
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Edwin Roger Parra,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Baohua Sun,
University of Texas MD Anderson Cancer
Center, United States
Santhoshi Krishnan,
University of Michigan, United States

*CORRESPONDENCE

Christophe Jamin

christophe.jamin@univ-brest.fr

SPECIALTY SECTION

This article was submitted to
Systems Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 18 October 2022
ACCEPTED 13 February 2023

PUBLISHED 02 March 2023

CITATION

Scuiller Y, Hemon P, Le Rochais M, Pers J-O,
Jamin C and Foulquier N (2023) YOUPI: Your
powerful and intelligent tool for segmenting
cells from imaging mass cytometry data.
Front. Immunol. 14:1072118.
doi: 10.3389/fimmu.2023.1072118

COPYRIGHT

© 2023 Scuiller, Hemon, Le Rochais, Pers,
Jamin and Foulquier. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Technology and Code

PUBLISHED 02 March 2023

DOI 10.3389/fimmu.2023.1072118
YOUPI: Your powerful and
intelligent tool for segmenting
cells from imaging mass
cytometry data

Yvonne Scuiller1, Patrice Hemon1, Marion Le Rochais1,
Jacques-Olivier Pers1,2, Christophe Jamin1,2*

and Nathan Foulquier1

1LBAI, UMR 1227, Univ Brest, Inserm, Brest, France, 2CHU de Brest, Brest, France
The recent emergence of imaging mass cytometry technology has led to the

generation of an increasing amount of high-dimensional data and, with it, the need

for suitable performant bioinformatics tools dedicated to specific multiparametric

studies. The first and most important step in treating the acquired images is the

ability to perform highly efficient cell segmentation for subsequent analyses. In this

context, we developed YOUPI (Your Powerful and Intelligent tool) software. It

combines advanced segmentation techniques based on deep learning algorithms

with a friendly graphical user interface for non-bioinformatics users. In this article,

we present the segmentation algorithm developed for YOUPI. We have set a

benchmark with mathematics-based segmentation approaches to estimate its

robustness in segmenting different tissue biopsies.
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1 Introduction

Immunohistochemistry and immunofluorescence are currently the most commonly

used approaches for analyzing tissue biopsies. These techniques enable the use of four to six

fluorescence-conjugated antibodies for detecting markers expressed in the same tissue,

leading to a limited number of multiple staining combinations due to the low number of

revelation channels that can be used together. Moreover, the properties of fluorescence-

associated antibodies can overlap. Their overlapping complicates the process of using a

complex fluorescence-conjugated antibody combination for later analysis in terms of

diagnosis, prognosis, or treatment elaboration, thus leading to using only a small number of

fluorochromes with non-overlapping signals (1). However, these challenges have recently

been overcome by evolving approaches, such as the recent fluorescence-associated

approach CO-Detection by indEXing (CODEX) (2). Additionally, new approaches based

on the use of metal-tagged antibodies have resulted in the development of technologies

such as Multiplexed Ion Beam Imaging Technology (MIBI) (3) and Imaging Mass
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Cytometry (IMC) (4). They ensure the detection of cellular marker

expressions that do not interfere with each other. These techniques

are significant for evaluating up to 40 markers on each cell

simultaneously (5) and for preserving high-resolution spatial

information (6).

The cell segmentation process extracts image information from

the generated data, allowing for associating each detected marker

and spatial coordinates with each cell (7). This step is essential for

subsequent good-quality downstream analysis, such as in-depth

immunophenotyping, which provides a powerful toolkit for

understanding physiological processes and diagnostic methods.

Segmentation consists of annotating the image to assign specific

pixels to objects and thus gather pixels with already known criteria.

When applied to biological data, segmentation is critical for working

at a single-cell level. Thus, cell segmentation remains a complex

exercise, primarily because of the cells’ irregular shapes,

heterogeneous density, and unevenly distributed membrane

marking (8). Few attempts have been made to handle the task with

simplemathematical approaches, such as CellProfiler, which has been

developed using threshold pixel intensity, the watershed method, or

the propagation algorithm (9). Pipelines based on the combination of

Ilastik (10) and CellProfiler softwares (11) and, more recently,

QuPath software (12) are some commonly used tools in research

laboratories for the cell segmentation of IMC data. However, these

solutions are time consuming, false-positive detections are still

frequently observed, and they are not available as easy-to-use kits

for non-computer users. The need for robust, accurate segmentation

techniques with quick, easy access remains challenging.

Meanwhile, artificial intelligence is beginning to play an

important role in scientific research, mainly through machine

learning approaches. Techniques such as clustering, decision

trees, and deep neural networks are already being used to

segment magnetic resonance imaging (MRI) data (13). Machine

learning is used to analyze and learn common characteristics from

available data. Although cell segmentation remains a challenge even

with machine learning, it is useful when dealing with the

heterogeneity of cell shapes from different tissues (14).

For decades, machine learning has been used for image analysis

in the biomedical field for classification tasks (15). In our case,

segmentation is a particular type of feature extraction. Due to recent

advances in machine learning, we can now choose from a variety of

network architectures, such as GAN (16), TRANSFORMER (17),

and U-Net (18), according to the task required. If sufficient and

varied data are provided, this type of network can capture the

heterogeneity of cell shapes.

Here, we present YOUPI (an acronym for YOUr Powerful and

Intelligent tool), an innovative tool for cell segmentation in tissue

whose images are generated by an IMC. YOUPI works with a U-

shaped neural network (19–21). Better known as “U-Net” (18), this

type of network is adapted to answer the question of cell

segmentation with biological data and is fascinating since it

requires only a small amount of data to be trained. Therefore, the

U-Net appears suitable for analyzing rare precious tissue samples.
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We developed YOUPI to provide a tool with a friendly graphical

user interface for obtaining cell segmentation masks.
2 Materials and methods

2.1 Antibody conjugation

Carrier-free antibodies were conjugated to metal tags using the

MaxPar® labeling kit (Fluidigm) following the manufacturer’s

instructions. Antibodies were stored at 500 mg/ml in a stabilizing

solution (Candor Biosciences) at 4°C.
2.2 Tissue staining and IMC
image acquisition

All samples issued from different patients were included in a

registered autoimmune disease or tumor tissue collection, and the

present study was conducted following national and institutional

guidelines in compliance with the Helsinki Declaration and after

approval by our institutional review board.

Formalin-Fixed and paraffin-embedding (FFPE) sections of

4 mm thickness from the salivary glands of patients with Sjögren’s

syndrome, intestinal cancer, small cell lung cancer, and non-small

cell lung cancer were cut and placed onto glass slides. Sections were

de-paraffinized with xylene and carried through sequential

rehydration from 100% Ethanol to 70% Ethanol before being

transferred to a Tris buffer solution (TBS). Heat-induced antigen

retrieval was performed in a water bath at 95° C for 30 min in Tris/

EDTA buffer (10mM Tris, 1mM EDTA, pH9). Slides were cooled to

room temperature (RT) and subsequently blocked using phosphate-

buffered saline (PBS) with 3% BSA for 30 min at RT. Each slide was

incubated with 100 ml of the metal-tagged antibody cocktail

(Table 1) overnight at 4° C. Then, the slides were washed three

times with PBS and labeled with a 1:500 dilution of Intercalator-Ir

(Fluidigm) in TBS for 2 min at RT. Slides were briefly washed with

H2O and air dried before IMC acquisition. Data were acquired on a

Hyperion Imaging System™ coupled to a Helios Mass Cytometer

(Fluidigm) at a laser frequency of 200 Hz and a laser power of 3 dB.

For each recorded region of interest (ROI), stacks of 16-bit single-

channel TIFF files were exported from MCD binary files using

MCD™ Viewer 1.0 software (Fluidigm).

To prepare for training the neural network, cell-based

morphological segmentation was carried out using supervised

pixel classification with the Ilastik toolkit (22) to identify nuclei,

membranes, and backgrounds. CellProfiler software (11) was used

to segment the resulting probability maps. Inputs of 16-bit TIFF

images with their corresponding segmentation masks were

uploaded to histoCAT analysis toolbox (23) to open a session

data analysis. Dimensionality reduction and unsupervised

FLOWSOM clustering for 16-bit single images were performed

using Cytobank on FCS files.
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TABLE 1 Panels of markers for the imaging mass cytometry acquisition.

Salivary
gland
description

Selected for
segmentation

Lung
description

Selected for
segmentation

Intestine
description

Selected for
segmentation

Kidney
description

Selected for
segmentation

CD38 CD38 CD83 CD38

CD204 CD21 CD38 Ki-67

Vimentin Vimentin CD21 Vimentin X

CD14 CD14 CD23 CD14

T-bet T-bet DC- LAMP T-bet

CD34 CD34 X T-bet CD16

CD163 CD163 CD34 Collagen I

PanKeratin X PanKeratin X CD163 CD45RA X

CD11b GATA3 PanKeratin X TNFalpha

TSLP CD274 GATA-3 IL-1beta

CD31 CD31 X CD274 CD31

Ki-67 Ki-67 CD31 CD45 X

IgD CD223 Ki-67 CD197

IgM TIM3 IgD IL-17

FoxP3 FoxP3 AID FoxP3

CD4 CD86 FoxP3 CD4

CD117 CD117 CD86 CD69

CD68 X CD68 X CD68 X CD68 X

Bcl6 CD152 Bcl6 IL-6

CD20 X CD20 X CD20 X CD20 X

CD8a X CD8a X CD8a X CD8a X

CD138 X CD138 X CD138 X CD138 X

MPO X MPO X MPO X MPO X

Flt3 ligand CD279 CD279 Catenin

CD56 CD56 X CD56 CD56

CD106 Granzyme B Granzyme B Granzyme B

CD127 CD196 CD185 CD127 X

Collagen I Collagen I CD3 X CD185

CD3 X CD3 X CD27 CD3

CD27 CD27 Caspase-3 C5b9

Caspase-3 Caspase-3 Podoplanin X Caspase 3

Podoplanin X Podoplanin X HLA-DR IFNgamma

HLA-DR HLA-DR X CD4 HLA-DR X

pS6 CD4 X IgM WT1

CD135 IgM CD11c Collagen IV

CXCL13 SMA CD103 PanKeratin

IgA IgA STAT3 CD15

IgG IgG IgG CD279

(Continued)
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2.3 Workstation used for training

The model was trained for about 30 minutes on a workstation

with 125 GB of RAM and an Intel Core i9-10920X CPU.
2.4 IMC training dataset pre-processing

The dataset used to train the neural network consisted of 81

patches randomly selected, including 30 patches from salivary glands

of a patient with Sjögren’s syndrome, 20 patches from an intestine,

five patches from a small cell lung cancer, and 26 patches from a non-

small cell lung cancer. The heterogeneity of the tissues was expected

to improve the capacity for detecting cells of various shapes. The

trained model was evaluated on 90 new patches from salivary glands.

Cell-based morphological segmentation was conducted using

supervised pixel classification by Ilastik (22) to identify nuclei,

membranes, and backgrounds, followed by CellProfiler analysis

(11) to segment the resulting probability maps. Masks obtained

from this segmentation were manually corrected, based on the co-

detection of the nuclei signals and membrane signals, and used as

the ground truth for the network training.
2.5 Training and characteristics of the
neural network

YOUPI is based on U-Net architecture. It consists of convolutional

neural networks (CNN) arranged to perform semantic segmentation

and contains two parts. The first contracting one has a typical CNN

architecture. Each block of this path consists of two 3×3 convolution

layers in a row, followed by a rectified linear unit (ReLU) and a 2×2

max-pooling operation. This procedure is performed four times. The

second expansive path involves an oversampling of the feature map,

followed by 2×2 convolutions at each stage. To enable precise

localization, the feature map from the corresponding layer in the

contracting path is cropped and concatenated onto the upsampled

feature map. Two successive 3×3 convolutions follow this step to end

on a ReLU. A 1x1 convolution is used for the final layer to reduce the

feature map to the desired number of output channels (18).

The output is in the form of an image whose pixels have values

between 0 and 1. To obtain a binary image, all pixels below 0.5 must be 0

for black, and all pixels greater than 0.5 must be 1 for white. The white

part represents the cell, and the black part represents the background.

For the training, we used a binary cross-entropy loss function

defined as follows:
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loss(y, y ̂)   = −
1
No

N

i=0
(yi   *   log(yî) + (1 − yi)*log(1 − yi)) ;

where N stands for the total number of pixels in an image, yi
represents the corresponding target value, and yî is for the predicted

pixel probability. The cross-entropy loss compares the predicted

probabilities with the ground truth values, and the loss is minimized

during the training process. The network runs with the Adam’s

optimizer, a stochastic gradient descent method, a batch size of 16,

and 500 epochs with an early stop, using Keras/Tensorflow

packages in Python 3.

To evaluate the performance of the YOUPI tool, we checked the

value of the Intersection over Union (IoU) metric, also known as

the Jaccard index.

Jaccard(A, B) =
 A   ∩​  Bj j
A   ∪​  Bj j

where A is the predictive mask, and B is the ground truth.

The IoU is one of the most frequently used metrics for

evaluating a model of image segmentation (24). Mathematically,

it represents the proportion of the area overlapping the target mask

and the prediction output. Its value can vary between 0 and 1. The

mean IoU of a patch is computed as the mean of the IoU of each cell

in the patch.
2.6 YOUPI features

2.6.1 Cell segmentation mask generation
For each ROI, stacks of 16-bit single-channel TIFF files were

exported from MCD fi l e s us ing MCD™ Viewer 1 .0

software (Fluidigm).

A first cell-based morphological segmentation was conducted,

as described in section 2.4.

A second cell segmentation method was performed using the

OME-TIFF files of the markers stacked in a single TIFF file with

ImageJ software (v.1.8.0_172). The TIFF file was opened with

QuPath software (v.0.3.2), and the image type was set to

fluorescence. The segmentation process was then run with the

optimal parameters for each ROI (filter function, signal intensity

threshold, etc.), based on the iridium channel.
2.6.2 FCS file exportation
Session data analysis was opened with 16-bit TIFF images. Their

corresponding segmentation mask previously generated were

uploaded in histoCAT (23) to export data in FCS files.
TABLE 1 Continued

Salivary
gland
description

Selected for
segmentation

Lung
description

Selected for
segmentation

Intestine
description

Selected for
segmentation

Kidney
description

Selected for
segmentation

CD183 CXCL13 DNA X SMA X

CD11c CD11c X IgG

DNA X DNA X DNA X
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2.7 Statistical analysis

To extract quantitative data, FCS files were uploaded with

OMIQ software. Data were expressed as mean ± SEMs. Statistical

analyses were performed with GraphPad Prism (GraphPad

Software, La Jolla, CA) using the Wilcoxon test for comparing the

paired values. Significant differences were estimated at p< 0.05.
3 Results

3.1 Elaboration of the dataset for
pre-processing the neural network

3.1.1 Elaboration of the preliminary
segmentation mask

The training dataset is the result of several steps. Once the

preparation of the tissue slides is ready, IMC acquisition is
Frontiers in Immunology 05
performed (Figure 1). The acquisition produces a stack of images

representing the same ROI with a different marker detected for each

image. The MCD acquisition files from the Hyperion Imaging

System™ are converted into TIFF format using an IMC file

conversion tool (https://github.com/BodenmillerGroup/imctools).

The marker panel was previously designed according to the tissue

from which the IMC images were obtained. The interesting membrane

markers are selected (Table 1; Supplementary Figure 1) and summed.

In addition, image with stained nuclei is also selected. A graphical

interface allows for colorizing the summed membrane markers in

green and the nuclei marker in red before summing the two colors.

Ilastik and CellProfiler software are then used to obtain a preliminary

segmentation mask. Once generated, the binary mask of segmentation

is split into patches of 128x128 pixels before manual correction.

3.1.2 Segmentation from manual correction
Although time consuming and tedious, manual correction

remains optimal for achieving accurate results in cell segmentation.
FIGURE 1

Graphical overview of the pre-processing steps to build the IMC training dataset. The pre-processing steps required to train the neural network of
the YOUPI software consist of the following: 1. The preparation of biological tissues, 2. The acquisition of images with the HYPERION IMC, 3. The
filtering of the images, 4. The selection of interesting markers, 5. The summation of interested markers, 6. The segmentation of raw images with
Ilastik and CellProfiler, 7. The splitting of segmented images in 128×128 pixel patches, 8. The recovery of patches for manual correction, 9. The
correction with the interface, allowing for opacity control and brush. IMC: Imaging Mass Cytometer.
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To simplify the manual correction, a first tool was developed to

superpose the segmentation mask generated by Ilastik and

CellProfiler softwares and the patches of the IMC images. The

control of opacity improves the visibility of the cell borders

(Figure 2). A second tool was developed that provides a black-and-

white brush to manually correct segmentation errors. In the example

shown in Figure 2, the Ilastik and CellProfiler softwares segmented

two cells instead of one in the largest rectangle and three cells instead

of one in the smallest rectangle. A manual correction was thus

necessary to obtain a single cell for both rectangles. The 81 patches

used to train the neural network were generated accordingly.
3.2 YOUPI development

3.2.1 Elaboration of the graphical interface
To improve the usability of the U-Net segmentation, a

graphical interface was developed to select the IMC images

among the stack (Figure 3). The user can choose markers from

the panel to generate an image that displays membrane (in green)

and nuclei (in red) to provide input for the neural network.

Median and smooth filters are used to enhance the quality of

the image and the contrast and brightness adjusted for each

chosen marker. Depending on the intensity of the signals,

adjustment x2 to x3 is used for nuclei signal, and up to x10 for

membrane signals. This adjustment process is essential for

ensuring accurate cell segmentation.

3.2.2 Input and output of the U-Net
The graphical interface allows users to build a colorized green-

and-red image with the appropriate membrane and nuclei markers.

When the image is considered sufficiently sharp, a simple click on

the “Segmentation” button in the graphical interface is required.

Once this button is pressed, different steps occur. The image is split

into patches of 128×128 pixels. These patches are processed by the

U-Net model to segment and generate binary cell segmentation

masks. Once performed, the patches are gathered to rebuild the

original image (Figure 4).
Frontiers in Immunology 06
3.2.3 Post-processing steps
Once segmented, the image is ready for the post-processing

steps. First, all cells in the mask whose coordinates do not show

nuclei signals on the corresponding Hyperion acquisition are

eliminated (Figure 5A). Second, all objects measuring only 1 or 2

pixels are removed, and the filter “fill holes” is used to fill

abnormally holed nuclei (Figure 5B).

Overall, when users click on the “Segmentation” button from

the graphical interface, the image that appears has gone through all

the post-processing steps.

3.2.4 CSV file generation for downstream analysis
Two types of CSV files can be generated from the post-

processed segmented image. Since cells are defined as a list of

identified pixels, the centroid of each cell is accessible, and the mean

and median intensity of all markers for each cell can be calculated

according to the pixel intensities in the raw IMC image.

Therefore, one CSV file (Supplementary Table 1) contains the

centroid of each cell from the segmentation mask, followed by the

mean intensity of all associated markers. A second CSV file

(Supplementary Table 2) contains the centroid of each cell and,

subsequently, the median intensity of all associated markers

(Figure 6). The median intensity allows to ignore the aberrant

high-intensity pixels that are frequently identified in IMC images.

These CSV files can then be used for downstream supervised or

unsupervised analysis.
3.3 Metrics for evaluating the YOUPI tool

To evaluate the performance of the YOUPI tool, we checked the

value of the Intersection over Union (IoU) metric, also known as

the Jaccard index. The IoU is one of the most frequently used

metrics for evaluating a model of image segmentation (24).

Mathematically, it represents the proportion of area overlapping

between the target mask and the prediction output. Its value can

vary between 0 and 1. The mean IoU of a patch is computed as the

mean of the IoU of each cell in the patch.
FIGURE 2

Visual interface preview for manual segmentation correction. 1. A 128×128 pixel patch of the IMC image, 2. Visualization of the segmentation mask
generated by the Ilastik/CellProfiler pipeline to detect segmentation errors through the opacity management of the patch, 3. Manual correction of
the segmentation error. IMC, Imaging Mass Cytometer.
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FIGURE 3

Graphical interface of the YOUPI software. An overview of the graphical interface and the ease-of-use functions of the YOUPI software.
FIGURE 4

Processing steps for the Segmentation button of the graphical interface. 1. Creation of a colorized image by the graphical interface, 2. Splitting of
images in 128×128 pixel patches, 3. Each patch serves as an input of the neural network, 4. Segmentation of all patches with the YOUPI tool, 5.
Reconstruction of the entire image with the segmented patches.
Frontiers in Immunology frontiersin.org07
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After training, the U-Net reaches a mean IoU of 0.79 on 90 new

patches. This value indicates that the results of the segmentation of

cells by the U-Net are robust. Moreover, an image from kidney has

been segmented without preliminary training of the U-Net with

kidney tissues. The Supplementary Figure 2 shows the efficient

segmentation achieved using the YOUPI software, demonstrating

its ability to segment multiple tissue types even without a

training phase.

To further global quality, we sought an additional metric. We

developed biological metrics, including the number of cells, the

percentage of real cells, and the rate of false-positive cells. Real cells

are objects characterized by at least a tenth percentile of the

grayscale nuclei signal, below they are considered as non-existent

cells, while false-positive cells correspond to objects co-expressing

exclusive markers. Eighteen new ROIs from different tissues not

used in the training data set and from different batches of data (two

ROIs of one batch and two of another batch from salivary glands of

patients with Sjögren’s syndrome, six from lung cancer, and eight

from intestinal cancer) were segmented with the combination of

Ilastik and CellProfiler, with QuPath and with YOUPI software, and

the results were analyzed. Though not significantly different, the

highest number of cells was found with the combination of Ilastik

and CellProfiler software but was associated with the segmentation

of non-existent cells (Figure 7A) and with the significantly lowest

rate of real cells (91.2 ± 13.5%) compared with those detected with

the YOUPI software (99.0 ± 2.1%, p< 0.01). There was no significant

difference between the number of cells detected with the QuPath

software and the YOUPI software. However, there were also
Frontiers in Immunology 08
significantly fewer real cells with the QuPath software (96.6 ±

6.5%) than with the YOUPI software (p< 0.05).

Gating on the real cells, the rate of CD20+ B cells (Figure 7B),

CD3+ T cells (Figure 7B), CD68+ macrophages (Figure 7C) and

PanKeratin+ epithelial cells (Figure 7D) were not significantly

different between YOUPI software and Ilastik and CellProfiler, and

QuPath softwares. Only Ilastik and CellProfiler seems to detect fewer

CD3+ T cells. The rates of CD20 and CD3 double-positive cells were

also evaluated. Since CD20 and CD3 markers belong to B and T

lymphocyte lineages, respectively (25), one single lymphocyte cannot

express both markers. As shown in Figure 7E, no significant

difference in the rates of false double-positive cells for Ilastik and

CellProfiler, QuPath, and YOUPI software (3.9 ± 6.3% vs. 4.0 ± 5.4%

vs. 4.2 ± 5.5%, p > 0.05). Similarly, the rates of PanKeratin and CD8

double-positive cells were evaluated. PanKeratin is an epithelial cell

marker (26), while CD8 is a T-cell subset marker (25). Both cannot be

co-expressed by a single cell. Again, the rate of false double

PanKeratin and CD8 positive cells was low, and there were no

differences among the three methods of segmentation (0.9 ± 1.7%

vs. 0.9 ± 1.4% vs. 1.0 ± 1.1%, p > 0.05) (Figure 7D).

Consistently, correlation between QuPath vs YOUPI, Ilastik

and CellProfiler vs YOUPI, and Ilastik and CellProfiler vs QuPath

have been evaluated (Supplementary Figure 3). Strong correlation

was identified for all analyses but Ilastik and CellProfiler vs YOUPI

and Ilastik and CellProfiler vs QuPath for the percentage or

real cells.

Performed on separated tissues, in which the number of total

cells is different, the percentages of real cells and all cell subsets are
A

B

FIGURE 5

Three post-processing steps for U-Net output (A) Elimination of cells without nuclei signals (step 1). Nuclei are shown in red and membranes in
green. A white rectangle indicates the region requiring corrections. (B) Removing one- or two-pixel objects (step 2) and filling holed nuclei (step 3).
Cells are shown in white, and the background is shown in black. Red rectangles indicate the pixels requiring correction.
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significantly different only with Ilastik and CellProfiler compared to

QuPath and YOUPI (Supplementary Figure 4).
4 Discussion

We introduced YOUPI, a cell segmentation tool for images

generated by the Hyperion IMC intended for non-computer-friendly

users. YOUPI works with U-Net. Three post-processing steps were

added to obtain better control over the final segmentation mask. This

mask provides access to single-cell data via CSV files for downstream

supervised (manual gating strategy) or unsupervised (t-SNE,

Phenograph, etc.) analysis whose performance falls between that of

Ilastik and that of QuPath (Supplementary Figure 5).

The cell segmentation of tissue images can thus be performed

using existing software, such as Ilastik and CellProfiler, or QuPath.

Our experiences indicate that they require specific skills in image

processing (e.g., image format conversion) and analysis to efficiently

achieve cell segmentation. They rely on multiple third-party tools

(ImageJ, Python scripts, etc.) and are thus barely accessible to non-

bioinformatician users. Ease-of-use has guided our development of

YOUPI. In contrast to the other tools, the all-in-one graphical

interface can be used instinctually by non-computer scientists. In

addition, two CSV files are generated. The first is a CSV file

containing the mean intensity of markers, which scientists

commonly use. However, aberrant high-intensity pixels are

frequently identified in IMC images. The second is a CSV file

containing the median intensity allowing to ignore these artifacts

that can impact downstream analysis. It was added to the YOUPI

software during the post-processing step to remove aberrant pixels.
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Furthermore, among all existing tools or pipelines allowing for

cell segmentation, the Ilastik and CellProfiler analysis of a given

ROI requires approximately four hours of work, and QuPath

software requires thirty minutes. With YOUPI, an inexperienced

computer user obtains the segmentation mask in less than 10

minutes, including choosing markers of interest, thus making

YOUPI a tool that is easy to use and delivers results quickly.

The segmentation results of the U-Net network are obtained

with a set of essential steps. Manual segmentation is a crucial aspect

of training to obtain reliable data. To obtain prebuilt binary images,

we decided to use masks generated by Ilastik and CellProfiler

softwares. Thus, QuPath was not useful since it does not consider

membrane markers. Several weeks were required to manually

correct the binary image patches. Although manual errors could

have been made, the U-Net learned to perform segmentation as

efficiently as Ilastik and CellProfiler, and as QuPath software at

detecting the number of cells and of false-positive cells based on the

corrected images. It proved to be the most efficient at detecting real

cells. Correlation analyses of all tissues together, as well as, analyses

on separated tissues, indicate that the Ilastik and CellProfiler

detection method hardly match with QuPath and YOUPI

software for the detection of real cells and some cell subsets.

Segmentation results with YOUPI and QuPath are similar. The

mean IoU value confirmed the robustness of the cell segmentation

results obtained with YOUPI.

Although CD3, CD20, CD8, and PanKeratin molecules are

expressed on distinct populations of cells (25, 26), some CD3 and

CD20 double-positive cells or PanKeratin and CD8 double-positive

cells could nevertheless be detected. It has recently been found that

CD3+ T lymphocytes can express CD20 in blood and tissue (27)
FIGURE 6

Overview of cell ID to obtain centroids and the mean/median of gray levels per marker. Based on the image from the post-processing
segmentation, all cells were identified and had X and Y coordinates thanks to their centroid. This information is written in a CSV file. This file also
contains the mean intensity of each marker for each cell. A second CSV file contains the median intensity of each marker for each cell. ID, identity.
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with potential relevance to human diseases (28), indicating the

possible existence of a few real CD3+ and CD20+ double-positive

cells. Alternatively, with high cellular density and depending on the

thickness of the tissue section, touching or overlapping cells may be

detected, given the possibility of detecting unexpected, rare

PanKeratin and CD8 double-positive cells due to IMC

technology’s limitations.
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In conclusion, the image patches segmented to train YOUPI

software came from different tissues (salivary gland, intestine, small

cell lung cancer, and non-small cell lung cancer) to ensure the

heterogeneity of cell types and shapes to train the U-Net. U-Net is a

network specifically developed to analyze biomedical images, which

allows for good performance from a restricted annotated dataset

(18). Nonetheless, segmentation coming from a neural network will
A

B

D

E

C

FIGURE 7

Biological metrics for evaluating cell segmentation performance. Eighteen ROI were segmented with Ilastik and CellProfiler, QuPath and YOUPI
software. (A) Example of false cells (white arrows) found without DNA detection of the nuclei shown in red and the segmented mask of cells in gray.
Two nuclei signals were used to establish the presence of existent cells. The number of cells and the percentage of real cells in the 18 ROI were
determined. (B) Example of CD20 (red) and CD3 (green) detection with the YOUPI-generated mask shown in gray. The percentages of CD20+ B
cells and of CD3+ T cells among the 18 ROIs were calculated. (C) Example of DNA1 (red) and CD68 (green) detection with the YOUPI-generated
mask shown in gray. The percentage of CD68+ macrophages among the 18 ROIs was calculated. (D) Example of PanKeratin (red) and CD8 (green)
detection, with the YOUPI-generated mask in gray. The white arrow indicates the detection of double-positive cells (white square). The percentages
of PanKeratin+ cells and of double PanKeratin+ and CD8+ cells among the 18 ROIs were calculated. (E) Example of CD20 (red) and CD3 (green)
detection with the YOUPI-generated mask shown in gray. The white arrow indicates the detection of double-positive cells (white square). The
percentage of double CD3+ and CD20+ cells among the 18 ROIs was calculated. *p< 0.05, **p< 0.01, ****p< 0.001, ns, non-significant.
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never be flawless. However, with the inclusion of additional post-

processing steps (Figure 5), obvious mistakes the neural network

could make are controlled; thus, YOUPI is safe.

YOUPI’s overall performance is comparable with that of other

segmentation tools, despite relying on different approaches with

different flaws. The naive mathematical approaches of Ilastik and

CellProfiler can lead to the identification of non-existent cells, while

the empirical threshold approach of QuPath can result in oversized

shapes. Different intensities of image colorization can impact the

quality of segmentation masks generated by YOUPI’s U-Net. It

would be useful to apply these algorithms together to overcome

their respective flaws. Therefore, the user can build an image that will

be segmented according to the markers in which he or she

is interested.
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SUPPLEMENTARY FIGURE 1

Individual staining of the markers used for the cell segmentation. Salivary
gland, lung, intestine and kidney tissues were stained and images acquired

with the Hyperion. Membrane markers (green) and nuclei (red) selected for

cell segmentation as described in are shown individually (upper images) and
with DNA staining (lower images).

SUPPLEMENTARY FIGURE 2

Segmentation of cells from kidney tissue with YOUPI. Kidney tissue was
prepared with the panel described in . After acquisition of image with the

Hyperion, the process of cell segmentation was performed using the YOUPI

software without preliminary training phase. Membrane markers (green) and
nuclei (red) are superposed with the YOUPI-generated mask (gray). Examples

of superposition are shown (white squares).

SUPPLEMENTARY FIGURE 3

Correlation of YOUPI performance with other methods. Coefficient of

correlation for the number of total cells, the percentage of real cells, the

percentage of CD20+ B cells, the percentage of CD3+ T cells, the percentage
of CD68+ macrophages, the percentage of PanKeratin+ epithelial cells, and

the percentage of double CD3+CD20+ cells, and the percentage of double
PanKeratin+CD8+ cells are shown between QuPath vs YOUPI, Ilastik and

CellProfiler vs YOUPI, and Ilastik and CellProfiler vs QuPath.

SUPPLEMENTARY FIGURE 4

Cell segmentation performance of YOUPI on separate tissues. Four ROI from
salivary glands, six ROI from lung and eight ROI from intestine were

segmented with Ilastik and CellProfiler, QuPath and YOUPI software. The
number of total cells, the percentage of real cells, the percentage of CD20+ B

cells, the percentage of CD3+ T cells, the percentage of CD68+
macrophages, the percentage of PanKeratin+ epithelial cells, and the

percentage of double CD3+CD20+ cells, and the percentage of double

PanKeratin+CD8+ cells were calculated for each tissue and compared. *p<
0.05, **p< 0.01, ns, non-significant.

SUPPLEMENTARY FIGURE 5

Unsupervised downstream analysis following cell segmentation. Four ROI
from salivary glands were segmented with Ilastik and CellProfiler, QuPath and

YOUPI software. (A) The CSV files generated by the three approaches were

merged for dimension reduction analysis with tSNE. (B) Clustering was
performed with phenograph analysis, and the abundance of the clusters

with each software and the phenotype of the cell clusters were determined.
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