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Background: Currently, targeting immune checkpoint molecules holds great

promise for triple-negative breast cancer (TNBC). However, the expression

landscape of immune checkpoint genes (ICGs) in TNBC remains largely unknown.

Method: Herein, we systematically investigated the ICGs expression patterns in

422 TNBC samples. We evaluated the ICGs molecular typing based on the ICGs

expression profile and explored the associations between ICGs molecular

subtypes and tumor immune characteristics, clinical significance, and response

to immune checkpoint inhibitors (ICIs).

Results: Two ICGs clusters and two ICGs-related gene clusters were determined,

which were involved in different survival outcomes, biological roles and infiltration

levels of immune cells. We established a quantification system ICGs riskscore

(named IRS) to assess the ICGs expression patterns for individuals. TNBC patients

with lower IRS were characterized by increased immune cell infiltration, favorable

clinical outcomes and high sensitivity to ICIs therapy. We also developed a

nomogram model combining clinicopathological variables to predict overall

survival in TNBC. Genomic feature analysis revealed that high IRS group

presented an increased tumor mutation burden compared with the low IRS group.

Conclusion: Collectively, dissecting the ICGs expression patterns not only

provides a new insight into TNBC subtypes but also deepens the understanding

of ICGs in the tumor immune microenvironment.
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Introduction

As reported in the GLOBOCAN 2020 survey, the number of

breast cancer (BC) has recently overtaken lung cancer as the most

common cancer type worldwide and has become the leading cause of

cancer death in women (1). It has been reported that triple negative

breast cancer (TNBC) makes up approximately 15%-20% of all BC

patients, which is characterized by estrogen (ER), progesterone (PR),

and human epidermal growth factor receptor-2 (HER2) negativity

(2). Due to the variety and heterogeneity, distinct molecular subtypes

of TNBC are still not completely understood. As defined by Lehmann

et al., the molecular subtypes of TNBC consist of basal-like 1 (BL1),

basal-like 2 (BL2), mesenchymal (M) and luminal androgen receptor

(LAR) (3). According to the components of the tumor immune

microenvironment, TNBC has been divided into four distinct

subsets including fully inflamed (FI), stroma restricted (SR),

margin-restricted (MR), and immune desert (ID) (4, 5). Different

molecular subtypes of TNBC have different etiology, prognosis and

clinical-pathological characteristics. Several clinical trials are ongoing

to prove the the clinical applicability and effect of subtyping-based

targeted therapy for refractory metastatic TNBC (6, 7). Therefore,

more efforts are still needed to advance the TNBC subtypes research.

As TNBC lacks established therapeutic targets, surgery and

chemotherapy remain the preferred treatment modality (8).

However, the efficacy of chemotherapy varies among individuals.

Furthermore, TNBC presents a more aggressive phenotype than other

BC subtypes and most patients ultimately succumb to tumor

recurrence and metastasis (9). In recent years, immunotherapy has

emerged as an attractive alternative for conventional cancer

treatments (10). TNBC, the most immunogenic subtype of BC, has

been regarded as the most suitable candidate for immunotherapy

(11). The effect of immunotherapies on early-stage TNBC and

metastatic TNBC has recently been studied in several clinical trials

(12, 13). However, only a minority of TNBC patients achieve durable

clinical benefits from anti-PD-1/L1 treatments (14). Hence,

identification of the most suitable subgroups of TNBC patients who

can truly benefit from immunotherapy is urgently required.

Immune check-point inhibitors (ICIs) are becoming the most

effective immunotherapeutic approaches for cancer treatments (15).

ICIs aim to target immune check-point genes (ICGs) to reverse the

immunosuppressive tumor environment, and thus enhance the anti-

tumor responses by activating infiltrating immune cells (16). Indeed,

the efficacy of immunotherapy largely depends on the host tumor

microenvironment and immune status (17). Therefore, the

development of quantitative biomarkers for individual immune status

is warranted. Currently, the ICGs expression patterns have been

investigated in lung adenocarcinoma and gastric cancer (18, 19).

However, the effect of ICGs patterns on the immune characteristics

of TNBC remains unclear. In this study, we explored the ICGs

expression profiles and identified distinct ICGs molecular typing in

TNBC. We also established a risk scoring system (IRS) to evaluate

immune function in individual patients. Our results dissected the role
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of ICGs expression patterns in molecular subtypes, tumor-infiltrating

immune cells and prognosis evaluation.
Materials and methods

TNBC dataset and preprocessing

In this study, the transcriptome expression data, and clinical

characteristics of TNBC patients were derived from TCGA database

(https://cancergenome.nih.gov/) and METABRIC dataset. The

METABRIC datasets are derived from the UK-Canada METABRIC

project (20). The detail clinical information of TNBC in TCGA cohort

and METABRIC cohort was summarized in Supplementary Table S1.

A total of 422 TNBC tumor samples were enrolled for analysis

including the TCGA-TNBC dataset. (N = 123) and METABRIC-

TNBC (N = 299). The list of ICGs was acquired according to a

previous report (21). The normalized matrix expression and clinical

data of METABRIC-TNBC were obtained from the cBioPotal website

(http://www.cbioportal.org/) (22). For the TCGA-TNBC data, the

values of the RNA sequencing data (FPKM) were converted into

transcripts per kilobase million (TPM) values. We obtained somatic

mutation profiles from TNBC patients from the TCGA data portal. In

addition, TNBC patients who missed corresponding clinical data were

excluded from further analyses.
Construction of ICGs expression clusters by
consensus molecular clustering

We combined the transcriptome data of TCGA-TNBC and

METABRIC-TNBC into final expression data. Batch effect of

individual datasets was removed using “ComBat” in R. The

expression of ICGs was extracted for further analysis. To identify

distinct ICGs expression patterns, unsupervised clustering analysis

was applied based on the expression of ICGs. We established the

optimal cluster number based on the cophenetic correlation, dispersion,

silhouette, and other factors. Consensus clustering was performed with

the package “ConsensusClusterPlus” with 1000 times repetitions (23).
Gene set variation analysis and immune cell
infiltration analysis

To further understand the biological phenomena in different TNBC

ICG clusters, the R package “gsva” was used to perform GSVA. We

retrieved the gene sets ‘c2.cp.kegg.v7.2.symbols’ and ‘h.all.v7.4.symbols’

from the MSigDB database (http://www.gsea-msigdb.org/gsea/

downloads.jsp ). We selected the top 20 biological terms with

adjusted P < 0:05. To quantify the enrichment score of 23 immune

cells infiltrating in different TNBC ICG clusters, we performed a single-

sample gene set enrichment analysis (ssGSEA) (24). The enrichment

scores were rescaled to a continuous scale of 0 to 1.
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Generation of ICGs gene signature

Our differentially expressed genes (DEGs) screening among

different ICGs clusters was performed using the “limma” R package

with the criteria of adjusted P < 0.05. GO and KEGG pathways

analyses were applied to evaluate the biological processes in the

DEGs, which was achieved with the “ggplot2,” “clusterProfiler,”

“org.Hs.eg.db” and “enrichplot” R packages (25, 26). The results

were visualized with the top 30 biological terms. Then, we selected

prognostic value of DEGs using a univariate Cox regression model.

The TNBC ICGs gene clusters were constructed based on the

expression of prognostic DEGs.
Construction of ICGs risk
score by LASSO regression

The least absolute shrinkage and selection operator (LASSO)

method was applied to evaluate the ICGs expression patterns with a

quantization index. The most correlated genes were identified to

construct IRS model using the R package “glmnet”. We applied 10-

fold cross-validation to optimize the model and reduce overfitting. In

this model, a prognostic risk score was computed as follows: IRS=

Expression of gene 1 *Coef 1 + Expression of gene 2 *Coef 2 +

Expression of gene 3 *Coef 3 + Expression of gene n *Coef n. In our

study, we divided the TNBC patients into high- and low-risk

subgroups based on the median risk score for subsequent study.

Dimension reduction analysis was performed by the techniques of

principal component analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE). A receiver operating characteristic

curve (ROC curve) was drawn with the R package “survivalROC”

(27). By using the “survival” and “survminer” packages in R, survival

curves were plotted for the high- and low-risk groups.
Establishment of a predictive nomogram
and mutation analysis

It has been widely accepted that nomograms predict cancer

prognosis (28). A nomogram was constructed by integrating

variables that could serve as independent prognostic factors

including tumor stage, age, tumor size, node status and IRS model.

We calculated a nomogram score to predict the probability of 1-, 3-,

and 5 years OS (overall survival) of TNBC. Assessment of the

calibration capability of the nomogram was performed by plotting

calibration curves. Regarding the effect of IRS on TNBC mutation

profiles, different IRS groups of mutations were visualized using the

‘maftools’ package in R.
Evaluation of immune infiltration
characteristics and ICIs therapy

To estimate the immune cells composition in TNBC samples, the

CIBERSORT analyses were performed on expression data to calculate

the abundance of 22 types of immune cells (29). The Wilcoxon rank-

sum test was adopted to detect the difference of 22 immune cells in the
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high- and low-risk TNBC groups. The estimator, immune, and

stromal scores were calculated for TNBC samples based on the

ESTIMATE algorithm of the “estimate” package (30). In addition,

we further compared the immune function in the high- and low-risk

TNBC groups. Analyses of IRS model genes and CD8 T cells

infiltration were carried out using the immune gene module in the

TIMER2 database (http://timer.comp-genomics.org/) (31). On the

basis of mRNA expression, tumor stemness was found to be measured

by RNA stemness score (RNAss) and DNA stemness score (DNAss)

(32). Correlation analysis between IRS and RNAss or DNAss was

tested by Spearman’s rank correlation test. To estimate the immune

state of TCGA-TNBC samples, immunophenoscore (IPS) was

calculated from an online database (https://tcia.at/) (33). Analysis of

IPS in different IRS groups was conducted based on the status of

CTLA-4 and PD-1 expression. We predicted chemotherapeutic

response in patients using the R package ‘pRRophetic’ (34).
Statistical analysis

Analyses of all data in this study were performed using R software

(version 4.1.1). Comparisons between two groups were conducted

using Wilcoxon rank sum tests. We performed Kaplan-Meier and

log-rank survival analyses on a univariate basis. The correlations were

calculated using Spearman’s rank correlation. P values less than 0.05

were considered statistically significant.
Results

ICGs expression patterns in TNBC

Typically, solid cancers exploit several mechanisms to escape

immune surveillance. Among them, overexpressed ICGs in cancer

cells are the key regulators to escape the body’s immune system. It is

well recognized that the antitumor response is tightly regulated by

checkpoint genes between tumor cells and immune cells (35). A

complex and finely tuned signaling network of ICGs was presented by

the STRING database (Figure 1A). The prognostic value of ICGs in

TNBC was evaluated by univariate Cox regression analysis and

Kaplan–Meier (KM) log-rank test (Supplementary Table S2). We

next combined TCGA-TNBC and METABRIC-TNBC datasets to

perform consensus clustering analysis. Unsupervised clustering

analysis revealed two distinct ICGs clusters in TNBC (Figure 1B,

C). Interestingly, TNBC patients with ICGscluster-B had a longer

survival time than ICGscluster-A (Figures 1D). ICGs expression

profile analyses found that ICGscluster-B subgroup exhibited higher

expression of checkpoint genes compared to ICGscluster-A

group (Figure 1E).
Construction of ICGs-related
gene clusters in TNBC

Principal component analysis was conducted to classify TNBC

samples into two classes with clear differences after dimensionality

reduction (Figure 2A). To further explore the biological behaviors
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between different ICGs cluster, the results of GSVA revealed that

ICGscluster-B was highly enriched in various immune-related

pathways, such as natural killer (NK) cell mediated cytotoxicity, T

cell receptor signaling pathway, interferon gamma response and IL-

6 JAK STAT3 signaling (Figures 2B, C). To further characterize the

immune infiltration in different ICGs clusters, we applied the

ssGSEA method in TNBC samples. As shown in Figure 2D,

ICGscluster-B patients had a higher abundance of antitumor

immune cells including activated CD8 T cell, activated dendritic

cell and so on. We next identified ICGs-related DEGs using the

“limma” algorithm and 570 DEGs were recognized between two

ICGs clusters (Supplementary Table S3). GO and KEGG enrichment

analyses displayed that these ICGs-related DEGs were mainly

involved in T cell activation, MHC protein complexs, immune

receptor activity and cytokine−cytokine receptor interactions

(Supplementary Figures S1 and S2). The univariate cox regression

analysis was applied to screen the prognostic ICGs-related DEGs

(Supplementary Table S4). We next conducted the consensus

clustering analysis and the results showed two ICGs geneClusters

(named ICGs-G1 and ICGs-G2) based on the expression of

prognostic ICGs-related DEGs (Figures 2E, F). Survival analysis

indicated that patients with ICGs-G2 were associated with better

prognosis (Figure 2G). The heat plot showed that ICGs-G2 patients

were largely overlapped with ICGscluster-B subtype (Figure 2H). As

expected, higher expression of ICGs was observed in ICGs-G2

subtype compared to ICGs-G1 subgroup (Figure 2I).
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Generation of an ICGs risk model

We next constructed a Lasso logistic regression model to assess

the immune status for individual TNBC patients. Four ICGs-related

genes were selected to generate the best risk score model (named

IRS) (Figures 3A, B). The riskscore was calculated by the formula

IRS = expression level of FGD3 *(-0.22) + expression level of

TMEM176A*(-0.19) + expression level of CD1B*(-0.57) +

expression level of MATK*(-0.24). We also noted that TNBC

patients with ICGs-G2 subtype or ICGscluster-B subtype had a

lower IRS, indicating that IRS was a poor prognostic indicator

(Figures 3C, D). The relationships among ICGs clusters, ICGs

geneCluster and IRS were illustrated as Figure 3E. The

ICGscluster-B subtype in ICGs-G2 subpopulation was linked to a

low IRS. Finally, we found TNBC patients with a low IRS had higher

expression of ICGs than those with a high IRS (Figure 3F).
Validation of the efficacy of ICGs-related
riskscore model

We then divided the TNBC cohort into a training cohort (N =

211) and a validation cohort (N = 209). The clinical characteristics of

two cohorts were summarized in Supplementary Table S5. Patients

were classified into low-risk and high-risk groups based on their

median risk scores. In both the training and validation cohort, TNBC
A B

D E

C

FIGURE 1

ICGs expression patterns in TNBC. (A) Protein interaction network of ICGs by STRING database. (B, C) Consensus clustering matrix for k = 3 based on
ICG expression. (D) Kaplan-Meier curves of OS for two TNBC subtypes. The numbers of patients in ICGscluster-A and ICGscluster-B subtypes are 230
and 190, respectively. (E) Unsupervised clustering of ICGs expression to divide TNBC patients into two ICGs subtypes. The ICGclusters, datasets, age,
stage and survival status were used as patient annotations.
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patients with high IRS predicted shorter OS than those with low IRS

(Figures 4A, B). Time-dependent ROC curves also exhibited excellent

stability of our IRS model in the training cohort (5‐year AUC, 0.705;

3‐year AUC, 0.684; 1‐year AUC, 0.746; Figure 4C) and validation

cohort (5‐year AUC, 0.606; 3‐year AUC, 0.644; 1‐year AUC, 0.605;

Figure 4D). The distribution of IRS model in training cohort and
Frontiers in Immunology 05
validation cohort was presented in Figures 4E, F. Moreover, the

scatter plot showed that the mortality rate of TNBC patients

increased with the increased level of IRS in both the training cohort

and validation cohort (Figures 4G, H). As shown in Figures 4I, J, high

expression of FGD3, TMEM176A and MATK was observed in low

IRS group.
A B

D

E F G

H

C

I

FIGURE 2

Identification of ICGs-related geneclusters in TNBC. (A) Principal component analysis of two immune checkpoint patterns, showing a remarkable
difference between different patterns. (B) Heat map showed the GSVA score of KEGG pathways in two ICGs subtypes. Red indicated activated pathways,
and blue indicated inhibited pathways. (C) Heat map showed the GSVA score of Hallmark signature in two ICGs subtypes. Red indicated high enrichment
Hallmark. (D) The abundance of each infiltrating immune cells in two ICGs clusters. The lines in the boxes indicated the median value. The top and
bottom ends of the boxes were interquartile range of values. (E, F) The identification of ICGs geneClusters by consensus clustering matrix for k = 2.
(G) The survival curves of the ICGs geneClusters were plotted by the Kaplan-Meier plotter. The numbers of patients in geneCluster G1 and geneCluster
G2 subtypes are 219 and 201. (H) Unsupervised clustering of prognostic ICGs-related DEGs to divide patients into two genomic subtypes. The ICGs
geneClusters, ICGs clusters, datasets, age stage and survival status were used as patient annotations. (I) The expression of ICGs in two ICGs geneClusters
(*P < 0.05; **P < 0.01; ***P < 0.001).
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Construction of nomogram
for predicting OS

PCA and t-SNE methods were applied to separate two risk

subgroups. As shown in Figures 5A–D, different risk subgroups

were divided into two obvious directions. To explore whether the

effect of our IRS model was an independent factor, we combined

clinicopathological variables including age, stage tumor size and node

status with IRS to perform Cox analyses. Univariable Cox regression

analysis showed that IRS was a high-risk factor for TNBC patients

[HR =1.714, 95% CI (1.323, 2.221), p < 0.001, Figure 5E]. Multivariate

Cox analysis further supported that IRS could serve as an adverse
Frontiers in Immunology 06
independent prognostic factor [HR=1.544, 95% CI (1.173, 2.003), p

=0.002, Figure 5F]. We also performed multivariable Cox-regression

analysis adjusting for stage, IRS and the infiltration of immune cells.

The results further confirmed the independent prognostic role of IRS

(Supplementary Figure S3). We next developed a nomogram

combining clinicopathological features and IRS model to help

clinicians to predict the survival of TNBC patients. Calibration

curves for OS prediction at 1, 3, and 5 years were as shown in

Figure 5G. In addition, if the total nomogram score of one patient was

138 points, the estimated survival probabilities for this patient were

9 6 . 8% , 7 7 . 5% , a n d 6 6 . 2% f o r 1 , 3 , a n d 5 y e a r s ,

respectively (Figure 5H).
A B

D E

F

C

FIGURE 3

Construction of ICGs-related risk model. (A) Elucidation for LASSO coefficient profiles of prognostic ICGs. (B) The least absolute shrinkage was
performed and construction of selection operator (LASSO) regression model. (C) The correlation between IRS model and ICGs geneClusters. (D) The
correlation between IRS model and ICGs cluster. (E) Alluvial diagram of ICGs clusters in groups with different geneClusters, IRS, and survival status. (F)
The expression of ICGs in high and low IRS group (*P < 0.05; **P < 0.01; ***P < 0.001).
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Immune characteristics and genomic
features in different risk subgroups

We further investigated the immune cells infiltration in different

risk subgroups by CIBERSORT algorithm. As shown in Figure 6A,

the expression of CD1B was strongly associated with the infiltration
Frontiers in Immunology 07
of CD8 T cells, T help cells and resting dendritic cells. FBP1 had a

strong correlation with infiltration of CD8 T cells, memory CD4 T

cells and M1 macrophages. Furthermore, a strong positive

correlation was observed between the infiltration of CD8 T cells,

memory CD4 T cells and activated NK cells. Overall, IRS was

negatively correlated with the infiltration of activated NK cells
A B

D

E F

G

I

H

J

C

FIGURE 4

Validation of the efficacy of ICGs-related riskscore model. (A, B) Kaplan–Meier curves for OS in TNBC patients according to the riskscore stratification in
the training cohort and validation cohort. (C, D) Time-dependent ROC analysis for OS prediction at 1 year, 3 year and 5 year in TNBC patients in the
training cohort and validation cohort. (E, F) Distribution of risk score for the training group and validation cohort. (G, H) Distribution of survival time of
patients in the training and validation cohort. (I, J) Heatmap depicting the expression of FGD3, TMEM176A, CD1B and MATK between high IRSgroup and
the low IRSgroup in training and validation group.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1073550
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1073550
and CD8 T cells (Figure 6B, C). M0 macrophages and M2

macrophage cells infiltration were positively correlated with IRS.

However, M1 macrophage cells infiltration was negatively

correlated with IRS (Supplementary Figure S4). We also calculated

the relationship between CD8 T cells infiltration and IRS model

genes using other algorithms (Supplementary Figure S5). The results

of the ESTIMATE algorithm also demonstrated that TNBC patients

with a low IRS had a higher ImmuneScore and ESTIMATEScore

(Figure 6D). In addition, the immune function in low IRS patients

might be attributed to the activation of various immune cells

(Figure 6E). High IRS was proven to be positively associated with

the stemness index DNAss and RNAss (Supplementary Figure S6).

Then, we investigated the genomic features in different IRS

subgroups of TCGA-TNBC cohort . The water fa l l p lot

demonstrated that high IRS group presented an increased tumor

mutation burden compared with the low IRS group (Figures 6F,

6G). TTN (33% vs.12%) had higher mutation rates in high

IRS group.
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Predictive value of ICGs-related riskscore
model in ICIs therapy

Associations of clinical parameters and the IRS model were also

explored. As the Figure 7A shown, our IRS model was significantly

correlated with tumor stage and tumor size. We next adopted the IPS

score to assess the potential clinical efficacy of ICIs in different IRS

subgroups. The IPS score is a valid indicator as a measure of

immunogenicity. There was no significant difference for TNBC

patients with PD-1 negative expression (Figures 7B, D). More

remarkably, low IRS might serve as a valid candidate biomarker for

ICIs in patients with PD-1 positive expression (Figures 7C, E). Although

TNBC patients with a high IRSmight not be the most suitable candidates

for ICIs therapy, drug sensitivity analysis revealed that TNBC patients

with a high IRS were more sensitive to several targeted drugs or small

molecule inhibitors such as lapatinib, GW.441756, A.443654, BIBW2992,

Bicalutamide, GNF. 2, NSC.87877 and PF.4708671 (Figures 7F, G and

Supplementary Figure S7).
A B D

E F

G H

C

FIGURE 5

Construction of Nomogram for predicting OS in TNBC. (A, B) PCA analysis and t-SNE analysis of TNBC patients based on IRS model for the training
cohort. (C, D) PCA analysis and t-SNE analysis of TNBC patients based on IRS model for the validation cohort. (E) Forest plot for IRS and clinical features
in TNBC patients by univariate analyses. (F) The multivariate Cox forest plot of IRS and clinical characteristics. (G) Calibration curves for predicting
patients’ OS at 1-, 3-, and 5-year in TNBC patients based on the nomogram. (H) Nomogram depending on the IRS and other clinicopathologic feature
predicting the 1-, 3-, and 5-year overall survival for TNBC patients.
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Discussion

Immune checkpoint blockade (ICB), an emerging immunotherapy,

has been approved to treat multiple cancers (36–38). Although

immunotherapy has been widely used in clinical practice, immune-

cold cancers still lack a positive clinical outcome (5). TNBC are believed

to be more immunogenic than other BC subtypes, but TNBC patients
Frontiers in Immunology 09
often show heterogeneous responses to ICB therapy. Therefore, the

identification of suitable TNBC populations and effective therapeutic

targets will develop a novel strategy to improve anti-tumor immune

activities. Our study aimed to depict the immune checkpoints expression

patterns from a molecular subtyping viewpoint and explore the

immunotherapeutic value of ICGs patterns in TNBC. Here, we first

investigated the expression of ICGs and evaluated the prognostic value
A B

D E

F G

C

FIGURE 6

Immune Characteristics and genomic features of ICGs-related riskscore model. (A) Heatmap depicting the correlations between the expression of FGD3,
TMEM176A, CD1B, MATK and 22 immune infiltration cells. (B) Correlation analysis between IRS and the level of activated NK cells infiltration. (C)
Correlation analysis between IRS and the level of CD8 T cells infiltration. (D) Following the ESTIMATE algorithm, the level of stromal, immune, and
ESTIMATE scores in different IRS groups. (E) Immune function analysis in different IRS groups. (F, G) The waterfall plot of showed the somatic mutation
rate in low IRS and high IRS group. Each column indicated an individual sample. The upper barplot was the tumor mutation burden for an individual
sample. The right histogram generalized the percentage of each variant type. The number on the right indicated the mutation frequency for each gene.
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of ICGs in TNBC. Then, ICGs-related subtypes were identified based on

the expression of ICGs and ICG-related DEGs. Finally, we constructed a

quantitative scoring system IRS and investigated its role in immune cell

infiltrates and ICB treatment.

In this study, we first extracted the expression of 53 ICGs from

transcriptome data of TCGA-TNBC and depicted the interaction

network of ICGs. Inhibitory checkpoint molecules often function as

immune inhibitory signaling in the immune system (39). The levels of

inhibitory checkpoint molecules have been reported to be involved in

predicting patient response to immunotherapy (40). We next revealed
Frontiers in Immunology 10
two ICG subtypes that were associated with patients’ survival outcomes

and immune cells infiltration. Here, our ICGs subtypes were identified

based on the expression of ICGs in TNBC. However, extensive studies

have revealed the heterogeneity of molecular subtypes of TNBC. Gruosso

et al. proposed that TNBC could be classified into four phenotypes: fully

inflamed, stroma restricted, margin-restricted, and immune desert (4).

Jiang et al. defined TNBC tumors into the following four transcriptional

subtypes: luminal androgen receptor, immunomodulatory, basal-like

immune-suppressed, and mesenchymal-like (41). For the above two

molecular typing, subtypes of fully inflamed and immunomodulatory
A
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FIGURE 7

Predictive value of ICGs-related riskscore model in ICIs therapy. (A) Heatmap showing the relationship between IRS and clinicopathological parameter.
(B–E) The relative distribution of IPS identified by the status of CTLA-4 or PD-1 was compared between high IRS group versus low IRS group in TCGA-
TNBC cohort. (F, G) Drug sensitivity analysis in different IRS groups.
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were characterized by high levels of immune genes or pathways, and

satisfactory clinical outcomes. Our results showed that TNBC patients

with ICGscluster-B often presented longer OS and higher expression of

ICGs than those with ICGsclusters-A.

We further compared transcriptome differences between two ICGs

clusters and identified two ICG-related gene subgroups. Considering the

individual heterogeneity of TNBC, we established a quantification

system IRS to assess the ICGs expression patterns for individuals.

Oncotype DX, MammaPrint, and EndoPred are the promising

multigene signatures currently available to diagnose recurrence of

different BC cancer subtypes (42). So far, no clinical signatures have

yet been made to evaluate the immune response in BC. Nevertheless,

some gene signatures involved in the immune response in BC have been

identified. Tumor-infiltrating lymphocytes (TILs) are the most widely

studied immune cells in this context. A large, randomized trial have

shown that increasing TIL levels in primary biopsies is associated with

better OS and fewer recurrences (43). In addition, Yang et al. identified

an immune-enhanced type of BC using 17-gene immune signature,

which was associated with improved patient outcomes (44). Our

analyses found that lower IRS was correlated with a favorable

outcome, indicating the IRS signature was a negative indicator in

TNBC. To further verify the accuracy and effectiveness of our IRS

model, we compared the survival outcomes, ROC values and risk curves

in the training and test cohort. The validation and training sets showed

little variation in these parameters, suggesting that our IRS signature has

good prediction performance, universality, and accuracy.

In this study, FGD3, TMEM176A, CD1B andMATK were applied to

construct our ICGs-related Riskscore. The Facio-Genital Dysplasia 3 gene

(FGD3) has been identified as a guanine nucleotide exchange factor for cell

division control protein 42 (45). Guo et al. reported that FGD3 inhibited

themalignant biological behavior of pancreatic cancer cell by FGD3/HSF4/

p65 signaling axis (46). Low expression of FGD3 was an independent poor

prognostic factor for overall survival and disease-free survival in young BC

patients (47). TMEM176A, located on chromosome 7, belongs to the

membrane-spanning 4A gene family (48). Human TMEM176A was

initially discovered as a candidate in a screen looking for tumor-

associated antigens in human hepatocellular carcinoma (HCC) (49).

Recently, the epigenetic regulation of TMEM176A has been uncovered

in cancer. The study of Li et al. revealed that reduced expression of

TMEM176A in HCC was caused by hypermethylation of the promoter

region, which might serve as a novel diagnostic and prognostic marker

(50). In human lung cancer, it was reported that TMEM176A potently

inhibited the growth of lung cancer cells both in vitro and in vivo by

inhibiting ERK signaling (11). CD1B plays a critical role in regulating the T

cells immune response to self- and foreign-lipid antigens (51). The genetic

variation of CD1B correlated with biochemical recurrence in patients with

localized prostate cancer (52). An increasing body of bioinformatics

analyses has identified CD1B as prognostic biomarker in colon cancer

and lung cancer (53–56). MATK has been found to phosphorylate and

inhibit Src family kinases, and play an inhibitory role in cell growth and

proliferation of T-cells (57). Colorectal cancer often exhibits epigenetic

inactivation of CHK/MATK, which might promote proliferation and

invasiveness through SFK-dependent and independent mechanisms (58).

However, the role of FGD3, TMEM176A, CD1B and MATK in anti‐

tumor immunity remains unclear.

Previous studies indicated that baseline infiltrating lymphocytes

(TILs) could provide independent prognostic value in patients with
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TNBC in the absence of ICIs therapies or adjuvant chemotherapy (59,

60). A high number of TILs predicts favorable prognosis and

pathological complete response in TNBC and HER2-enriched BC

subtypes (61). TNBC patients with sparse or unresponsive tumor-

infiltrating lymphocytes have limited efficacy of ICIs treatment (62).

In the present study, patients with low IRS tended to have a higher

infiltrating of CD8 T cells, activated NK cells and M1 Macrophages,

which indicated that these patients had a better long-term survival

than patients with high IRS and might be more suitable for ICI

therapies. Regarding the effect of IRS on mutation burden in TNBC,

we found that the low IRS subgroup had a lower mutation rate than

the high IRS subgroup. The role of tumor mutation burden (TMB) in

TNBC is controversial. The prevailing view is that high TMB patients

exhibit a better survival outcome and higher immune cell infiltration

than low TMB patients (63). However, some studies reported that

TMB in TNBC showed no significant associations with immune cell

infiltration (64, 65).

Further analysis revealed that our IRS was related to tumor size

and disease stage, which indicated IRS could also serve as an indicator

of tumor progression in TNBC. Finally, we verified the predictive

value of the IRS model by IPS predictor. A low IRS could be suitable

as an indicator for efficiency of immunotherapy in the TCGA-TNBC

cohort, especially in those with PD-1 positive expression. Drug

sensitivity analysis revealed that patients with high IRS were more

sensitive to several targeted drugs or small molecule inhibitors. Thus,

we hypothesized that TNBC patients with low IRS should receive

immunotherapy, and patients with high IRS should not. To our

knowledge, this is the first study to define the TNBC subtypes based

on the ICGs expression pattern. However, a few limitations of this

study must be acknowledged. Our molecular subtyping was

constructed based on the expression of ICGs, and the differences

and efficiency between ICGs subtypes and other TNBC subtypes

should be compared in the future. Next, we defined a four-gene

signature to predict the prognosis of TNBC. Additional

clinicopathological parameters might need to be incorporated into

our model in the follow-up studies. Also, the standardized TILs

scoring in TNBC samples is also required to examine relations with

our IRS model. Finally, prospective TNBC cohort and real-world

TNBC series are clearly warranted to further examine our findings.
Conclusions

Our study systematically explored the ICGs expression patterns

and defined ICGs-related subtypes in TNBC. In clinical application,

we developed an ICGs-related riskscore IRS to stratify TNBC into

high or low risk subgroups. Our IRS is a robust biomarker that can be

used to evaluate the immune infiltration, survival outcomes, tumor

progression and immunotherapy response. Our findings not only

provide new insight into the subtype of TNBC but also deepen the

understanding of ICGs in the tumor immune microenvironment.
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