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Regulated cell death (RCD) contributes to reshaping the tumor immune

microenvironment and participating in the progression of non-small cell lung

cancer (NSCLC); however, related mechanisms have not been fully disclosed.

Here, we identified 5 subclusters of NSCLC based on consensus clustering of 3429

RCD-associated genes in the TCGA database and depicted the genomic features

and immune landscape of these clusters. Importantly, the clusters provided

insights into recognizing tumor microenvironment (TME) and tumor responses

to immunotherapy and chemotherapy. Further, we established and validated an

RCD-Risk model based on RCD-associated genes, which strongly predicted the

prognosis, TME, and immunotherapy outcomes in NSCLC patients. Notably, tissue

microarray staining confirmed that the expression of LDLRAD3, a core gene in

RCD-Risk model, correlated with poor survival. In conclusion, we developed a

novel RCD classification system and RCD-Risk model of NSCLC, serving as a

robust and promising predictor for prognosis and immunotherapy benefit of

individual NSCLC patients.

KEYWORDS

regulated cell death, non-small cell lung cancer, tumor microenvironment,
immunotherapy, immune checkpoint inhibitors
Introduction

Non-small cell lung cancer (NSCLC) accounts for 80% to 85% of all pathology types of lung

cancers, including lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), and

large cell carcinoma. NSCLC is a highly aggressive cancer type with an extremely low response to

chemotherapy. Immune checkpoint inhibitors (ICIs), also known as immunotherapy, have
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emerged as breakthrough treatments for advanced NSCLC. These drugs

target inhibitory interactions between immune checkpoint receptors and

their ligands, such as the programmed death 1 (PD-1) pathway. While

the addition of immunotherapy has changed the mode of NSCLC

treatment and improved the survival of patients; however, part patients

cannot obtain the same degree of clinical benefit and face potential

adverse reactions. Biomarkers predictive of ICI response include target

antigen expression (e.g., PD-1/PD-L1), tumormutational burden (TMB),

DNAmismatch repair deficiency/microsatellite instability, and tumors at

baseline T cell infiltration. However, potential responder populations

outside the recommended PD-1 expression were excluded from first-line

immunotherapy due to the lack of alternative predictive biomarkers.

Accurate identification of immunotherapy responders could expand the

eligible population for immunotherapy, thereby reducing the burden of

chemotherapy toxicity in NSCLC patients.

Regulated cell death (RCD) is closely related to tumor development

and treatment outcome. Tumors suffer different death modes under

different conditions. Necrosis and apoptosis are two most classical cell

death processes. Necrosis refers to the passive death of cells caused by

physical damage, chemical damage, mechanical damage, poisons,

microorganisms, radiation, etc. Apoptosis refers to the active and

orderly cell death generated by gene regulation in order to maintain

the homeostasis of the body under physiological or pathological

conditions. Recently, more and more cell death types were proposed.

Netotic cell death (NETosis) is a Neutrophil Extracellular Traps (NET)

driven form of cell death that is regulated by NADPH oxidase-mediated

ROS production and histone citrullination. Pyroptosis is a form of cell

death activated by the inflammasome and plays an important role in

inflammation and immunity. Ferroptosis is a form of cell death driven by

iron accumulation and lipid peroxidation. These cell death processes

have close association with NSCLC by regulating progression, immune

microenvironment, chemoresistance and so on. Several studies have

revealed the interaction between RCD and antitumor immunity.

Targeted therapy against autophagy, ferroptosis, pyroptosis and

necroptosis combined with immunotherapy may exert powerful

antitumor activity, even tumors resistant to ICIs.

In this research, based on 999 cases of NSCLC patients in the TCGA

database, we developed a novel classification system through RCD-

associated genes. We divided all NSCLC cases into five clusters with

different genomic features. Notably, these clusters showed different

response to immunotherapy and chemotherapy. Further, we

established and validated an RCD-Risk scoring model for predicting

prognosis and immunotherapy outcomes of NSCLC patients. Notably,

our immunohistochemical staining in tissue microarray confirmed that

the expression of LDLRAD3, a core gene in RCD-Risk model, was

associated with poor survival. Overall, our study provides insights to

understand the distinct prognosis and immune landscapes between

NSCLC subclusters and presents a robust model to stratify NSCLC

patients for optimal immune response and survival.
Material and methods

Data acquisition and assessment

999 cases of NSCLCmulti-omics data were acquired from the TCGA

database, including transcriptional data, somatic mutation data, copy
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number variation data, DNAmethylation and clinical information (Table

S1). Other 115 cases (GSE26939) and 146 cases (GSE30219) of NSCLC

were derived from GEO database, respectively (Table S2) (1, 2). Samples

with missing survival data were removed. 295 ferroptosis associated

genes, 19 NETosis associated genes, 1809 aging associated genes, 1972

necroptosis associated genes, 57 pyroptosis associated genes, 18 extrusion

death associated genes, 1972 necrosis associated genes and 222 autophagy

associated genes associated genes were acquired from FerrDb database

(http://www.zhounan.org/ferrdb), HADb database(http://www.

autophagy.lu/clustering), and several published studies (Table S3) (3–5).
Classification of NSCLC based on RCD-
related genes, GSVA, and somatic mutation
or CNV or DNA methylation analysis

Based on the expression matrix of cell death associated genes,

unsupervised clustering was performed using the R package

ConsensusClusterPlus (v1.50.0). Then, the R packages survival

(v3.2-7) and survminer (v0.4.8) were applied for survival analysis.

Gene set variation analysis (GSVA) was performed using Hallmark

gene set to obtain enriched pathways in different clusters. The

landscape of somatic mutation was assessed and visualized by R

package maftools (v1.0-2). The landscape of DNA methylation was

assessed by R package ChAMP (v2.16.2). P.Val < 0.01 & |logFC| > 0.2

were used as thresholds to screen differentially methylated sites. Chi-

square tests were performed to assess copy number variation (CNV)

of cell death genes using p<0.05 as a threshold.
Characterization of immune landscape and
immunotherapy/chemotherapy responses

The xCELL algorithm was used to calculate the proportion of

immune cells in all samples. Infiltration matrix of immune cells in

NSCLC patients downloaded from TIMER2.0 database (6, 7). For

immune function scores, enrichment levels of immune function-related

gene sets per sample were quantified by the ssGSEA (single-sample gene

set enrichment analysis) algorithm in the R package ‘GSVA’ package.

The R package ESTIMATE (v1.0.13) was further used to calculate

the StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity

of all samples in the TCGA-NSCLC data.

For immunotherapy or chemotherapy responses, SubMap

analysis was used to map NSCLC samples to melanoma samples

with inhibitor treatment information, and the similarity between

samples was calculated to predict the response of NSCLC to

immune checkpoints inhibitors. The treatment response data of

chemotherapy was acquired using the R package TCGAbiolinks

(v2.16.4). We then further calculated the distribution differences of

treatment response groups in different clusters.
Differentially expressed genes screen and
survival analysis

The R package limma (v3.42.2) was used to screen differential cell

death-related genes between normal and tumor samples with P.Val
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<0.05 & |logFC| > 1 as the threshold. For survival analysis, abnormal

samples with survival times below 0 days were removed, and genes

associated with cell death pathways with variance < 0.2 were filtered

out, followed by batch cox univariate regression analysis of TCGA

data using the R packages survival and survminer. After regression

analysis, genes significantly associated with OS were screened at a

threshold of p < 0.05 for subsequent analysis.
Establishment of risk scoring model via
Lasso/Cox analysis

Lasso regression was performed to reduce the dimensionality of

the univariate cox regression results. Repeated iterations were

performed by 500 Lasso regressions, thus eliminating contingency.

Those with more than 400 occurrences in 500 iterations were selected

for model construction using R package glmnet (v4.0-2). Next, the

model was constructed by multivariate Cox regression, and genes

were included in the model by increasing stratum by stratum. The

AUC of model was calculated for all gene combinations, and the

model with the highest AUC value was selected as the final. Finally, 53

regulated cell death (RCD)-related genes were screened as the input to

the final model, and calculated the risk score of each sample based on

the following formula:

RScorei =  o
n

j=1
expji �bj

In the formula, exp represents the expression of the

corresponding gene, b represents the regression coefficient (coef) of

the corresponding gene in the lasso regression results, RScore

represents the expression of the significantly related genes in each

sample multiplied by the coef of the corresponding gene and then

summed, i represents the sample, j represents the gene.
Validation of model performance

Based on the median of risk score, we divided NSCLC cases into the

high and low risk groups, respectively. We drew the Kaplan-Meier curve

and ROC curve in combination with the OS data and calculated the p-

value. p-value < 0.05 was considered as a significant difference between

high and low risk groups. Sample risk scores are used as model

predictions, combined with the survival data to calculate the AUC

value of the model and to plot the time-based ROC curve. AUC values

greater than 0.7 at 1, 3, and 5 years indicate good model efficacy.
Prediction of immunotherapy outcomes

For calculation of tumor immune dysfunction and exclusion (TIDE)

scores, we first performed two-direction median centered correction on

the expression profile data of NSCLC from TCGA and uploaded the

corrected expression profile matrix to the TIDE database online website

(http://tide.dfci.harvard.edu/), to obtain the patient’s TIDE score.

For assessment of immunotherapy benefits, GSE135222 data were

downloaded from the GEO database. Kaplan-Meier curves were
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plotted between high and low risk groups to demonstrate survival

differences, and box plots were drawn to demonstrate differences in

immunotherapy response between high and low risk groups.
Calculation of tumor mutational burden

TMB refers to the number of somatic non-synonymous

mutations in a specific genomic region, usually expressed in

mutations per megabase (mut/Mb). TMB can indirectly reflect the

ability and degree of tumor production of neoantigens and predict the

immunotherapy efficacy of various tumors. We downloaded TMB

data of NSCLC patients through the R package ‘TCGAmutations’

with the parameter set to pipelines = “mutect2”. Differences in TMB

between high and low risk groups were calculated using the

wilcoxon test.

For TMB combined with RCD-Risk, samples were divided into

four groups based on risk value and TMB: high TMB with high risk

value; high TMB with low risk value; low TMB with high risk value;

and low TMB with low risk value, and survival analysis was

performed on NSCLC samples using the R package survivor

and survminer.
Prediction of favorable drugs in high
and low risk groups and drug
sensitivity screening

Drug sensitivity was predicted by genes expression profiles in cell

lines using the calcPhenotype in the R package ‘oncoPredict’. IC50 of

drugs was predicted by ridge regression model established by gene

expression profiles in cell lines of GDSC (www.cancerrxgene.org) and

TCGA database using pRRophetic algorithm (8, 9).

The favorable drugs were predicted by CMap using eXtreme Sum

(XSum) algorithm. The criteria for identifying the molecular

signature of a disease were |Log2FC| > 0.5, p < 0.05. Based on

CMap’s theory, the lower the score, the more likely this drug is to

reverse the molecular signature of the disease and theoretically more

likely to have the ability to treat the disease (10).
Immunohistochemistry

Tissue microarray of NSCLC specimens (RLN121e) was

obtained from Boruilin Biotechnology Co., Ltd. (Xi’an, China)

and used to validate the correlation between LDLRAD3

expression and NSCLC survival. Detail features were showed in

Table 1. Fixing specimens with 10% neutral formaldehyde at room

temperature for 12 hours was immediately performed on the

collected specimens. Sections of the fixed specimens were cut into

4 m thick paraffin blocks. LDLRAD3 antibody (1:200, Bioss Biotech,

Inc. Beijing, China) was incubated overnight at 4°C, and anti-rabbit

immunoglobulin G (ab205718;Abcam;1:200) was incubated at 37°C

for 20 minutes. Finally, the sections were visualized under a light

microscope or scanned by the NanoZoomer S360 Slide Scanner

(Hamamatsu Photonics, Japan).
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Cell culture and transfection

NSCLC cell lines A549 and NCI-H1299 were obtained from the

University of Colorado Cancer Center Cell Bank and cultured in

RPMI1640 medium supplemented with 10% FBS (Invitrogen,

Carlsbad, CA, USA) at 37°C in a 5% CO2 atmosphere.

LDLRAD3 overexpression vector was constructed by PCR

LDLRAD3 cDNA into the pCDH-CMV. Lipo3000 transfection reagent

(Invitrogen, Inc.) was used to cotransfect HEK293T cells with the target

plasmid or the negative control vector, psPAX2, and PMG.2G to obtain

LDLRAD3 overexpression lentivirus or negative control lentivirus. Then,

the A549 and NCI-H1299 cells were infected with the lentivirus

(multiplicity of infection, MOI = 10). The LDLRAD3 overexpression

cell lines A549-OE, NCI-H1299-OE and the negative control cell lines

A549-NC and NCI-H1299-NC were screened by puromycin (2 mg/mL,

72 h). Finally, the protein expression of LDLRAD3was tested byWestern

blotting in NC and OE groups.
Cell proliferation assay

For this assay, five thousand cells were seeded into 96-well plates and

cultured for 0 h, 24 h, 48 h and 72 h. Prior to the assay, 10 μl of Cell-

Counting Kit-8 (CCK-8; Dojindo Molecular Technologies, Japan)

solution was mixed with 100 μl medium in each well of 96-well plate,

and incubated for 2 h. Finally, the absorbance of each well at a 450 nm

was measured.
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Colony formation assay

First, 500 cells were inoculated in 6-well plates and incubated at

37°C, until more than 50 cells were available for most clones. This was

followed by staining with 0.2% crystalline violet solution for half an

hour at room temperature and washing with PBS three times. Then

these plates were captured with a 4X light microscope and (77002;

Yuyan Instruments Co., Ltd. Shanghai, China).
Cell migration and invasion assays

Transwell plates (24-well insert, 8 mm pore size; BD Biosciences,

Bedford, MA, USA) were used to perform cell migration and invasion

assays. The filters (Corning, USA) were coated without (migration) or

with (invasion) 55 ml Matrigel (1:8 dilution; BD Biosciences). For the

migration assays, 2 × 105 cells were diluted to 200 ml with serum-free

medium and seeded into upper chambers uncoated with Matrigel.

Then, 500 ml of complete medium was added to the lower chamber as

a chemoattractant. After 2 days of incubation at 37°C, the chambers

were fixed with 4% paraformaldehyde for half an hour and then

stained with 0.1% crystal violet for half an hour at room temperature.

For invasion assays, 2 × 105 cells were diluted to 200 ml with serum-

free medium and seeded into Matrigel-coated upper chambers. The

remainder of the trial protocol was the same as described above. Five

different areas of each replicate filter were counted and photographed

under an inverted microscope.
TABLE 1 Clinical features of NSCLC patients.

Characteristics No. Expression of LDLRAD3 P-value

Low (n=52) High (n=52)

Gender 0.242

Male 70 39 31

Female 34 13 21

Age 0.4051

<60 62 29 33

≥60 42 23 19

Pathology diagnosis 0.1614

Squamous cell carcinoma 52 28 24

Adenocarcinoma 52 24 28

Pathological Stage 0.4178

I–II 91 45 46

III–IV 13 7 6

Grade ns

1 3 1 2

2 46 26 20

3 55 25 30
ns, no significance.
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Statical analysis

Most of the data were analyzed and visualized by R software using

different packages. Except for detail analysis methods described

above, the Kruskal-Wallis or Wilcoxon test was applied in

analyzing differences between pathway enrichment, clinical feature

distribution, immune infiltration, and therapy response.
Results

Genotyping and clinical features of NSCLC
based on cell death-related genes

By performing unsupervised clustering analysis using the

expression matrix of cell death-related genes (3249 with expression

information), we obtained five different subtypes of NSCLC (the

inflection points of the lithotripsy plot confirmed 5 as the optimal

number of classifications) (Figures 1A–C). These NSCLC clusters

exhibited significant differences in overall survival (OS, p=0.011),

disease-free interval (DFI, p=0.00049), and progression-free interval

(PFI, p<0.0001) (Figure 1D). Overall, cluster 1 and 5 showed favorable

survival, while cluster 2 showed the worst survival (Figures 1E, F).

Additionally, we assessed the clinical characteristics of patients in

different clusters. We found that 69% of patients in cluster 4 were

older than 65 years. The majority of patients in clusters 1, 2 and 3

suffered from LUAD, while LUSC predominated in patients in

clusters 4 and 5. Besides, a higher proportion of patients in cluster

2 were diagnosed with N2 or N3, T3 or T4, Stage III or Stage IV,

indicating that this cluster was characterized by advanced

pathological stages, which is consistent with a faster decline in its

survival curve (Figure 1G). We further investigated enrichment scores

of cell death-related pathways between these clusters. We found that

cluster 4 showed significantly higher aging-related score, autophagy

score, necroptosis score; cluster 5 showed higher extrusion score;

cluster 4 and cluster 5 showed significantly higher ferroptosis scores;

cluster 2 showed significantly higher NETosis scores; cluster 2 and

cluster 4 showed higher pyroptosis scores (Figures 1H, I).
Tumor microenvironment and
chemotherapy response in different clusters

Given that immunotherapy is the most promising therapeutic

strategy for NSCLC, and cell death plays a significant role in the

activation of antitumor immune responses, we analyzed the tumor

microenvironment (TME) among the 5 clusters. Tertiary lymphoid

structures (TLS) are considered as germinal centers for immune cells

in TME, and we assessed the expression of a series of chemokines

involved in TLS formation. We found that most chemokines were

highly expressed in cluster 1, 2, or 4. Specifically, CCL18, CCL19,

CCL22, etc. were highly expressed in cluster 1; CCL3, CCL4, CCL5,

etc. were highest in cluster 2; and CCL11, CCL21, CXCL13, etc. was

highest in cluster 4 (Figure 2A). Overall, the expression of these TIL-

involved chemokines was higher in cluster 1, 2, and 4 than in cluster 3

and 5, which regulate immune infiltration in the TME. Consistently,
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we found cancer-associated fibroblasts (CAFs), endothelial cells

(ECs), and most immune cells, such as CD8+ T cells, CD4+ T cells,

and antigen-presenting cells, accounted for different proportions of

these 5 clusters. In general, they all accounted for a larger proportion

in cluster 1, 2, and 4 (Figure 2B). In addition, several interferons and

their receptors (e.g., IFNE, IFNG, IFNAR2, IFNGR2) and most

interleukins and their receptors were associated with immune-

activating transcripts. We found that those interferons, interleukins,

and their receptors were higher in cluster 1, 2, and 4 than in cluster 3

and 5, which is consistent with higher expression of chemokines and

higher infiltration of immune cells in the TME of these

clusters (Figure 2C).

Subsequently, we further calculated the immune score, stromal

score, ESTIMATE score using ESTIMATE algorithm in different

clusters. Higher stromal and immune scores indicate higher

infiltration of stromal and immune cells, respectively. The

ESTIMATE score is the sum of the stromal score and the immune

score. Higher ESTIMATE score indicated lower tumor purify. We

found that the stromal score, immune score and ESTIMATE score in

cluster 1, 2, and 4 were significantly higher than those in cluster 3 and

5, while the tumor purity was lower, indicating that stromal cells and

immune cells infiltrated in cluster 1, 2, and 4 (Figure 2D). We also

analyzed immune-related function scores in each sample, and we

found that the most immune-related function scores were lower in

cluster 3 and 5, suggesting that these functions were

suppressed (Figure 2E).

Given that the expression of immune checkpoints is an important

basis for immune checkpoints inhibitors (ICIs) therapy, we further

evaluated the expression of immune checkpoints in 5 clusters.

Notably, the expression of most immune checkpoints (e.g., CD274/

PD-L1, CTLA4, PDCD1/PD1, CTLA4, IDO1/2, LAG3) was higher in

cluster1, 2, and 4 than in cluster 3 and 5. Among them, PDCD1/PD1

and CD274/PD-L1 were most highly expressed in cluster 2, and

CTLA4 was most highly expressed in cluster 2 and 4, suggesting that

these clusters may benefit from immunotherapy benefit (Figure 2F).

Subsequently, we further assessed the response ICIs of different

cluster. Cluster 1, 2, and 4 showed better response to anti-PD-1 or

CTLA4 antibodies, while cluster 3 and 5 showed relative resistance.

Cluster 2 showed the best response to anti-PD-1 antibody, while

cluster 4 showed the best response to anti-CTLA4 antibody, which

was also consistent with the expression of immune checkpoints

(Figure 2G). Considering that chemotherapy is the cornerstone of

NSCLC treatment, and its use alone or in combination with ICIs is

critical for the treatment of NSCLC, we assessed the response to

chemotherapy in each cluster. Interestingly, each cluster showed a

disease control rate (CR: complete response, PR: partly response, SD:

stable disease) of more than 50%, with the highest proportion of CR

rate in the cluster 4, suggesting that chemotherapy or chemotherapy

combined with ICIs are potential treatments for this cluster

(Figure 2H). Additionally, cluster 5 was relatively resistant to

immunotherapy, but was sensitive to chemotherapy (higher CR+PR

ratio) (Figure 2H). Taken together, our results suggested that the

above-mentioned 5 clusters have relatively distinct TME

characteristics. In general, TME in cluster 1, 2, and 4 supported

anti-tumor immunity and higher expression of immune checkpoints,

which can better benefit from ICIs.
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Enriched pathways, somatic mutations,
and DNA methylation patterns
of different clusters

To understand the potential reasons for the distinct prognosis and

immune landscapes between these clusters, we investigated related

pathway enrichment by GSEA analysis using the hallmark gene set.
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We found enriched pathways were significantly different in all 5

clusters. Particularly, cluster 1 and 5 showed lower enrichment of

oncogenic signaling or targets, such as KRAS signaling, PI3k/Akt/

mTOR signaling, E2F target and MYC target, which is consistent with

its better prognosis. Furthermore, pro-anti-tumor immunity related

pathways, including IL6/JAK/STAT3 signaling, tumor necrosis factor

(TNFA, TGFB), interferon (IFNA, IFNG) pathways were enriched in
A B

D E F

G

I

H

C

FIGURE 1

Genotyping and clinical features of NSCLC based on cell death-related genes. (A) Heatmap depicts consensus clustering solution (k = 5) for on cell
death associated genes in 999 NSCLC patient samples. (B, C) Delta area curve of consensus clustering indicates the relative change in area under the
cumulative distribution function (CDF) curve for k = 2 to 8. (D) Kaplan–Meier curves of overall survival in indicated clusters. (E) Disease free interval of
different clusters via Kaplan-Meier analysis. (F) Progression free interval of different clusters via Kaplan-Meier analysis. (G) Differences in age, disease
histologic subtypes (LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma), pathologic N (lymph nodes) stages, pathologic T (tumor)
stages, TNM stages, and immune subtypes among 5 NSCLC clusters. (H, I) Differences in cell death associated pathways (H) and scores (I) among 5
NSCLC clusters. (****p<0.0001; **p<0.01; *p<0.05; ns, no significance.).
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cluster1, 2, and 4, providing a potential explanation for cluster 1, 2,

and 4 having a TME supporting anti-tumor immunity and better

response to ICIs (Figure 3A).

Considering somatic mutations and copy number variation

(CNV) as contributors to antitumor immunity and tumor

progression (11, 12), we assessed the somatic mutations of cell

death related genes in 5 clusters. TP53 has the highest mutation

frequency among these 5 clusters, and cluster 1 showed significantly

lower TP53 mutation frequency compared to other clusters. As the

most known tumor suppressor, the mutation of the TP53 leads to the

proliferation and invasion of tumor cells, which is consistent with

better survival of cluster 1 patients. Additionally, cluster 2 showed

higher RYR2 mutation frequency compared to other clusters, which

has been confirmed to be associated with better survival in NSCLC

patients (Figure 3B). Detail mutation frequency of each gene was

provided in Table S4. Likewise, we analyzed the CNV of cell death-

related genes in 5 clusters. There were significant differences in CNV

of all cell death-associated genes in different clusters, especially in

PRKCI, SKIL, SLC2A2, PIK3CA, LAMP3, or TERC. There genes

participated in regulating the immune escape and proliferation of

NSCLC (13, 14). Additionally, the general CNV frequency of cell

death-associated genes in the cluster 1 were slightly lower than that of

other clusters (Figure 3C). Detail CNV of each gene was provided in

Table S5.
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Since methylation is tightly linked to TME and tumor

development (15), we subsequently explored the differential

methylation of cell death-associated genes between 5 clusters. 1478

differentially methylated genes and 5260 differential methylation sites

were uncovered (Table S6). Of note, the methylation degree ofWIPI2

and COL4A2 in cluster 4 and cluster 5 was significantly higher than

that of cluster 1, cluster 2 and cluster 3. In addition, the methylation

degree ofHDAC4, CUGBP2, PTPRN2 and RUNX2 in cluster 1, cluster

2 and cluster 3 was significantly higher than that of cluster 4 and

cluster 5, which are involved in regulating the proliferation and

invasion of NSCLC (16, 17) (Figures 3D, E)
Establishment of a risk scoring model
for NSCLC patients based on cell
death-related genes

The above results confirmed RCD is associated with the prognosis

of NSCLC patients and the response of immunotherapy and

chemotherapy, suggesting that RCD-related genes may be applied

to evaluate prognosis and treatment response. Therefore, we further

screened 53 genes among the above RCD-related genes to construct a

risk assessment model through LASSO/Cox regression model (Table

S7 and Figure 4A). We calculated the risk score for each patient and
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C

FIGURE 2

Tumor immune microenvironment and chemotherapy response in different clusters. (A) The level of chemokines and their receptors in 5 clusters of
NSCLC patients. (B) The proportions of immune cells and stromal cells in 5 clusters of NSCLC patients analyzed by xCELL algorithm. (C) The level of
interferons, interleukins and their receptors in 5 clusters of NSCLC patients. (D) The ESTIMATE score, stromal score, immune score, tumor purity, and
immune subtype in 5 clusters of NSCLC patients. (E) The scores of immune-related functions calculated by GSEA in 5 clusters of NSCLC patients. (F) The
mRNA expression of immune checkpoints in 5 clusters of NSCLC patients. (G) Predicted response rate of different clusters to immune checkpoint
inhibitors (CTLA4 and PD1, R: Response, noR: no Response). (H) The response to chemotherapy in 5 clusters of NSCLC patients (CR, complete respons;
PD, progressive disease; PR, partly response; SD, stable disease). (***p<0.001; **p<0.01; *p<0.05).
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divided them into high-risk and low-risk groups by the median. The

low-risk cohort had a higher number of survivors than the higher-risk

cohort (Figure 4B). Likewise, Kaplan-Meier analysis also revealed that

high-risk patients had poorer OS compared with low-risk patients

(Figure 4C). Furthemore, the ROC curve showed that this risk model

showed satisfactory sensitivity and specificity in predicting survival

risk [AUC = 0.724 (1 year), 0.76 (2 years), 0.742 (3 years)

(Figure 4D)]. The risk model was further validated in GEO datasets

GSE26939 and GSE30219. As expected, high-risk patients also

showed poor prognosis in the validation dataset. Meanwhile, our

model showed satisfactory results in the validation dataset AUC

(Figures 4E–H), highlighting the stability of this risk model.
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Additionally, we also found that risk scores were associated with

clinical characteristics of NCSLC patients, such as higher risk score

was associated with advanced stages (Figure 4I). We further

performed a Cox regression model to assess the performance of the

risk scoring model in combination with other clinical features (age,

pathological type, and pathological stage). We found that in the

multivariate Cox model, our risk score model showed better

performance compared to age, T stage, N stage, M stage and

pathological type (LUAD vs LUSC) (Figure 4J). Finally, we

performed a GSEA analysis based on differentially expressed genes

between high and low risk groups. Pathways associated with

treatment resistance and tumor invasion (e.g., Hypoxia, G2M,
A B
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C

FIGURE 3

Enriched pathways, somatic mutations, and DNA methylation patterns of different clusters. (A) Heatmap showing the differences in hallmarks pathway
among 5 NSCLC clusters. (B) Waterfall chart showing the somatic mutation frequency and specific mutations of RCD-related genes in 5 NSCLC clusters.
(C) Display of copy number variation of RCD-related genes in 5 NSCLC clusters. (D) Heatmap of differential methylation site of RCD-related genes in 5
NSCLC clusters. (E) The methylation level of top differentially methylated genes (HDAC4, WIPI2, CUGBP2, PTPRN2, COL4A2, RUNX2) in 5 NSCLC
clusters. (****p<0.0001; ***p<0.001; **p<0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1075848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2023.1075848
MYC, EMT) were significantly upregulated in the high-risk group

(Figure 4K). Taken together, our results suggested that this RCD risk

model is a promising and robust biomarker for assessing clinical

outcomes in NSCLC patients. Enrichment of pathways associated

with treatment resistance and tumor invasion in the high-risk group

is potential cause of its poor prognosis.
RCD-Risk model predicts response to
immunotherapy and chemotherapy

We further evaluated whether the RCD-Risk model could serve as

a predictor of immunotherapy in NSCLC patients. Notably, we found

that NSCLC patients in the low-risk group had significantly better
Frontiers in Immunology 09
prognosis than those in the high-risk group after receiving anti-PD-1/

PD-L1 therapy (GSE135222, Figure 5A). None of the patients in the

high-risk group responded to anti-PD-1/PD-L1 therapy, while more

than half of the patients in the low-risk group responded to anti-PD-

1/PD-L1 therapy (Figure 5B). We analyzed NSCLC patient data in the

IMvigor210 cohort, and we found that patients in the low-risk group

responded better to anti-PD-L1 therapy than those in the high-risk

group (Figure 5C). Interestingly, the immune manifestations of

patients in the high-risk group were dominated by Desert/Excluded,

while those in the low-risk group were dominated by Inflamed, which

explained why patients in the low-risk group could benefit from

immunotherapy (Figure 5D). We than further used tumor immune

dysfunction and exclusion (TIDE) score to verify the superiority of

the RCD-Risk model in predicting the efficacy of immunotherapy. We
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FIGURE 4

Establishment of a risk scoring model for NSCLC patients based on cell death-related genes. (A) Lasso/Cox analysis establishing an RCD-Risk model
including 53 RCD-associated genes and the corresponding AUC value. (B–D). Distribution of risk scores and survival status (B), the Kaplan-Meier curve of
overall survival (C), or evaluation of prognostic model effectiveness (D) between high and low RCD-Risk groups in TCGA database. (E, F) the Kaplan-
Meier curve of overall survival (E), or evaluation of prognostic model effectiveness (F) between high and low RCD-Risk groups in GSE26939. (G, H) the
Kaplan-Meier curve of overall survival (G), or evaluation of prognostic model effectiveness (H) between high and low RCD-Risk groups in GSE30219. (I)
RCD-risk scores in patients with stage I, II, III, or IV NSCLC. (J) Univariate and multivariate Cox analyses evaluate the independent prognostic value of
RCD-risk score in TCGA-NSCLC patients. (K) The upregulated and downregulated cancer hallmarks and oncogenic pathways in high RCD-Risk group in
hallmark gene sets analyzed by GSVA.
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found that TIDE scores were significantly higher in high-risk patients

than in low-risk patients, also suggesting that low-risk patients could

better benefit from immunotherapy (Figure 5E).

To understand the differences in response to immunotherapy

between high and low risk groups, we assessed immune cell
Frontiers in Immunology 10
infiltration, immune checkpoint expression, and immune function

in each group (Figures 5F–H). We found that stromal cells, such as

cancer-associated fibroblasts (CAFs), most immune cells, such as

CD8+ T cells, CD4+ T cells, and antigen-presenting cells, were

significantly higher in the low-risk group than in the high-risk
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FIGURE 5

RCD-Risk model predicts response to immunotherapy and chemotherapy. (A) The Kaplan-Meier curve for progression-free survival between high and
low RCD-Risk NSCLC patients receiving anti-PD-1/PD-L1 therapy in GEO database (GSE135222). (B, C) The anti-PD-1/PD-L1 responsiveness between
high and low RCD-Risk groups in GSE135222 (B) or IMvigor (C) dataset. (D) The immune phenotypes in high and low RCD-Risk groups in IMvigor
dataset. (E) Comparison of the tumor immune dysfunction and exclusion (TIDE) prediction scores in the low and high RCD-Risk groups in TCGA
database. (F, G) The proportions of immune cells and stromal cells (F) or the expression of immune checkpoints (G) in high and low RCD-Risk groups in
TCGA database. (I, H) Tumor mutation burden (I) or immune-related function scores (H) in high and low RCD-Risk groups in TCGA database. (J) Gene
Ontology (GO) enrichment analysis showing the enrichment of immune responses or inflammatory response in the NCSLC patients with low RCD-Risk
in TCGA database. (K–M) The level of chemokines (K), interferons (L), interleukins (M), and their receptors in the low and high RCD-Risk groups in TCGA
database. (***p<0.001; **p<0.01; *p<0.05).
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group (Figure 5F). Similarly, the expression of most immune

checkpoints and many immune-related function scores were higher

in the low-risk group, which partly explains that patients in the low-

risk group benefited more from immunotherapy (Figures 5G, H).

Previous studies have shown that tumor mutational burden (TMB) is

inversely related to the response of immunotherapy (18). We found

that TMB in patients in the low-risk group was lower than that in the

high-risk group, suggesting that the RCD-Risk model may evaluate

the prognosis of NSCLC patients with immunotherapy independently

of TMB, highlight the effectiveness of the model (Figure 5I). We

further performed GSEA analysis. The GO terms “adaptive immune

response”, “regulation of adaptive immune response”, “regulation of

humoral immune response”, and “regulation of inflammatory

response” were enriched in low RCD-risk group (Figure 5J). In

addition, the levels of many important chemokines, interferons,

interleukins, and their receptors were higher in low RCD-risk group

than in high RCD-risk group (Figure 5K–M), which interprets the

dramatical benefit of immunotherapy for NSCLC patients with low

RCD-risk scores.

In view of the important role of chemotherapy combined with

immunotherapy in the treatment of NSCLC patients, we also

evaluated the difference in response to chemotherapy in high- and

low-risk groups. We found that patients in the low-risk group were

more sensitive to Gefitinib, Staurosporine, Erlotinib, etc. (Figure

S1A), while those in the high-risk group were more sensitive to

Sorafenib, Crizotinib, Paclitaxel (Figure S1B). We further used

Connectivity Map (CMap) to predict drug treatment. Drugs with

lower scores mean higher reversal potency and greater potential for

application. We predicted that exisulind, a selective apoptotic

antineoplastic drug, might have greater therapeutic value for

patients in the high-risk group (Figure S1C). In conclusion, the

RCD-based risk model is not only a reliable indicator for predicting

the prognosis of NSCLC patients with immunotherapy, but also an

effective biomarker for predicting the sensitivity of patients to

chemotherapeutic drugs.
LDLRAD3 expression is associated with the
prognosis of patients with NSCLC

To further verify the performance of RCD-Risk model in a

clinically translatable tool, we further investigated the RCD-

associated genes applied in RCD-Risk model. Most of them has

been confirmed to be associated with survival of different type of

cancers; however, LDLRAD3 was rarely reported associated with

cancer progression. LDLRAD3 encodes Low Density Lipoprotein

Receptor Class A Domain Containing 3 and acts upstream of or

within receptor-mediated endocytosis and regulation of protein

processing (19). Previous studies have reported circ-LDLRAD3,

which is derived from the exon5 region of LDLRAD3 mRNA by

“back-splicing,” was associated with the progression of pancreatic

cancer (20). However, rare research reported the role of LDLRAD3

mRNA in cancers.

We found that high expression of LDLRAD3 was associated with

deteriorating survival of NSCLC patients in the TCGA database

performed by Kaplan-Meier analysis (Figure 6A). Similarly,

univariate Cox regression model revealed that LDLRAD3
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expression significantly correlated poor prognosis (Figure 6B); after

controlling for confounding variables (including age, gender, TNM

stage, and smoking), LDLRAD3 expression remained statistically

significant for OS (Figure 6C). Notably, we confirmed that high

expression of LDLRAD3 was correlated with inferior survival using

immunohistochemical staining in NSCLC samples (Figures 6D, E);

and consistently, uni- and multi-Cox regression demonstrated

LDLRAD3 expression as an independent prognostic factor

(Figures 6F, G), further supporting the robustness and stability of

our RCD-Risk model in NSCLC.
Overexpression of LDLRAD3 promotes the
proliferation and invasion abilities of NSCLC

To further determine the role of LDLRAD3 in TME and

progression of NSCLC, we first analyzed the involvement of

LDLRAD3 in TME of NSCLC patients (TCGA) using GO database.

The expression of LDLRAD3 was negatively correlated with adaptive

immune response, DC cell differentiation, T cell activation, and

immune cell-mediated immunity and cytotoxicity (Figure 7A).

Consistently, the expression of LDLRAD3 was negatively correlated

with MHC complex, immune receptor, and immunoglobulin (Figure

S2A). We further compared the levels of multiple cytokines, HLA

molecules, and immune checkpoints between LDLRAD3-high and

-low groups. Similarly, LDLRAD3-low group mostly increased

cytokines, HLA molecules and immune checkpoints compared to

LDLRAD3-high group, suggesting that LDLRAD3 play an

immunosuppressive role in TME of NSCLC (Figure S2B).

For the involvement of LDLRAD3 in progression of NSCLC, the

GSEA analysis showed that many oncogenic signaling or process were

enriched in patients with high LDLRAD3 expression, such as MYC

targets, MTORC1 signaling, E2F targets, G2M checkpoints, and

mitotic spindle, suggesting that LDLRAD3 is involved in the

progression of NSCLC (Figure 7B). Subsequently, we overexpressed

LDLRAD3 in A549 and H1299 cells, respectively (Figure 7C). As

expected, overexpression of LDLRAD3 significantly promoted the

proliferation (Figure 7D), clone formation (Figures 7E, F), migration

and invasion abilities (Figures 7G, H), consistent with the

GSEA analysis.
Discussion

Immunotherapy represented by ICIs has become a second-line

standard treatment scheme for advanced NSCLC, and its indications

for first-line treatment are gradually being approved. Immunotherapy

for lung cancer is moving towards early neoadjuvant treatment. After

breakthrough progress in immunotherapy, immunotherapy

combined with radiotherapy , chemotherapy and dual

immunotherapy have further improved the efficacy of patients.

Overall, immunotherapy has significant effect in the field of

NSCLC, and has expanded to the field of small cell lung cancer,

benefit ing more and more patients. At the same time,

immunotherapy for lung cancer faces many challenges and the

main one is how to screen the beneficiaries of lung cancer

immunotherapy. In this research, we classified 999 NSCLC in the
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TCGA database into five clusters based on RCD-associated genes.

Significant differences of survival were observed in different clusters.

Among them, cluster 5 showed best survival, whereas cluster 2

showed worst survival. Additionally, these clusters also showed

different enriched pathways, including cell cycle associated

pathways (G2/M checkpoint, Myc targets, eIF2 targets), tumor

angiogenesis pathways (angiogenesis, hypoxia), immune

environment pathways (TNF-a, interferon response), and so on.

All these different pathways interacted with cell death in NSCLC,

thus regulating cancer development (21–23). Furthermore, we also

demonstrated a series of epigenetic differences between different

clusters. Cluster 2/4/5 showed higher TP53 mutation frequency.

Several clinical studies have confirmed that NSCLC patients with

TP53 mutation indicated poor prognosis and was relatively more
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resistant to chemotherapy and radiation therapy (24, 25). Patterns of

DNA methylation are critical for gene regulation, transposon

silencing, and gene imprinting. We disclosed significant difference

of DNA methylation patterns between different clusters. WIPI2,

COL4A2, HDAC4, CUGBP2, PTPRN2 and RUNX2 are Top 6

differential methylation genes, and all of them were reported to take

part in regulation of cancers. For instance, WIPI2 regulates the

proliferation of hepatocellular cancer cells through the AMPK

signaling pathway (26). HDAC4 regulates apoptosis in NSCLC

treated with synthetic retinoid (27).

Immune cells in the tumor microenvironment (TME) have been

proven to be crucial in the development of various tumors. Different

types of tumors have different immune cell subpopulations. Even for

the same pathological type, the subpopulation could be different
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FIGURE 6

LDLRAD3 expression is associated with the prognosis of patients with NSCLC. (A) The Kaplan-Meier curve for overall survival in TCGA-NSCLC patients
with high or low LDLRAD3 expression. (B, C) Univariate and multivariate Cox analyses evaluate the independent prognostic value of LDLRAD3 expression
in TCGA-NSCLC patients. (D) Representative IHC staining of LDLRAD3 among 104 NSCLC samples. (E) The Kaplan-Meier curve for overall survival in 104
NSCLC samples with high or low LDLRAD3 expression. (F, G) Univariate and multivariate Cox analyses evaluate the independent prognostic value of
LDLRAD3 expression in 104 NSCLC samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1075848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2023.1075848
among patients (28, 29). We found cluster 5 showed higher

infiltration of Tfh, but lower M2 macrophages. Oppositely, cluster 2

showed lower Tfh, but higher M2 macrophages. Tfh cells supported

the maturation of tumor-adjacent tertiary lymphoid structures, thus

promoting anti-tumor immunity (30). M2 macrophage promotes

gene instability, angiogenesis, fibrosis, immunosuppression,

invasion and metastasis to enhance tumor progression (31).
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Additionally, cluster 2 showed higher infiltration of CAFs and ECs,

whereas cluster 5 showed lower infiltration. CAFs secret a variety of

growth factors, chemokines and proteases, thus regulating

development and invasion of cancer cells (32). Similarly, abundant

tumor ECs provide nutrients and energy for the rapid proliferation of

cancers. These differences in immune infiltration tally with the

difference in survival. Immune checkpoints inhibitors are a
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FIGURE 7

Overexpression of LDLRAD3 promotes the proliferation and invasion abilities of NSCLC. (A) Gene Ontology (GO) analysis showing the normalized
enrichment scores (NES) of adaptive immune response and immune cell-related pathways in the NCSLC patients with high LDLRAD3 expression. The
negative NES indicating a negative correlation between the corresponding pathway and LDLRAD3 expression. (B) GSEA analysis showing the enrichment
of oncogenic signaling or process (including MYC targets, MTORC1 signaling, E2F targets, G2M checkpoints, and mitotic spindle) in NCSLC patients with
high LDLRAD3 expression. (C) Overexpression (OE) of LDLRAD3 in A549 and H1299 validated by Western Blotting analysis. (D) The proliferation of
LDLRAD3 overexpressed cells (OE) and control cells (NC) determined by CCK-8 assay. (E, F). Clone formation ability of indicated NSCLC cells. (G, H).
Migration and invasion abilities of indicated NSCLC cells determined by transwell assay. (***p<0.001).
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promising therapeutic strategy for NSCLC, especially for

chemotherapy-resistant patients (33). High expression of immune

checkpoints promotes immune escape of cancers, and indicated better

response to immune checkpoints inhibitors. We found several main

immune checkpoints were all downregulated in cluster 5, but

upregulated in cluster 2. Notably, Cluster 1, 2, and 4 showed better

response to ICIs, which should be due to TME supporting anti-tumor

immunity, including IL6/JAK/STAT3 signaling, tumor necrosis factor

(TNFA, TGFB) and interferon (IFNA, IFNG) pathways (21, 34, 35).

Furthermore, we constructed a 53 genes risk scoring model for

predicting prognosis of NSCLC. The model showed satisfactory AUC

in both training group (TCGA database) and test group (2 GEO

datasets). In Kaplan-Miler analysis, high-risk score NSCLC patients

showed significantly poor survival compared with low-risk score

NSCLC patients. Furthermore, we also confirmed the constructed

risk score was an independent predicted factor in both univariate and

multivariate Cox regression analysis. Our constructed risk model

showed advantages in predicting survival compared with traditional

clinical and pathological features. Finally, we also confirmed

LDLRAD3, which was rare reported in previous studies of cancers,

was associated with worse survival of NSCLC patients. Moreover,

overexpression of LDLRAD3 also significantly promoted the

proliferation and invasion abilities of NSCLC, which maybe a

potential therapeutic target for NSCLC.

In summary, our research revealed the landscape of genomic

alterations and immune infiltration based on RCD-associated genes.

Remarkably, we developed a stable and potent RCD-risk model for

assessing the prognosis and immunotherapy benefit, representing a

promising tool to optimize decision-making and surveillance

protocols for individual NSCLC patients. One of the main

disadvantages for the research is lack of the data from multicenter

trials. We will further collect data to validate and develop our RCD-

risk model.
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SUPPLEMENTARY FIGURE 1

RCD-Risk model predicts response to chemotherapy and targeted therapy. (A)
Favorable drugs and their sensitivity in the low RCD-Risk group in TCGA

database. (B) Favorable drugs and their sensitivity (or IC50) in the high RCD-

Risk group in TCGA database. (C) Favorable drugs for high RCD-Risk
populations were predicted by Connectivity Map (CMap) using eXtreme Sum

(XSum) algorithm. The blue dots represent drugs that benefit high-risk
populations, where scores are negatively correlated with the significance of

the drug in the high-risk population. Exisulind is the most beneficial drug for
patients in the high-risk group in this prediction.

SUPPLEMENTARY FIGURE 2

RCD-Risk model predicts response to chemotherapy and targeted therapy. (A)
Gene Ontology (GO) analysis showing the normalized enrichment scores (NES)
of immune-related pathways in the NCSLC patients with high LDLRAD3

expression. The negative NES indicating a negative correlation between the
corresponding pathway and LDLRAD3 expression. (B) Heatmap showing the

level of chemokines, interferons, interleukins, their receptors, MHC molecules,

and immune checkpoints in TCGA-NSCLC patients with high or low
LDLRAD3 expression.
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