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The genomic landscape of
ANCA-associated vasculitis:
Distinct transcriptional
signatures, molecular endotypes
and comparison with systemic
lupus erythematosus
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Introduction: Anti-neutrophil cytoplasmic antibody (ANCA)-associated

vasculitides (AAVs) present with a complex phenotype and are associated with

high mortality and multi-organ involvement. We sought to define the

transcriptional landscape and molecular endotypes of AAVs and compare it to

systemic lupus erythematosus (SLE).

Methods: We performed whole blood mRNA sequencing from 30 patients with

AAV (granulomatosis with polyangiitis/GPA and microscopic polyangiitis/MPA)

combined with functional enrichment and network analysis for aberrant

pathways. Key genes and pathways were validated in an independent cohort of

18 AAV patients. Co-expression network and hierarchical clustering analysis,

identifiedmolecular endotypes. Multi-level transcriptional overlap analysis to SLE

was based on our published data from 142 patients.
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Results: We report here that “Pan-vasculitis” signature contained 1,982 differentially

expressed genes, enriched in leukocyte differentiation, cytokine signaling, type I and

type II IFN signaling and aberrant B-T cell immunity. Active diseasewas characterized

by signatures linked to cell cycle checkpoints and metabolism pathways, whereas

ANCA-positive patients exhibited a humoral immunity transcriptional fingerprint.

Differential expression analysis of GPA and MPA yielded an IFN-g pathway (in

addition to a type I IFN) in the former and aberrant expression of genes related to

autophagy and mRNA splicing in the latter. Unsupervised molecular taxonomy

analysis revealed four endotypes with neutrophil degranulation, aberrant

metabolism and B-cell responses as potential mechanistic drivers. Transcriptional

perturbations and molecular heterogeneity were more pronounced in SLE.

Molecular analysis and data-driven clustering of AAV uncovered distinct

transcriptional pathways that could be exploited for targeted therapy.

Discussion: We conclude that transcriptomic analysis of AAV reveals distinct

endotypes and molecular pathways that could be targeted for therapy. The AAV

transcriptome is more homogenous and less fragmented compared to the SLE

which may account for its superior rates of response to therapy.
KEYWORDS
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of disease
Introduction

Anti-neutrophil cytoplasmic antibody (ANCA)-associated

vasculitides (AAVs) include granulomatosis with polyangiitis

(GPA), microscopic polyangiitis (MPA) and eosinophilic

granulomatosis with polyangiitis (EGPA). They are associated with

significant mortality (25% at five years after diagnosis) (1) and

morbidity, due to disease- and treatment-related organ damage (2).

AAV display a diverse clinical phenotype with multi-organ

involvement including kidneys, upper and lower respiratory tract,

nerves, joints, skin and the central nervous system. The organ

involvement shows significant variation between patients and

phenotypes, with 80% of renal-limited glomerulonephritis cases

being positive for ANCA against myeloperoxidase (MPO+) and

90% of patients with ear, nose and throat involvement being

positive for ANCA against proteinase-3 (PR3+) (3). Following

induction therapy, more than 85% of patients will enter remission,

however up to 40-50% of patients experience disease relapses despite

maintenance immunosuppressive therapies (4). Given the complexity

of the AAV natural course, the in-depth description of disease

endotypes and the discovery of biomarkers to predict resistance to

therapy, relapses or severe outcomes has become of paramount

importance. To date, several candidate biomarkers have been tested

for this purpose (i.e. B-cell count, ANCA type and titers) in

randomized and observational trials, however most of them have

come up with variable results (5–8). This better understanding of the

underlying mechanisms of the disease has led to the introduction of

novel therapies, such as those blocking the C5a receptor (avacopan)

for AAV (9) and the anti-IFN I receptor (anifrolumab) for SLE.
02
AAV develop in genetically predisposed individuals following

exposure to certain environmental factors (10). Genome-wide

association studies (GWAS) have pointed to several major

histocompatibility complex class II (MHC II) (11–13) and non-

MHC (11, 12, 14) genes associated with AAV risk. Epigenetic

mechanisms including DNA methylation, histone modification

and therefore, expression regulation of key genes such as MPO

and PRTN3 have also been described (15, 16). An interplay of

several immune system components contributes to its pathogenesis,

namely innate (neutrophil priming and activation, neutrophil

extracellular traps (NETs) (17), alternative complement pathway)

and adaptive immunity (CD4-induced B-cell stimulation and

ANCA production by plasma cells, T helper 17 (Th17) cells

forming and maintaining necrotizing granuloma, and finally

quantitative and functional alteration of regulatory T cells (10, 18).

High throughput genomic technologies allow the systematic,

comprehensive exploration of complex diseases without

preconceived notions (19). Recently, using next-generation RNA

sequencing we have defined signatures correlated with

susceptibility, activity and severity in patients with systemic lupus

erythematosus (SLE) and defined molecular endotypes of the

disease (20). Different gene expression modules in SLE have been

correlated with different clinical aspects. For example, CD4 and

CD8 signatures were associated with disease outcome, whereas type

1 interferon response with disease activity (21). In AAVs, initial

transcriptomic analyses revealed enrichment of genes implicated in

IL7R pathway, TCR signaling and expansion of CD8 memory cells

were associated with poor prognosis and higher relapse rates,

whereas a distinct CD8 T-cell exhaustion signature correlated
frontiersin.org
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with low risk of relapse (21, 22). More recently, RNA sequencing

approaches have offered additional insights suggesting a strong

neutrophilic and lymphocyte signature (23, 24) some of them

reminiscent of those in SLE. Yet, despite its aggressive course, in

AAV responses to existing therapies are more solid than those in

SLE. Comparison of the transcriptomic landscape of both diseases

provide an unbiased look of the underlying pathogenetic

mechanisms and explain the differences in the natural course and

response to treatment.

Herein, we sought to define the transcriptomic signature of

AAV patients, identify potential differences in RNA signatures

between AAV subsets, define novel molecular endotypes, and

compare its transcriptome to that of SLE.
Materials and methods

Patients

Thirty adult patients with AAV (GPA or MPA) followed in two

tertiary referral hospitals (Hippokration General Hospital, HGH

and Attikon University Hospital, AUH) were included. All patients

fulfilled the Chapel Hill Consensus Conference definitions for GPA

andMPA (25). Patients with EGPA were excluded due to its distinct

pathogenesis and phenotype, in order to achieve a more

homogenous cohort. The control group included 11 age- and sex-
Frontiers in Immunology 03
matched healthy individuals. All participants provided informed

consent. The study was approved by the institutional review boards

of both hospitals (HGH: 57/26-03-2018/AUH: 103/06-03-2014).

For each patient, the following data were collected: age at

diagnosis and at sampling, sex, type of AAV (GPA/MPA) and

ANCA status, Birmingham Vasculitis Activity Score for Wegener’s

Granulomatosis (BVAS/WG) at diagnosis and at sampling, disease

status at the time of sampling (active vs. remission), organ

involvement, type of treatment at the time of blood sampling and,

glucocorticoid dose (as prednisolone equivalent, mg/day). Active

disease was defined as BVAS/WG >1. Disease remission was

defined as BVAS/WG ≤ 1 for ≥6 months and daily prednisone

dose of ≤10 mg (26). Relapse was defined as an at least 1-point

increase in BVAS/WG in a patient previously in remission. Values

are presented as mean ± standard deviation (SD) for continuous

variables with normal distribution, median (interquartile range,

IQR) for continuous nonparametric variables, and percentages for

categorical variables (see Table 1).
Isolation of total RNA

Whole blood samples were collected in PaxGene and Tempus

RNA tubes. Total RNA was extracted using the Qiagen RNeasy kit

and quantification was assessed using a NanoDrop spectometer.

Quality control of RNA was assessed using the Agilent Bio Analyser.
TABLE 1 Demographics, clinical characteristics, and treatment at sampling of the 30 (discovery cohort) and 18 (validation cohort) AAV patients.

Variables n (%)

Discovery cohort
n = 30

Validation cohort
n = 18

p

Males, n (%) 16 (53.3%) 8 (44.4%) 0.56

Age at diagnosis, mean (SD) 56.9 (14.9) 55.7 (17.7) 0.79

Age at sampling, mean (SD) 60.5 (14.1) 63.6 (17.2) 0.49

AAV type, n (%) 0.37

GPA 22 (73.3%) 11 (61.2%)

MPA 8 (26.7%) 7 (38.8%)

ANCA status, n (%) 0.49

cANCA/anti-PR3+ 11 (36.7%) 9 (50.0%)

pANCA/anti-MPO+ 15 (50%) 8 (44.4%)

Negative 4 (13.3%) 1 (5.6%)

BVAS/WG at diagnosis, median (IQR) 6 (4-8) 5 (4-8.25) 0.76

BVAS/WG at sampling, median (IQR) 1 0 (4.25) 1 (0-2.75) 0.70

Organ involvement, n (%)

Constitutional 18 (60%) 9 (50%) 0.49

Lung 27 (90%) 14 (77.8%) 0.24

Renal 21 (70%) 8 (44.4%) 0.08

ENT 15 (50%) 10 (55.5%) 0.71

(Continued)
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Library preparations and
next‐generation sequencing

mRNA libraries were prepared using the Illumina TruSeq kit.

1x75bp single-end mRNA sequencing was performed on the

Illumina NextSeq 500 in the BRFAA Greek Genome Center.
Computational analysis of RNA
sequencing data

Quality of sequencing was assessed using FastQC software (27).

Raw reads in fastq format were aligned to the human reference

genome (GRCh38.p12) by STAR mapper (28) and gene

quantification was performed by HTSeq (29) using Gencode v29

annotation. Differential expression analysis was conducted using

edgeR Bioconductor R package (quasi-likelihood linear model)

(30). Statistically significant differentially expressed genes were

considered those with a p-value of ≤0.05 and absolute fold change

of >=1.5. Clustering of genes was performed using euclidean

distance. Differential expressed genes for SLE analysis were

extracted from published data as lists (20).
Frontiers in Immunology 04
Enrichment analysis of DEGs and visualization were carried out

using gProfiler (31), EnrichmentMap (32), R Bioconductor packages,

DOSE (33) and ReactomePA (34) and GeneMANIA (35) and GSEA

(36). For all statistical comparisons, the cut-off for significance was set

to 0.05 and p-values were adjusted for multiple comparisons.

Regulatory networks from the identified transcriptional

signatures were constructed by applying the X2K Web algorithm

(37), which creates a comprehensive network by integrating results

from transcription factor enrichment analysis, protein-protein

interaction network analysis, and kinase enrichment analysis

(KEA) (38).
Co-expression network analysis

Using the CoCena² (construction of co-expression network

analysis-automated, https://github.com/UlasThomas/CoCena2), we

identified modules of co-expressed transcripts. Disease molecular

endotypes were determined using agglomerative hierarchical

clustering of patients, based on their group fold changes (GFC) for

each cluster of co-expressed genes. Enrichment analysis was

performed using the clusterProfilerR package (39).
TABLE 1 Continued

Variables n (%)

Discovery cohort
n = 30

Validation cohort
n = 18

p

Mucous/Eyes/Membranes 4 (13.3%) 3 (16.7%) 0.75

Nervous 5 (16.7%) 7 (38.9%) 0.08

Cutaneous 3 (10%) 3 (16.7%) 0.49

Carciovascular 1 (3.3%) 1 (5.6%) 0.99

Disease status at sampling, n (%) 0.32

Remission 13 (43.3%) 11 (61.1%)

Active, newly diagnosed 8 (26.7%) 1 (5.6%)

Active relapse 7 (23.3%) 5 (27.7%)

Active, persistent 2 (6.7%) 1 (5.6%)

Treatment type at sampling, n (%)

No treatment 5 (16.7%) 5 (16.7%) 0.36

Corticosteroids 20 (66.7%) 10 (55.5%) 0.44

Cyclophosphamide 7 (23.3%) 0 (0%) –

Rituximab 10 (33.3%) 8 (44.4%) 0.44

Azathioprine 9 (30%) 1 (5.5%) 0.09

Methotrexate 5 (16.7%) 0 (0%) –

Mycophenolate mofetil 2 (6.7%) 2 (11.1%) 0.96

Prednisone dose at sampling, median (IQR) 3 (0-7.5) 3.75 (0-5) 0.85
Disease remission was defined as BVAS/WG ≤ 1 for ≥6 months and daily prednisone dose of ≤10 mg. Relapse was defined as an at least 1-point increase in BVAS/WG in a patient previously in
remission. BVAS/WG, Birmingham Vasculitis Activity Score for Wegener’s Granulomatosis; SD, standard deviation (SD); IQR interquartile range, IQR.
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qPCR validation

We performed qPCR for literature-curated genes as well as

genes derived from gene ontology in an independent cohort of 18

AAV patients. Primer list is included as Supplementary Table 1.
Results

Patients

Thirty (30) AAV patients were included; 53.3% (16/30) were

males, with a mean (± SD) age of 60.5 ± 14.1 years at the time of

sampling. GPA was the most frequent clinical phenotype (22/30,

73.3%) whereas regarding ANCA status, 15 (50%) patients were

pANCA/anti-MPO+, 11 (36.7%) were cANCA/anti-PR3+ and 4

(13.3%) were ANCA negative. Lung (90%), kidney (70%) and ENT

(50%) were the more commonly affected organs. Thirteen (43%)
Frontiers in Immunology 05
patients were in remission. Patient, disease and treatment

characteristics are presented in Table 1.
Cytokine signaling and B-cell and T-cell
abnormal function differentiate AAV
patients from healthy individuals

AAV comprise of various clinical phenotypes but a detailed

molecular map of their commonmolecular basis is yet to be defined.

Comparison of the blood transcriptomes of AAV patients versus

healthy controls revealed a “pan-vasculitis” signature comprising

1,982 differentially expressed genes (DEGs) (Figure 1A;

Supplementary Table 2). DEGs related to neutrophil

degranulation, type I interferon (IFN) signaling and aberrant T-

cell responses were overrepresented in gene ontology analysis

(Figure 1B). To validate our findings, qPCR was performed in an

independent cohort of AAV and healthy individuals. Transcription
A B

C

FIGURE 1

Distinct transcriptional profile and biological processes in AAV patients. Whole blood transcriptional profiling by RNA sequencing of patients with
AAV vs healthy controls. (A) Heatmap of DEGs (p value <0.05) in whole blood of patients with AAV vs healthy controls by unsupervised hierarchical
clustering. (B) Functional enrichment analysis. (C) Validation of RNA sequencing with qPCR of selected genes in an independent cohort of AAV
patients (Mann Whitney test, two-tailed, p value<0.05). **p ≤ 0.01 and ****p ≤ 0.0001.
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factors such as STAT1, EBF1, LEF1 and immune/complement

related genes such as PROS1 and C1QC are among the validated

genes (Figure 1C).
GPA is characterized by aberrant type I
interferon and neutrophil degranulation
gene signatures

To define GPA-specific gene signatures, the transcriptome of

GPA patients was compared with that of matched healthy

individuals yielding 1,319 DEGs (Figure 2A; Supplementary

Table 3). Pathways involved in type I IFN and IFN-g signaling as

well as neutrophil mediated immune responses were extensively

deregulated in GPA (Figure 2B). We identified IRF8, IRF1, STAT3,

GATA1, GATA2 as putative upstream regulators of the GPA

signature (Supplementary Figure 1A).

Unsupervised hierarchical clustering revealed four patterns of

expression among DEGs. In addition to the aforementioned

perturbations, enrichment analysis of a 222-gene cluster
Frontiers in Immunology 06
underscored IL1b mediated responses in GPA pathogenesis

(Supplementary Table 4). Interestingly, gene network representation

of the 222-gene cluster identified genes related to IFN signaling, such

as STAT1, ISG15, IFIT3, IFITM1, TRIM22 and histocompatibility

genes, such as HLA-E, HLA-F as hub genes (Supplementary

Figure 1B). qPCR of key genes in the independent patient and

healthy cohorts resulted in validation of immune-related (FCRLA,

MMP28, DNASE1L3) and developmental genes (PAX5) (Figure 2C).

These data suggest that broad type 1 IFN, IFN-g and innate

immunity deregulations may contribute to GPA initiation

and progression.
MPA is characterized by transcriptome
aberrations related to neutrophil
degranulation, autophagy and
mRNA splicing

Next, we characterized the transcriptome of MPA patients. A

total of 2,326 DEGs were detected (Figure 3A; Supplementary
A B

C

FIGURE 2

Neutrophil degranulation and type I IFN signaling characterize the GPA transcriptional map. Whole blood transcriptional profiling by RNA sequencing
of patients with GPA vs healthy controls. (A) Heatmap of DEGs (p value <0.05) in whole blood of patients with GPA and healthy controls by
unsupervised hierarchical clustering. (B) Functional enrichment analysis of the deregulated pathways in GPA. (C) Validation of RNA sequencing with
qPCR of selected genes in an independent cohort of GPA patients(Mann Whitney test, two-tailed, p value<0.05). ****p ≤ 0.0001.
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Table 5), enriched in B and T cell mediated immunity, type I IFN and

IFNg, NF-kB signaling and autophagy (Figure 3B). Transcription

factors involved in ribosomal RNA (rRNA) transcription,

transcription initiation and epigenetic modifications, such as UBTF,

TAF1 (40), YY1 (41) or in IFN response, such as IRF8, STAT3 (42)

were identified as potential upstream regulators (Supplementary

Figure 2A). Kinases predicted to regulate DEGs were also defined

(Supplementary Table 6); the druggable kinase targets, glycogen

synthase kinase 3 beta (GSK3B) and casein kinase II subunit alpha

(CSNK2A1) were predicted to act as regulators of 53 and 49

substrates of the DEGs input, respectively.

To further elucidate the mechanisms that dictate MPA, gene

clusters of pathogenetic importance were identified. Perturbations

of mRNA splicing were uncovered by the enrichment analysis of a

101-gene cluster (Supplementary Figure 2B). Additionally, a

“neutrophilic” cluster of 572 genes, including DNASE1L1,

ALOX5, PTAFR, CXCR1, CPPED1, FCGR2B (Supplementary

Figure 2C) and a cluster of mainly IFN related genes, such as

IFI35, OAS1, STAT2, MX2, USP18, IRF7, IFIT1, IFITM1, STAT1,

IRF1 were found (Supplementary Figure 2D). We confirmed by

qPCR several transcription factors (STAT1, GATA2), metabolic

(ALOX15) and complement related genes (C1QC) (Figure 3C).

These data suggest that type I IFN signaling, neutrophil

degranulation and mRNA processing pathways represent three

robust signals in MPA.
Frontiers in Immunology 07
Deregulations of cell cycle checkpoints,
neutrophil degranulation and oxidative
phosphorylation define transcriptional
landscape of active AAV

By comparing the transcriptional profile of active AAV patients

versus their counterparts in remission, we identified 2,373 DEGs

(Figure 4A; Supplementary Table 7).

Pathways related to neutrophil activation, TNF-mediated signaling,

antigen processing and presentation were overrepresented in active

disease (Figure 4B; Supplementary Table 8). Furthermore, genes

involved in IFN signaling, including IFI35, IFI27, ISG20, HLA-F,

HLA-A, HLA-B showed higher expression in active disease.

Biological processes linked to cell cycle checkpoints regulation, such

as p53-independent DNA damage response were enriched in active

status. Of note genes encoding proteasome components, such as

PSMA5, PSMD13, PSMC5, PSMB6, PSMB1 and ubiquitin (UBB),

were upregulated in active disease, suggesting that DNA damage-

induced alterations of proteasome proteolytic activity might be

implicated with active disease (43). Finally, aberrancies of cellular

biochemistry and metabolism (Figure 4B) or mRNA surveillance

mechanisms, such as nonsense-mediated decay (NMD) were

reflected in the active disease transcriptome.

To cope with the complexity of the gene expression data, the X2K

computational pipeline was used (44). Several pleiotropic
A B

C

FIGURE 3

MPA transcriptional networks implicate autophagy and mRNA splicing. Whole blood transcriptional profiling by RNA sequencing of patients with
MPA vs healthy controls. (A) Heatmap of DEGs (p value <0.05) of patients with MPA and healthy controls by unsupervised hierarchical clustering.
(B) Functional enrichment analysis of the deregulated pathways in MPA. (C) Validation of RNA sequencing with qPCR of selected genes in an
independent cohort of MPA patients (Mann Whitney test, two-tailed, p value<0.05). **p ≤ 0.01 and ***p ≤ 0.001.
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transcription factors including ELF1, CREB1, FLI1, MYC, NFYB,

PML were detected (Supplementary Table 9). Interestingly, impaired

expression of FLI1 has been implicated with other autoimmune

disorders, such as SLE (45), whereas the CREB transcription factor

family plays a role in the development andmaintenance of Tregs (46).

KEA returned 134 enriched kinases, including mitogen-activated

protein kinase 1 (MAPK1), cyclin dependent kinase 4 (CDK4),

homeodomain interacting protein kinase 2 (HIPK2) and Janus

kinase 2 (JAK2) (Supplementary Table 10).

Together, deregulation of processes related to neutrophil

degranulation, cell cycle progression and metabolism efficiently

differentiated active disease, suggesting that restoration of their

function might be linked with remission induction.
Humoral immunity gene expression
signatures correlate with ANCA positivity

ANCA are implicated in AAV pathogenesis and furthermore,

ANCA-positive patients display a different clinical course and

response to therapies compared to ANCA-negative patients.

Whether ANCA positivity is accompanied by specific
Frontiers in Immunology 08
transcriptional signature remains elusive. By comparing the blood

transcriptome of ANCA-positive with ANCA-negative patients,

182 DEGs were identified (Figure 5A; Supplementary Table 11).

Pathways related to phagocytosis, activation of classical

complement pathway, Fc-gamma receptor signaling and BCR

activation were prominent in upregulated DEGs (Figure 5B). To

determine genes with high impact on humoral immune responses,

ranked GSEA and leading-edge analysis were performed

(Figure 5C). Genes encoding constant and variable domains of

immunoglobulin heavy chains, such as IGHE, IGHV3-23, IGLV7-

43, IGLV7-43 contributed largely to the core enrichment.

To prioritize the upregulated DEGs, a GeneMANIA-based

weighted interaction network was created (Supplementary

Figure 3A). Highly interconnected nodes included, among others,

genes essential for cytoskeleton organization and cell motility, such

as ACTN4, MYH9, FLNA and TRRAP (47, 48). To capture a more

detailed picture of the gene expression regulation, a X2K network

corresponding to upregulated DEGs was constructed

(Supplementary Figure 3B). Briefly, transcription factors,

including GATA1, GATA2, SMAD4, NFE2L2, FOS were

predicted to orchestrate gene activity.

GWAS analysis of patients with AAV shows that its

pathogenesis has genetic component, distinguishing GPA from

MPA as well as implying that PR3-AAV and MPO-AAV are

dist inct autoimmune syndromes, independent of the

characteristics of the clinical phenotype (11). Therefore, this

genetic impact on the phenotypes of AAV patients would

probably be reflected on the respective transcriptomes. To address

this question, we performed differential gene expression analysis

based on the antibody specificity of the patients. MPO-ANCA

positive transcriptomes (n=15) were compared to PR3-ANCA

positive transcriptomes (n=11). Ultimately, 155 genes (104

upregulated) were differentially expressed between these two

groups of patients (Supplementary Figure 4A, Supplemental

Table 12). GSEA of the DEGs that dissect MPO+/PR3+ AAV

patients pinpoints that they participate in complement activation,

humoral immune response through circulating immunoglobulins,

response to type I IFN, metabolism through oxidative

phosphorylation and production of ROS (Supplementary

Figure 4B; Supplemental Table 13).

Finally, we conclude that transcriptional signatures linked to

aberrant humoral responses constitute a distinct characteristic of

ANCA positive AAV. ANCA(+)vs(-) is discriminating molecular

phenotype of the patients much more robustly than MPO(+)

vsPR3(+).
Co-expression analysis revealed four AAV
molecular endotypes with distinct gene
expression signatures

Conventional differential expression analysis based on clinical

classification often fails to fully explain molecular heterogeneity

underlying immune responses in AAV. By contrast, co-expression

analysis can facilitate a data-driven, clinically independent

regrouping of samples. Using the CoCena² pipeline in our AAV
FIGURE 4

Active disease is accompanied by cell cycle and metabolic regulation.
Whole blood transcriptional profiling by RNA sequencing of patients
with active AAV vs AAV in remission. (A) Heatmap of DEGs (p value
<0.05) of patients with active AAV and AAV in remission by
unsupervised hierarchical clustering. (B) Functional enrichment
analysis of the deregulated pathways in active AAV cohort.
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dataset, seven co-expression modules, which were represented by

color dark grey to orchid were defined (Supplementary Figure 5A).

Hierarchical clustering of the samples according to their group fold

changes (GFCs) for each module, generated four groups of samples

(G1-G4) (Figures 6A, B). To investigate the molecular basis of the

applied re-stratification strategy, the enrichment of each newly

defined group was examined (Figure 6C). Higher expression of

orchid module, which contained genes involved in neutrophil

degranulation, B cell mediated responses and complement

activation distinguished G1 (Supplementary Figure 5B). G3,

encompassing mainly patients with high BVAS score and upper

respiratory tract involvement (Figure 6D), was characterized by
Frontiers in Immunology 09
enrichment of the 131-gene erythropoiesis and platelet

degranulation related dark orange module, along with dampening

of the neutrophilic signature expression. Strikingly, genes of

integrin family (ITGB3, ITGA2B, ITGB5), essential for neutrophil

recruitment into inflamed tissues and phagocytosis were present in

the dark orange module. The ANCA positive group G2, which was

clinically discriminated by increased prevalence of pulmonary

involvement, showed heightened expression of the dark green

module. Detailed functionally enrichment analysis of the dark

green module disclosed extensive deregulation of processes

associated, among others, with oxidative phosphorylation and

neutrophil activation.
FIGURE 5

ANCA positivity is characterized by upregulation of genes related to humoral immunity. Whole blood transcriptional profiling by RNA sequencing of
AAV patients according to their ANCA status (A) Heatmap of DEGs (p value <0.05) of ANCA positive vs ANCA negative patients by unsupervised
hierarchical clustering. (B) Functional enrichment analysis of the upregulated pathways in ANCA positive patients. (C) Ranked GSEA and leading-edge
analysis to determine genes with high impact on humoral immune responses.
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Collectively, co-expression analysis suggested the presence of

distinct AAV molecular endotypes.
Neutrophil and IFN-related pathways
differences between SLE and AAV

Despite its aggressive course, in AAV responses to existing

therapies are more solid than those in SLE. Comparison of the

transcriptomic landscape of both diseases may provide an unbiased,

comprehensive look of the underlying pathogenetic mechanisms

and explain the differences in the natural course and response

to treatment.
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We investigated whether an overlap - in terms of DEGs and

pathogenetic pathways – is present between SLE (20) and AAV

(GPA or MPA). The comparison showed that 41%, 37% and 40% of

the pathways derived of SLE DEGs, were also detected in the “Pan-

vasculitis”, MPA and GPA gene expression signatures, respectively.

(Figures 7A, B). GPA and SLE shared 199 enriched pathways (type I

and II IFN signaling, neutrophil degranulation, cytokine signaling),

whereas 207 biological processes were impaired both in SLE and

MPA (metabolic pathways, autophagy, RNA metabolism and

processing) (Figure 7B).

Since deregulations of neutrophils have emerged as a crucial

driver of SLE and AAV pathogenesis (17, 49–52), we examined

whether the neutrophil activation associated signatures qualitatively
FIGURE 6

Co-expression analysis of the AAV transcriptome defines distinct transcriptional modular patient clusters. (A) Hierarchical clustering of the samples
according to their group fold changes (GFCs) for each module, generated four groups of samples (G1-G4). (B) Alluvial diagram showing the
regrouping of patients according to co-expressed transcripts. (C) Heatmap demonstrating the mean of the GFCs of the gene modules – identified
by the CoCena2 analysis - in each one of the defined patient groups. Enhanced expression of the orchid, maroon, gold and steelblue modules
distinguished G1. Enrichment of the darkorange module characterized G3. Increased expression of the darkgreen module was indicative of G2.
(D) Heatmap depicting the prevalence of the each AAV subtype, the distribution of the clinical and demographic features and the frequency of active
disease across patient groups. *:p<0.05 in Kruskal-Wallis test, Chi-squared test.
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differ between the two clinical entities. To this end, the DEGs

belonging to the SLE neutrophilic signature were compared with the

genes defining the AAV neutrophil signature. Of note, only a weak

transcriptional overlap was observed between the SLE and AAV

neutrophilic signatures, suggesting that distinct mechanisms

underly neutrophilic inflammation in SLE and AAV (Figure 7C).
Discussion

Despite advances in the understanding of the molecular

mechanisms underlying AAV, the disease etiopathogenesis
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remains elusive. Herein, we identified aberrant IFN and

neutrophil transcriptional responses associated with GPA and

MPA. Deregulation of cell cycle checkpoints control, aberrancies

of neutrophil function and cellular metabolism defined a status of

active disease, while inappropriate humoral responses were related

to ANCA positivity. By high-throughput computational methods,

we re-stratified AAV patients based on their gene signatures,

regardless of their clinical annotation. Finally, leveraging one of

the largest SLE RNA sequencing cohort to date, we systematically

explored the transcriptional similarities and differences between

SLE and AAV, reporting more homogeneity and less

“disorganization” in the AAV transcriptome.
FIGURE 7

Comparison of whole blood transcriptome and neutrophil signature between AAV and SLE patients. (A) Venn diagrams representing the overlap
between DEGs in AAV vs SLE, GPA vs SLE and MPA vs SLE. (B) Venn diagrams representing the overlap between involved pathways derived from
gene ontology in AAV vs SLE, GPA vs SLE and MPA vs SLE. (C) Comparison at gene level between SLE and AAV neutrophilic signatures of these two
gene sets.
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Neutrophil activation and degranulation play a key role in AAV

pathogenesis. ANCA-activated neutrophils generate ROS, release

destructive enzymes and extrude NETs at the site of inflammation.

Accordingly, augmented expression of the granulocyte gene signature

is related to active disease and insufficient response to treatment (17,

49–52). Patients with active AAV displayed a robust transcriptomic

neutrophilic signature. Low-density granulocytes (LDGs) – a distinct

subset of neutrophils – exhibit increased capacity to form NETs (23,

53), suggesting that this cell type is likely to serve as a major source of

the identified neutrophilic signature.

Necrotizing granuloma formation is a distinct feature of GPA.

Interestingly, PR3-maturated dendritic cells from GPA patients

prime robust Th1 responses of PR3-specific CD4+ T cells, which

in turn produce large amounts of IFNg (54). It is tempting to

speculate that enrichment of IFNg related pathways in GPA blood

transcriptome might account -at least in part- for the effect of PR3

on the functional maturation of dendritic cells.

Immunometabolism has emerged as a central mechanism for the

regulation of adaptive and innate immune responses. In our study,

patients with active disease exhibited disturbances of pathways

involved in mitochondrial respiratory chain. Although neutrophils

display limited reliance on oxidative phosphorylation at baseline,

there is compelling evidence for the role of oxidative phosphorylation

in NETosis and chemotaxis (55). The latter, coupled with the fact that

excessive NET formation is present in active disease (17, 56) provides

a reasonable interpretation of our findings.

Chronic inflammation favors genomic instability and DNA

damage, setting DNA damage response and repair (DDR/R) in

motion (57–60). Oxidative stress, characterized by excessive

production and defective removal of ROS is a well-defined cause

of DNA damage, leading to single-strand breaks, double-strand

breaks and oxidized purines and pyrimidines (61). We are

proposing that enrichment of cell cycle related pathways found in

patients with active disease, might reflect a cellular response to

DNA lesions, elicited by increased release of ROS by hyperactivated

neutrophils (17, 49–52). Interestingly, genes related to type I IFN

signature, including IRF3 were upregulated in active AAV,

suggesting that accumulation of DNA lesions followed by

induction of the cGAS-STING (stimulator of IFN genes)-IRF3

pathway and production of type I IFN (62) might be operant.

Clinical classification of AAV often fails to comprehensively

recapitulate the mechanistic heterogeneity of the disease. Using co-

expression network analysis, we re-grouped the AAV patients in an

unbiased, data-driven manner. Neutrophil activation transcriptional

signature defined G1, corroborating the molecular taxonomy findings

of Gill et al. (24) Pathways reflecting neutrophil activation were not

uniformly upregulated across the several endotypes, suggesting that

additional mechanistic drivers might be present in AAV. Dysregulation

of the mitochondrial function/oxidative phosphorylation dominated in

patient group G2, whereas G3 demonstrated a transcriptional pattern

indicative of platelet activation and erythropoiesis. Together, our data

suggest that the transcriptome defined endotypes are not apparent with

the current clinical classification or serologic status.

Defining gene expression signatures that differentiate AAV

from SLE is fundamental for the development of accurate

diagnostic biomarkers and might explain the differences in
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response to therapy and risk of flares between these diseases. By

applying an unsupervised, molecular taxonomy approach (20, 63),

we have previously highlighted the broad heterogeneity, extensive

fragmentation and wide reorganization of transcription in SLE (64).

In contrast, the data-driven re-stratification of AAV demonstrated a

significantly less extensive fragmentation of the AAV dataset.

Although differences in sample size may affect our findings, a

relative homogeneity of disease driving mechanisms in AAV,

likely to favorably influence rates of response to treatment could

be implied.

SLE and AAV are both characterized by a strong neutrophilic

transcriptional signature. Interestingly, this signature exhibited

important quantitative and qualitative differences between these

diseases, suggesting that distinct pathophysiological mechanisms

might orchestrate neutrophilic inflammation in SLE and AAV at

different stages of the disease.

Our study has certain limitations. The vast majority of patients

were receiving immunosuppressive treatment at sampling,

including corticosteroids. Limitation associated with whole blood

transcriptomic analysis, such as cellular heterogeneity should also

be taken into consideration. As this study included only Caucasians,

generalization of our results to other ethnic groups is questionable.

We also recognize that the number of involved patients could be

larger. However, our total cohort of AAV patients is similar to other

prominent studies in the field. Second, the number of recruited

patients is dependent on the AAV prevalence and, even though

AAV are rare diseases, approximately one quarter of the AAV

patients recruited in our multicenter registry were included in the

current study. Third, the analytical power of RNA-sequencing can

map both quantitative and qualitative dimensions of gene

expression in an absolute statistically significant manner even

with relatively limited number of patients. Of interest, while

almost three out of four patients of our cohort had GPA, the

respective prevalence of PR3, MPO and negative ANCA in this

subset of patients was 50%, 32% and 18%. The subset of AAV

patients with MPO-positive GPA is not uncommon and it has been

reported in 16% of patients, while other observational studies have

reported even higher prevalence (65–68). Given the relatively small

number of included patients, we cannot rule out the possibility of a

selection bias. Another limitation of this study is summed in the fact

that no serial sampling were included so as to assess the disease

trajectory as to activity and response to therapy. Finally, analysis of

the transcriptome at the single cell level has added great amount of

information about the pathogenic molecular landscape of various

diseases, including autoimmune ones (69, 70). Single-cell studies in

different vasculitides have already shed light on the pathogenesis of

each entity, but for the time being they have focused on Takayasu

arteritis (71), Behcet’s Disease (72) and Kawasaki Disease (73, 74).

Heterogeneity is analyzed in a certain degree in this study, as RNA-

sequencing technology utilized is bulk.

In summary, our data provide a comprehensive assessment of

the transcriptomic landscape of the human AAV in an unbiased

way without preconceived notions, providing novel evidence for its

key differences from the SLE transcriptome. In this context, we

provide additional insights into the pathogenesis, monitoring and

potential targets of therapy.
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SUPPLEMENTARY FIGURE 1

(A) Transcription factors predictive of regulating the GPA gene expression
profile according to the ChIP Enrichment Analysis (ChEA). IRF1, STAT3 and

GATA1 were identified as potential upstream regulators. (B)Gene network
representation of a 222-gene cluster derived from the comparison of GPA

with healthy individuals. Transcripts related to IFN signaling as well as
histocompatibility genes emerged as hub genes.

SUPPLEMENTARY FIGURE 2

| (A) Putative upstream regulators of the MPA signature according to the ChIP

Enrichment Analysis (ChEA). Transcription factors associated with ribosomal
RNA (rRNA) transcription, transcription initiation and epigenetic modifications

were identified as essential regulators of the MPA transcriptional profile. (B)
Enrichment map of the biological processes resulted from the functional

enrichment analysis of a 101-gene cluster derived from the comparison of

MPA with healthy individuals. Terms related to mRNA splicing were found –

among others - to be significantly enriched. (C) Enrichment map of the

biological processes resulted from the functional enrichment analysis of a
572-gene cluster derived from the comparison of MPA with healthy

individuals. Pathways associated with neutrophil degranulation dominated
in this gene-cluster. (D) Enrichment map of the biological processes resulted

from the functional enrichment analysis of a gene cluster derived from the

comparison of MPA with healthy individuals. Genes related to IFN responses
were overrepresented among the DEGs of this gene cluster.

SUPPLEMENTARY FIGURE 3

(A) Gene network representation of the upregulated DEGs resulted from the
comparison of ANCA positive patients with ANCA negative patients. Genes

related to cytoskeleton organization and cell motility emerged as hub genes.(B)
X2K Web based gene interaction network of the upregulated DEGs resulted
from the comparison of ANCA positive patients with ANCA negative patients,

inferred using the findings from transcription factor enrichment analysis,
protein-protein interaction network analysis, and kinase enrichment analysis.

Transcription factors, including GATA1, GATA2, SMAD4, NFE2L2, FOS were
identified as potential regulators of the upregulated DEGs.

SUPPLEMENTARY FIGURE 4

(A)Heatmap of DEGs (p value <0.05) of anti-MPO+ve vs anti-PR3+ve patients

by unsupervised hierarchical clustering.(B) Ranked GSEA resulted from the
comparison of the whole blood transcriptome of anti-MPO+ve versus anti-

PR3+ve patients.
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SUPPLEMENTARY FIGURE 5

(A) CoCena2 analysis-based modules (darkgrey to orchid) of commonly
regulated transcripts and heatmap demonstrating the group fold changes

(GFC) of each sample per module. GFCs of each sample per module were

calculated as previously described in Garantziotis et al. [58]. (B) Functional
enrichment analysis of the CoCena2 analysis derived modules. Briefly,

transcripts included in the orchid module were mainly enriched in
processes related to neutrophil degranulation and B cell mediated

responses. Enrichment analysis of the darkorgange module revealed
pathways associated with erythropoiesis and platelet degranulation. Genes

of darkgreen module were enriched in oxidative phosphorylation and

neutrophil activation.

SUPPLEMENTARY TABLE 1

Primer list used for the qPCR validation of the literature-curated genes.

SUPPLEMENTARY TABLE 2

Differentially expressed genes resulted from the comparison of the whole

blood transcriptome of patients with GPA or MPA versus healthy individuals.

SUPPLEMENTARY TABLE 3

Differentially expressed genes resulted from the comparison of the whole

blood transcriptome of patients with GPA versus healthy individuals.

SUPPLEMENTARY TABLE 4

Functional enrichment analysis of the 222-gene cluster identified by the
unsupervised hierarchical clustering of the DEGs derived from the

comparison of patients with GPA versus healthy individuals.

SUPPLEMENTARY TABLE 5

Differentially expressed genes resulted from the comparison of the whole

blood transcriptome of patients with MPA versus healthy individuals.
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SUPPLEMENTARY TABLE 6

Kinases predictive of regulating the MPA gene expression signature according
to the KEA.

SUPPLEMENTARY TABLE 7

Differentially expressed genes resulted from the comparison of the whole

blood transcriptome of active AAV patients versus AAV patients in remission.

SUPPLEMENTARY TABLE 8

Functional enrichment analysis of the DEGs defining the active AAV gene

expression signature.

SUPPLEMENTARY TABLE 9

Transcription factors predictive of regulating the active disease gene
expression signature according to the X2K Web based transcription factor

enrichment analysis.

SUPPLEMENTARY TABLE 10

Kinases predictive of regulating the active disease gene expression signature
according to the KEA.

SUPPLEMENTARY TABLE 11

Differentially expressed genes resulted from the comparison of the whole
blood transcriptome of ANCA-positive versus ANCA-negative patients.

SUPPLEMENTARY TABLE 12

Differentially expressed genes resulted from the comparison of the whole

blood transcriptome of anti-MPO+ve versus anti-PR3+ve patients.

SUPPLEMENTARY TABLE 13

Ranked GSEA analysis resulted from the comparison of the whole blood

transcriptome of anti-MPO+ve versus anti-PR3+ve patients.
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