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Analysis of IGH allele content
in a sample group of rheumatoid
arthritis patients demonstrates
unrevealed population heterogeneity
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Vivianne Malmström1, Leonid Padyukov1

and Gunilla B. Karlsson Hedestam2*

1Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska
Institutet, Stockholm, Sweden and Karolinska University Hospital, Stockholm, Sweden, 2Department of
Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
Immunoglobulin heavy chain (IGH) germline gene variations influence the B cell

receptor repertoire, with resulting biological consequences such as shaping our

response to infections and altering disease susceptibilities. However, the lack of

information on polymorphism frequencies in the IGH loci at the population level

makes association studies challenging. Here, we genotyped a pilot group of 30

individuals with rheumatoid arthritis (RA) to examine IGH allele content and

frequencies in this group. Eight novel IGHV alleles and one novel IGHJ allele

were identified in the study. 15 cases were haplotypable using heterozygous IGHJ6

or IGHD anchors. One variant, IGHV4-34*01_S0742, was found in three out of 30

cases and included a single nucleotide change resulting in a non-canonical

recombination signal sequence (RSS) heptamer. This variant allele, shown by

haplotype analysis to be non-expressed, was also found in three out of 30

healthy controls and matched a single nucleotide polymorphism (SNP) described

in the 1000 Genomes Project (1KGP) collection with frequencies that varied

between population groups. Our finding of previously unreported alleles in a

relatively small group of individuals with RA illustrates the need for baseline

information about IG allelic frequencies in targeted study groups in preparation

for future analysis of these genes in disease association studies.
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Introduction

The human immune system recognizes an indefinite number of

antigenic determinants through the use of antigen receptors on naïve

T and B cells (TCRs and BCRs). BCRs are transmembrane-bound

immunoglobulin (IG) molecules composed of heavy and light chains,

encoded by rearranged variable (V), diversity (D) and joining (J)

genes, and a constant gene segment (1). The vast sequence diversity of

naive IG heavy chain (IGH) repertoires is mediated by combinatorial

recombination of V, D and J genes at recombination signal sequences

(RSS). These are characterized by a conserved heptamer at the 5’ end,

a 12/23 bp spacer, and a conserved nonamer at the 3’ end. The IG

diversity is further increased by non-templated nucleotide insertions

and/or trimming of nucleotides at the V-D and D-J junctions (2)

during the recombination process, and subsequent somatic

hypermutation (SHM) and isotype switching that increases

antibody-antigen affinity and function.

The IGH locus in humans contains frequent copy number

variations and an abundance of pseudogenes interspersed between

highly similar functional genes, resulting in a challenge for genomic

sequencing (3–5). Traditional short read sequencing approaches,

such as those utilized for the 1000 Genomes Project (1KGP) (6, 7),

result in ambiguous assemblies of the IGH region, limiting the

ability to accurately identify IG gene variations. Furthermore, for

complex genomic regions such as the IGH locus, high coverage

genomic sequencing is low throughput. Scaling up to large numbers

of individuals, such as those in disease cohorts, remains a major

challenge. To date, high coverage sequencing of the IGH locus has

been reported for a limited number of individuals (8, 9), but there

are ongoing studies to extend this analysis for over 100

individuals (10).
In the recent years, the development of next generation

sequencing (NGS) approaches that allow sufficient sequencing

length and depth has enabled opportunities to infer germline alleles

from full-length V(D)J sequences using tools such as IgDiscover (11),

TIgGER (12), Partis (13, 14) or IMPre (15) to determine germline

IGHV and IGHJ sequences at an individual level. NGS-based immune

repertoire sequencing is high throughput offering possibilities to

define allele frequencies in larger groups of individuals and enables

the application of inferred haplotype analysis to reveal gene

duplication and structural variation (16).

The Epidemiological Investigation of Rheumatoid Arthritis

(EIRA) study is a population-based case-control study based on

incident cases of rheumatoid arthritis in Sweden. EIRA comprises

adult individuals in areas from southern and central Sweden from

May 1996 and onwards. Cases were recruited through rheumatology

clinics in the study area (17). Controls were randomly selected from

the population registry shortly after case identification and were

matched on age, sex and residential area. 96% of participating cases

and 60% of participating controls provided blood samples. Cases

and controls were invited to answer an extensive questionnaire. To

date, the study population consists of several thousand cases and

controls. Here, to examine IGH allelic variation in a pilot group

comprising 30 individuals belonging to the EIRA study, in

preparation for larger association studies, we generated IgM

libraries and applied the germline inference tool IgDiscover to

each case.
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Within the 30 case dataset, we classified the IGH germline allelic

genotype of each case, thereby enabling the identification of novel

allelic variants and biased allelic expression in the IgM repertoire by

inferred haplotype analysis. Variants identified were validated using

haplotyping and Sanger sequencing. Most notably, we discovered a

novel IGHV4-34 gene variant, which was present in 10% of the cases

and that could be validated by restriction fragment length

polymorphism analysis. Of critical importance, a set of 30 control

cases was therefore included in the restriction fragment length

polymorphism analysis to delineate the frequency of this allele in

healthy individuals of the same population group. The results

obtained here expand our knowledge of IGH gene diversity and

highlight the importance of extended and population specific

profiling of the baseline content and frequencies of IG alleles prior

to performing disease association studies. Any such population based

allelic frequency bias has the potential to confound association studies

and the EIRA study set of patient samples and matched controls

provides an ideal opportunity to extend our findings.
Results

Personalized genotyping of IGHV alleles

We generated IgM libraries from 30 female individuals without

genetic indication of non-European ethnicity from the EIRA study

using whole blood RNA as the input material. The libraries were

generated by reverse transcription PCR using an IgM gene specific

primer, followed by multiplex PCR using IGHV leader-specific

primers, and subsequent index PCR to add the Illumina adapters,

as previously described (18). After sequencing using the Illumina

MiSeq platform, we used the IgDiscover germline inference tool to

infer individualized genotypes of each case (Figure 1A). We inferred

eight novel IGHV alleles among the 30 individuals as indicated in the

allelic heatmap with an underscore and suffix S number. Four novel

alleles, IGHV1-69*04_S4205, IGHV3-30*02_S4989, IGHV3-

30*03_S8990 and IGHV3-43D*04_S5432, were present in one

individual, two novel alleles, IGHV3-66*03_S2497 and IGHV4-

39*01_S2720, were present in two individuals. IGHV3-13*01_S3164

was present in four individuals and IGHV3-66*03_S1480 was present

in five individuals. The inferred expressed IGHV alleles for all 30

individuals are shown as a heatmap in Figure 1B.
Haplotyping by IGHJ6 revealing
heterozygosity status

As previously shown, approximately 25-30 percent of humans are

heterozygous for the IGHJ6 gene (19). Consistent with this, nine of

the 30 individuals included in this study were found to be

heterozygous with the presence of both IGHJ6*02 and IGHJ6*03.

Since VDJ recombination occurs locally along a single chromosomal

strand, IGHJ6 heterozygosity can be used to anchor IGHV alleles to a

specific haplotype. In this manner IGHV alleles can be revealed as

homozygous, heterozygous, duplicated or deleted (16, 20, 21). In

examining haplotype plots for the haplotypable cases studied here, we

observed an unexpected hemizygosity for IGHV4-34 in two
frontiersin.org
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individuals, H9 and F8. In both cases, we could map one allele,

IGHV4-34*01, to one chromosome while expression of IGHV4-34

was absent from the other chromosome (Figures 2A, B). In the

reference haplotype from individual E2, there is evident IGHV4-

34*01 homozygosity (Figure 2C).
RSS SNP variant associating with decreased
IGHV4-34 expression

IGHV4-34*01 is a very common allele of IGHV4-34, a gene that

shows low levels of allelic variation in previous inference studies (19).
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Absence of an expressed allele on one chromosome can be explained

by either a genomic deletion of IGHV4-34 on that chromosome or by

mechanisms that interfere with either the recombination, expression

or stability of the variant allele.

Genomic amplification and Sanger sequence analysis of IGHV4-

34 in both cases with monoallelic expression (H9 and F8) resulted in

the identification of IGHV4-34 heterozygosity, with two allelic

variants found in both individuals. In each case, these variants

included the common IGHV4-34*01 allele, and a novel variant,

IGHV4-34*01_S0742, that shared 100% sequence identity to

IGHV4-34*01 across the entire V sequence, but contained a single

nucleotide polymorphism (SNP) within the second position of the

seven bp RSS heptamer sequence, resulting in the non-canonical

heptamer sequence, CTCAGTG.

Since 21 of the 30 cases could not be J6 haplotyped we could not

investigate if there were additional cases that were heterozygous for

the IGHV4-34 RSS variant allele using the haplotyping approach.

However, the IGHV4-34 RSS variation results in the introduction of a

restriction site for the enzyme DdeI that recognizes the target

sequence CTNAG that is absent from the IGHV4-34*01 RSS. We

therefore PCR amplified an 84 bp segment spanning the

polymorphism using genomic DNA from all 30 cases. These were

analysed by restriction fragment length polymorphism analysis

(RFLP), which allowed us to identify heterozygous cases containing

this allelic variant. DdeI digestion of an 84bp amplicon produced

three diagnostic bands of 84, 53 and 31bp in heterozygous cases

containing the variant (Figure 3A), while individuals without the

variant yield only the undigested 84 bp product. We found that the

two haplotyped individuals, F8 and H9, as well as one additional

individual, G7, produced the diagnostic bands (Figure 3B;

Supplemental Figure 1 and Supplemental Tables 1, 2),

demonstrating a prevalence of the RSS variant allele, IGHV4-

34*01_S0742, in 10 percent of cases in our study. Updated IGHV

genotypes of H9, F8 and G7 including the non-functional IGHV4-

34*01_S0742 allele are shown in Supplemental Figure 2. The non-

canonical CTCAGTG heptamer is consistent with an interference in

effective VDJ recombination, which explains the IGHV4-34

hemizygosity in these individuals.
Population frequency of
IGHV4-34*01_S0742

The IGHV4-34*01_S0742 RSS variant nucleotide was consistent

with SNP rs148342179 (A/T) (Figure 3C). This SNP was found to be

present in 0.5 percent of all samples of the 1000 Genomes Project

(ALL) and in 1.8 percent of the European samples (EUR). It was not

found in either the African (AFR) or East Asian samples (EAS) and

was only present at low frequency in the other populations such as the

American (AMR: 0.6 percent) and the South Asian (SAS: 0.1 percent).

However, rs148342179 is present at much higher frequency among

Finnish individuals (FIN: 4.5 percent) within the European

population (Figure 3D). To determine the frequency of this allele in

a matched control population, we performed genomic PCR and DdeI

restriction digestion on a set of 30 control samples. We found the

variant was present in three control samples, I6, J5 and K2 and we

validated the presence of the IGHV4-34*01_S0742 allele in all three
B

A

FIGURE 1

Production of immunoglobulin heavy chain genotype information
from 30 individuals. (A) The flowchart shows the process from whole
blood RNA isolation, IgM library preparation and subsequent
IgDiscover analysis. (B) Heatmap showing expressed IGHV alleles for
all 30 individuals.
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individuals by targeted genomic PCR and Sanger sequencing

(Figure 3E and Supplemental Tables 1, 2).
Identifying a novel IGHJ6 allele as an anchor
for haplotyping

In addition to the novel IGHV4-34 allele, we found a novel IGHJ6

allele, IGHJ6*05_S6029, in individual D5. This variant J allele was

characterized by the deletion of a triplet base GGT, which we

validated using targeted genomic PCR and Sanger sequencing. This

deletion is consistent with a SNP variant, rs74454466 and results in a

deletion of a single glycine at the protein level (Figure 4A and

Supplemental Table 2). The presence of this variant IGHJ6 allele

provided an additional heterozygous J6 anchor, enabling IGHV

haplotype analysis of D5 (Figure 4B), thereby allowing J6-anchored
Frontiers in Immunology 04
haplotype analysis of a total of 10 of the 30 individuals. In addition to

the anchoring by J6 gene heterozygosity, it is possible to use IGHD3-

10 or IGHD2-21 heterozygosity to infer V gene haplotypes. In the

current study, this allowed haplotyping of five additional individuals

of the 30 cases. In case D5, we identified a novel IGHD3-10 allele,

IGHD3-10*03_S2198, providing two heterozygous anchors in this

individual. This allowed a direct comparison of using heterozygous J

and D genes for haplotyping, illustrating that the use of J anchors is

preferred as this gives higher sequence counts for each V allele

(Figures 4B, C). Finally, to validate the presence of the novel

IGHJ6*05_S6029 allele, we used a heterozygous V gene, IGHV4-30-

4*01/IGHV4-30-4*08, to haplotype J genes in D5, which clearly

demonstrated the presence of IGHJ6*02 and IGHJ6*05_S6029 on

the two separate chromosomes (Figure 4D).
Common structural variation

At the gene level, several common structural variations were

identified in the 30 individuals. Duplication of the IGHV3-30 gene

was apparent in three individuals and of the IGHV1-69 gene in five

individuals. The complete set of IGHV3-30, IGHV3-30-3, IGHV4-31,

IGHV3-33, IGHV4-30-2 and IGHV4-30-4 genes was present in 14/30

individuals and the genes for IGHV2-70D and IGHV1-69-2 were

present in 13/30 individuals. The IGHV4-38-2 gene was absent in 10

individuals, while the IGHV3-43D gene was absent in 18 individuals.

In addition, the genes for IGHV1-8 and IGHV3-9 were present in a

homozygous state in 25/30 individuals, while the genes for IGHV3-

64D and IGHV5-10-1 were present in homozygous state only in 15/

30 individuals (19). (Figure 5). Overall, our analyses demonstrate an

extensive variation in the IGH locus, at both structural and

allelic levels.
Discussion

Here, we defined the IGH genotype of 30 individuals from the

EIRA study. We found a novel IGHV4-34*01_S0742 allele, which was

present in 10 percent of the individuals. This allele was characterized

by a SNP, rs148342179, in the RSS region, which interfered with

successful recombination, resulting in hemizygous expression of

IGHV4-34. The location of the variant T nucleotide at position 2 of

the RSS heptamer deviates from the canonical CA sequence described

in previous analyses of RSS functionality and may therefore have a

major inhibitory effect on recombination (22), as reflected by the

absence of expression of the allele in cases H9 and F8. In addition to

the inferred haplotype analysis, which shows a hemizygous loss of a

functional IGHV4-34 in heterozygous cases, it is important to note

that an A to T change in the RSS heptamer has not been described for

any functional RSS heptamer in humans or other species. The starting

CA dinucleotide is believed to be critical for the recombination

process as shown by Kim et al. (23), with CA facilitating reduced

base-stacking and enabling bending of the DNA helix during the

recombination process. Consistently, Hu et al. (24) report 107 cryptic

RSS sites, all of which require a CAC triplet at the beginning of the

heptamer RSS sequence. Finally, Hoolehan et al. (25) recently showed

that the CAC triplet is crucial feature in functional RSS heptamers,
B

C

A

FIGURE 2

Haplotype analysis of two individuals based on IGHJ6 heterozygosity.
(A) J6-anchored haplotype analysis of individual H9 reveals IGHV4-34
hemizygosity (red box). (B) J6-anchored haplotype analysis of
individual F8 reveals IGHV4-34 hemizygosity (red box). (C) Reference
haplotype from individual E2 reveals IGHV4-34 homozygosity.
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with all functional non-canonical RSS heptamer sequences showing

nucleotide variation solely in the final four nucleotides.

Although the population origin was not recorded within the

EIRA study, we know that the participants were collected in the

middle and southern parts of Sweden. Data from the 1000 Genomes

Project show that SNP rs148342179 found in our cases was present
Frontiers in Immunology 05
at 4.5 percent in the Finnish population. The population frequency

of IGHV4-34*01_S0742 identified in our study can be expected to

result in around one percent of the Finnish/Scandinavian

population being homozygous for this RSS variant, thereby

resulting in the full absence of IGHV4-34 expression in the

immunoglobulin repertoires in these individuals. Similarly,

homozygous deletions of the IGHV3-30/IGHV4-31 region

(hv3005) were found to be enriched in RA patients (26) and SLE

patients compared to ethnically matched healthy individuals of

Korean (27) or Caucasian (28) ethnicity. This deletion has also

been associated with susceptibility to chronic idiopathic

thrombocytopenic purpura in Caucasians (29).

The IGHV4-34 gene has previously been shown to be associated

with autoimmunity (30), but the specificities responsible for this

remain unclear. IGHV4-34 is highly used in both the IgM and IgG

repertoire (31), and has been identified in studies of autoreactivity

towards type I blood antigens (32). In particular, autoreactive

antibodies encoded by the IGHV4-34 gene have been shown to be

raised in patients with systemic lupus erythematosus (SLE) using the

rat monoclonal antibody 9G4 (33) that has been claimed to recognize

human IGHV4-34. In a repertoire analysis study, Bashford-Rogers

et al. (34) found increased usage of IGHV4-34 in 10 patients with SLE

of mixed Caucasian and Asian ethnicity, 11 patients with eosinophilic

granulomatosis with polyangiitis of mainly northern European

ancestry and 23 patients with Crohn’s disease of mainly northern

European ancestry compared to healthy individuals of mainly

northern European ancestry. In SLE, there is a plethora of

autoreactivities described, however the over-representation of

IGHV4-34 among SLE clonal expansions (35) is insufficient to

conclusively prove specific autoreactivity of that germline gene,

particularly in the context of other diseases. The IGHV4-34*01

allele contains a germline-encoded Asn-X-Ser/Thr motif in its

CDR2 region, which allows N-linked glycosylation at this site (36).

High levels of SHM-introduced variable domain glycans have been

associated with autoantibodies in rheumatoid arthritis (37). At the

same time, it has been shown, that an antibody produced by a self-

reactive B cell had reduced capacity of autoantigen binding, when N-

linked glycosylation was introduced (38). However, we note that in

this particular RA group analyzed, the frequency of the IGHV4-

34*01_S0742 variant exactly matches that of the control group. While

the allele may have functional significance within the population at

large, particularly in the case of homozygosity, we did not find a clear

signal that it was relevant to the RA group in the current study.

A similar observation to the IGHV4-34*01_S0742 allele, where an

RSS polymorphism affected the V gene usage, was reported for a

variant kappa V gene, IGKV2-29D, enriched in a Native American

population. In that study the variant was associated withHaemophilus

influenzae type b susceptibility (39, 40). Of critical importance to this

study was the observation that the frequency of the heterozygous

IGHV4-34 variant in the patient group was identical to that found in

the matched control group. The frequencies of IGHV4-34*01_S0742

in both the Swedish EIRA patient samples and in the healthy controls

studied here are consistent with 1000 Genomes population data

showing SNP rs148342179 is found at highest frequencies in the

Finnish population set, a region geographically and historically

closely linked to Sweden. It is interesting to note that the

haplotypable cases H9 and F8 share an identical string of 14 alleles,
B

C

D

E

A

FIGURE 3

RSS variant analysis in the study group and in populations (A) Scheme
of the restriction fragment length polymorphism is shown. (B) Three
RA individuals contain the RSS variant of the IGHV4-34 gene (IGHV4-
34*01_S0742). (C) Schematic overview of the SNP number associated
with the polymorphism (D) Data from the 1000 Genomes Project
reveals that the coding minus strand has a T/A variant in SNP
rs148342179 that is especially frequent in the Finnish (FIN) population.
(E) Three healthy controls contain the RSS variant of the IGHV4-34
gene (IGHV4-34*01_S0742).
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from IGHV3-30-3*01 to IGHV5-51*01, that encompasses the non-

functional IGHV4-34*01_S0742 allele, indicating the possibility that

the mutation may be historically recent. Further studies may reveal

how common this shared segment is within this and

other populations.

SNP arrays and whole genome sequencing enabling association

studies have revolutionized the field of complex disease genetics.

Genome wide association studies have implicated causal genes and

mechanisms, drug targets, disease biomarkers and risk prediction.

There are more than 150 risk loci reported in genome wide

association studies of rheumatoid arthritis patients from different

populations (41). The class II human leukocyte antigen (HLA) loci

show a very strong association with rheumatoid arthritis. Together

with efficacy of anti-CD20 therapy, rituximab (42), these data indicate

a role for T and B cells in rheumatoid arthritis pathology. Genotyping

the complex IGHV locus with the aim of identifying disease

associated variation is challenging. The process necessitates the

ability to produce accurate and comprehensive genotypes

encompassing genes that are utilized at both low and high

frequency in the B cell repertoire. Structural variations due to gene

deletion or duplication events, in addition novel alleles that may be

present in the population (18) should also be identifiable. High

variation in the IG loci may introduce confounding problems in

association studies if the case and control groups are not population-

stratified (43) since the goal is to identify disease related

polymorphisms that are present at different frequencies in the

disease group compared to the control group. The observation that
Frontiers in Immunology 06
IG genes display great population variation has been discussed with

the respect to limited sampling groups currently represented by

databases (44).

Notably, genome wide association studies currently lack high

quality information for the highly complex immunoglobulin heavy

and light chain loci. As immunoglobulins play an important role as

B cell effector molecules in rheumatoid arthritis, these loci may

equally be a source of genetic variance within the general

population that contributes to disease susceptibility and are

therefore an important target for disease association studies. An

example of such variation was identified in the indigenous

populations of the South Pacific, who expose a high burden of

rheumatic heart disease. The allele IGHV4-61*02 is associated with

an increased risk of rheumatic heart disease (45) in that population

set. Identification of the functional allelic variation in the IGHV

locus is challenging, but feasible using specialized next generation

sequencing methods and computational analysis, as applied in

our studies.

Previous studies on antibody repertoires in rheumatoid arthritis

are to our knowledge mostly limited to studies of heavy chain CDR3

sequences derived from comparatively small libraries constructed

with a limited number of IGHV primers (46). In our studies, we

use a 5’ MTPX primer set that was previously shown to capture a

comprehensive set of IGHV genes and we sequence full-length VDJ

transcripts and determine IG genotypes in each study participant

(18). Individualized genotyping of individuals provides the basis for

analysing IGHV germline gene variation and expressed repertoires in
B

C

D

A

FIGURE 4

Novel IGHJ6 allele as anchor for haplotyping (A) The alignment shows the deletion of a base triplet in the novel IGHJ6*05_S6029 results in a deletion of
a glycine residue at protein level. (B) The novel IGHJ6*05_S6029 variant in combination with the regular IGHJ6*02 allele can be used for IGHV gene
haplotyping in the D5 individual. (C) Case D5 can be haplotyped based on IGHD3-10 gene heterozygosity. (D) The J6 alleles are haplotypable using
heterozygous IGHV4-30-4 alleles as anchors, showing the clear separation of the IGHJ6*05_S6029 allele to a different chromosome compared to the
IGHJ6*02 allele.
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any disease, including rheumatoid arthritis. However, interpreting

IGHV allelic variation can be challenging since there may be

population-based variations in allelic frequencies. Identification of

immunoglobulin gene polymorphisms in a disease study group, even

at high frequency, should not be assumed to be disease related if that

frequency matches that of the population from which the study group

is drawn.

The current study was not designed or powered for association

analysis; however, this can be performed with the larger EIRA study

with matching control samples already available (47). Association

studies for immunoglobulin alleles are so far limited to studies that

are reviewed elsewhere (48, 49); thus the impact of this variation on

disease risks is insufficiently investigated (50, 51). The results of our

pilot investigation demonstrates that population-based genetic

variance of IG alleles is likely to be common (45, 52–54). Without

adequate information of the expected frequencies of immunoglobulin

alleles in the population, erroneous associations may be identified.

Likewise, real associations may become apparent only when accurate

information of allelic frequencies in the target population is

well established.
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Materials and methods

Experimental design

We collected whole blood samples in PAXgene tubes (Qiagen)

from 30 rheumatoid arthritis (RA) patients and genomic DNA

samples from 30 healthy controls. The inclusion criteria were

recruitment within the EIRA (Epidemiological Investigation of

Rheumatoid Arthritis) study (55), no indication from the

Immunochip Array genotyping (Illumina) for non-European

ancestry. Whole blood RNA (extracted with PAXgene Blood

miRNA Kit, PreAnalytiX, Qiagen) was used to prepare cDNA for

subsequent construction of IgM libraries (18) to infer

Immunoglobulin heavy chain genotypes. Sampled DNA was used

to validate inferred novel variants by RFLP and Sanger sequencing.
Patients

All RA patients and healthy controls were recruited as part of the

EIRA study under ethics permits #1023-96 and #2006/476-31/4

obtained from Regionala Etikprövningsnämnden, Stockholm. This

study comprises cases and control subjects from the middle and

southern parts of Sweden. All samples were taken in hospital-based or

privately run rheumatology units in the study area in accordance with

the Helsinki Declaration and written informed consent was given by

each patient before entering the study. In the current study, we

included 30 female RA patients comprising 10 shared epitope-

negative (SE negative) anti-citrullinated protein antibody-negative

(ACPA negative) individuals with a mean age of 62.5 years, eight SE

positive ACPA negative individuals with a mean age of 57.4 years and

12 SE positive ACPA positive individuals with a mean age of

58.7 years.
Library preparation

IgM libraries were prepared according a previously published

protocol (18). In brief, 200 ng of whole blood mRNA was reverse

transcribed using the Sensiscript Reverse Transcription kit (Qiagen)

and reverse gene specific primer with a unique molecular identifier

(UMI) and a universal reverse amplification sequence. 2 µl of purified

(Qiagen MinElute PCR purification kit) cDNA was amplified using

the universal reverse primer and the chain-specific 5’ forward leader

primer mix, using the KAPA HiFi Hotstart Ready Mix (Roche). The

product of around 480bp was gel purified (Qiagen MinElute Gel

Extraction kit). 5 to 10ng of the gel-purified product were used for the

indexing PCR, as detailed previously (18). The forward indexing

primer P5_R1 and the reverse indexing primer P7_R2_I1-27 were

added in 10 cycle PCR reaction using the KAPA HiFi Hotstart Ready

Mix (Roche). The final libraries were purified and quantified

according to Illumina’s manufacturer’s instructions. The Illumina

Version 3 (2x300bp) sequencing kit was employed for sequencing the

libraries with the addition of 13% PhiX174 DNA (12pM) as

positive control.
FIGURE 5

Heatmap showing IGHV genes for all 30 individuals. IGHV genes are
represented on y-axis in chromosomal order with color-key on
the top-right.
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Computational analysis

Library analysis was performed using the IgDiscover version

0.12.4 with default settings. IgDiscover pre-processed the libraries

for quality control and subsequently performed expression analysis

and generated individualized databases. The IMGT reference

database (May 2019) was used (56), with the addition of some

recently described new alleles (57). The databases were aligned

using CLUSTAL W (58) and the trees were plotted using FigTree

(version 1.4.4). Haplotypes were generated using the plotalleles

module of IgDiscover with a chromosomal filter of 25%.
Software

Heatmaps and 1000 Genomes Project data were plotted with R

(version 3.6.3) using R studio (version 1.2.1335). In particular, we

used tidyverse (version 1.3.0), cowplot (version1.1.1) and gplots

(version 3.1.3) packages.
Restriction fragment length polymorphism

84bp long genomic DNA around the polymorphism was

amplified using specific primers designed using BLAT (59) (UCSC

genome browser, Supplemental Table 3). Amplicons were digested by

DdeI (Thermo Fisher Scientific) for 4h at 37°C. Samples were run on a

TBE 20% polyacrylamide gel (Invitrogen) at 100V for 3.5h and

stained with SYBR Green I nucleic acid gel stain (Thermo Fisher

Scientific) in TE buffer (10mM Tris, 1mM EDTA, pH8) for 40 min

while shaking. Images were taken on a Biorad Geldoc instrument.
Genomic validation

Primers encompassing the IGHV4-34 gene and the IGHJ6 gene

were designed using BLAT (UCSC genome browser) to validate the

presence of novel alleles (Supplemental Table 3). 10ng of genomic

DNA template were amplified using KAPA Hifi Hotstart Ready Mix

(Roche). The product was gel purified (Qiagen MinElute Gel

Extractration kit) and ligated to CloneJet pJET 1.2 vector (Thermo

Scientific). 1 to 2µl of ligation product were transformed in XL10-

Gold Ultracompetent Cells (Agilent) following manufacturer’s

instructions. Transformed Cells were grown overnight on a 100

mg/ml ampicillin LB agarose plate before colony screening.

IGHV4-34 gene transformed colonies were screened using the

RFLP primers, IGHJ6 gene transformed colonies were screened for

inserts. Positive colonies were grown in LB medium overnight.

Bacterial cultures were purified with GeneJET Plasmid Miniprep

Kit (Thermo Scientific) and Sanger sequenced (Genewiz). Sanger

sequences of validated alleles have been deposited in the GenBank

under accession numbers OL807662 (IGHV4-34*01_S0742) and

OL807663 (IGHJ6*05_S6029).
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SUPPLEMENTARY FIGURE 1

Restriction digestion of a PCR product comprising the variant position identified
in IGHV4-34*01_S0742 (rs148342179) shows the diagnostic 53 and 31bp bands

in individuals F8 and G7, and H9.

SUPPLEMENTARY FIGURE 2

IGHV genotypes of H9, F8 and G7 including the IGHV4-34*01_S0742 allele.
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