties, some natural products

have been shown to be as effective as synthetic drugs in treating
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various diseases and ailments. There has been a lot of evidence that

natural products and their derivatives can help reduce, inflammation,

inflammatory cell infiltration, inflammatory signaling, and release of

DAMPs in-vitro and in-vivo (85). In addition, because of their low

toxicity and high safety profiles, they are usually the subject of a great

deal of attention for clinical and therapeutic interventions.

For example, Emodin (EMO), which is an anthraquinone, has

numerous pharmacological effects, particularly as a potent anti-

inflammatory phytochemical. Pancreatic and lung tissues as well as

the serum were shown to have high levels of CIRP in a rat model of

acute pancreatitis, which was found to be associated with the

formation of the NLRP3 inflammasome in alveolar macrophages

and infiltration of neutrophils (25, 68). Intriguingly, EMO reverses

these effects in rats thereby minimizes damage to the pancreas and

lungs. In addition, EMO had a comparable pharmacological

inhibitory action to C23 in rat alveolar macrophages, inhibiting the

production of inflammatory mediators in the presence of CIRP. On

such a basis, EMO could be a potential CIRP antagonist (68).

Another natural agent, Luteolin (LUT), has been also shown to

inhibit the synthesis of CIRP. Lut has significant anti-inflammatory

and antioxidant properties (86). Research suggests that Lut can

reduce organ damage caused by I/R and endotoxemia by blocking

the HMGB1 (a well-known DAMP) signaling pathway, indicating

that Lut and DAMPs may have a unique functional relationship (87).

Zhang et al. (88) showed that Lut treatment in neonatal mice with

sepsis reduces the expression of CIRP mRNA and protein and

attenuates lung injury. Lut also decreases CIRP formation in

peritoneal macrophages following LPS administration. In contrast

to EMO, the protective effect of Lut on neonatal mouse macrophages

can be attributed to the reduction in the production of HIF-1 (89) and

the NLRP3 (90) inflammasome, as indicated by in vitro experiments.

In the inflammatory response, endogenous CIRP-mediated

signaling pathways cause damage to multiple organs. Antagonizing

endogenous CIRP can help prevent I/R or sepsis-induced lung,

kidney, heart, liver, and intestinal injury. By blocking CIRP-

mediated signaling pathways, C23 and M3 effectively prevent organ

damage. This is done through their effects on different receptors.

Further investigations on whether natural products such as Luteolin

(88) and Emodin (68) could act directly on the CIRP protein and its

downstream receptor or by affecting the transcription of upstream

genes need to be investigated in depth.
7 Exosomes as drug carriers in CIRP
targeting-based therapies

Delivery systems use specialized carriers to facilitate the

aggregation of drugs in their target tissues or cells in order to

increase their efficacy and usage (91). Combining targeted

medications with nanocarriers is one of the most important means

of increasing the effectiveness of targeted therapeutics (92–94).

Exosomes generated from intracellular membranes (95) have many

benefits over conventional nanocarriers, including good

biocompatibility and targeting (96), easy modification of the

membrane surface (97), and the capacity to traverse the blood-

brain barrier and placental barrier (98). As a new means of drug

delivery, exosomes are gaining attention (99).
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Exosome-based targeted drug delivery systems have been

summarized in several studies (100). Naturally occurring exosomes

can be used as carriers for a wide range of therapeutic agents such as

natural products (101–104), synthetic pharmaceuticals (105), nucleic

acid drugs (106, 107), and protein-based peptides or proteins (108).

Exosomes can penetrate biological barriers that regular nanomaterials

cannot, and they exhibit good efficacy. The exosome-carried CIRP

brings a more severe inflammatory response to the disease while

providing us with a potential therapeutic strategy (48, 109). Using

exosomes that have been artificially modified may be a way to reduce

the eCIRP-induced inflammatory response. On one hand, adding

peptides or proteins to the surface of exosomes inhibits the activation

of downstream signaling pathways by targeting inflammatory cell

surface receptors (110, 111) and on the other hand, exosomes directly

loaded with natural products through incubation (108),

electroporation (112), sonication (113), and transfection exert anti-

inflammatory effects. In conclusion, these methods may address the

low water solubility and bioavailability of natural compounds (114).

Moreover, the drug loading and modification (115) of EVs may

enhance the targeting ability of the drug and prevent its

rapid oxidation.
8 Conclusions

Since the first description of CIRP two decades ago, the

physiopathological and biological roles of CIRP have been

extensively studied. Although we have gained significant

achievements in unraveling the role of CIRP in diseased etiology

and pathogenesis; however, there are still many unanswered

questions, for instance, what is the role of CIRP in chronic

inflammatory diseases such as obesity, diabetes and other kinds of

diseases. It has been proved that iCIRP participates in cell

proliferation, cell survival, apoptosis, and circadian rhythm,

telomere maintenance, and carcinoma progression through

regulating mRNA stability as an RNA chaperone (28).

Whereas little is known about the function of exosome-carried

CIRP and its role in inflammation. Here we summarized former and

recent studies on the roles of eCIRP, especially exosome-derived

CIRP, in inflammatory disease. One of the most notable recent

developments is that eCIRP has been shown to play an important

part in various types of ALI through participating in different

inflammatory pathways. The discovery of eCIRP’s role as an

important DAMP has led to a new field in inflammatory disease

research, while many knowledge gaps still exist and need to be

addressed. As a stabilizing RNA-binding protein, eCIRP is pro-

inflammatory in most inflammatory conditions but also reduces

inflammation by unknown mechanisms and pathways. On one

hand, it remains to be investigated in other cell types such as B

lymphocytes and NK cells since current studies have only focused on

eCIRPs role in macrophages, neutrophils, and T cell biology. On the

other hand, only macrophages have been identified as the source of

exosomal CIRP, while other cell types as sources of exosomal CIRP

remain to be studied.
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Both in-vivo and in-vitro evidence support the notion that eCIRP

can be considered as a novel target for the research and development

of innovative drugs for the prevention or treatment of inflammatory

diseases. Future studies should be aimed at clarifying the pivotal roles

eCIRP plays in other potential pathways of inflammatory diseases in

the hope that more therapeutic targets can be identified. Peptides and

natural products targeting exosomal CIRP may facilitate the clinical

translation of these new therapeutic strategies against inflammation.

The proinflammatory role and the plausible protective effects of

CIRP blockage using neutralizing antibody or proteins/peptides in

sepsis and other inflammatory diseases suggested a pivotal role of

CIRP in inflammation-related diseases and has offered a strong basis

for the exploration of therapeutic potential of neutralizing antibody or

peptide in tackling various inflammatory diseases. Therefore,

elucidating the role of CIRP in these diseases will have a significant

impact on our understanding of physiopathological of diseases and

may provide the rationale for the design of novel therapeutics.
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Glossary

AD Alzheimer's disease

ALI acute lung injury

ARDS acute respiratory distress syndrome

ATII alveolar epithelial type II

Cdk5 cyclin-dependent kinase 5

CIRP cold-inducible RNA-binding protein

CK2 Casein kinase 2

CNS central nervous system

COPD chronic obstructive pulmonary disease

DAMPs damage-associated molecular patterns

eCIRP extracellular cold-inducible RNA-binding protein

EMO emodin

ER endoplasmic reticulum

EV extracellular vesicles

GSK3b glycogen synthase kinase 3b

HMGB1 high mobility group box 1

I/R ischemia-reperfusion

ICAM-1 intercellular adhesion molecule-1

iCIRP intracellular cold-inducible RNA-binding protein

ILs interleukins

ILVs intraluminal vesicles

iNOS inducible nitric oxide synthase

IPF inflammatory phenotype fibroblasts

JAM-C junctional adhesion molecule-C

LAMP lysosome-associated membrane protein

LPS lipopolysaccharide

LUT luteolin

MCAO middle cerebral artery occlusion

MD2 myeloid differentiation 2

mtDNA mitochondrial DNA

MVBs multi-vesicle bodies

MyD88 myeloid differentiation factor 88

NE neutrophil elastase

NETs neutrophil extracellular traps

NF-kB nuclear factor-kB

NLRP3 NOD-like receptor protein 3

NLRs NOD-like receptors

PAD4 peptidylarginine deiminase 4

RBP RNA-binding protein

RRM RNA-recognition motif

(Continued)
Continued

rTEM reverse transendothelial migration

SAP severe acute pancreatitis

SGs granules

STAT3 signal transducer and activator of transcription 3

STING stimulator of IFN genes

Syt synaptotagmin

TfR transferrin receptor

TIA-1 T-cell intracellular antigen-1

TLRs Toll-like receptors

TNF tumor necrosis factor

TREM-1 triggering receptor expressed on myeloid cells-1

UV ultraviolet
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