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heterogeneous metabolism in
hepatocellular carcinoma
identifies new therapeutic target
and treatment strategy
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Shangyou Zheng2, Yu Zhou2* and Rufu Chen1,2*

1School of Medicine, South China University of Technology, Guangzhou, Guangdong, China,
2Department of Pancreatic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of
Medical Sciences), Southern Medical University, Guangzhou, China, 3Department of Radiation
Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
Background: Metabolic reprogramming is a well-known hallmark of cancer.

Systematical identification of clinically relevant metabolic subtypes of

Hepatocellular carcinoma (HCC) is critical to understand tumor heterogeneity

and develop efficient treatment strategies.

Methods: We performed an integrative analysis of genomic, transcriptomic, and

clinical data from an HCC patient cohort in The Cancer Genome Atlas (TCGA).

Results: Four metabolic subtypes were defined: mHCC1, mHHC2, mHCC3, and

mHCC4. These subtypes had distinct differences in mutations profiles, activities of

metabolic pathways, prognostic metabolism genes, and immune features. The

mHCC1 was associated with poorest outcome and was characterized by

extensive metabolic alterations, abundant immune infiltration, and increased

expression of immunosuppressive checkpoints. The mHHC2 displayed lowest

metabolic alteration level and was associated with most significant improvement

in overall survival in response to high CD8+ T cell infiltration. The mHHC3 was a

“cold-tumor” with low immune infiltration and few metabolic alterations. The

mHCC4 presented a medium degree of metabolic alteration and high CTNNB1

mutation rate. Based on our HCC classification and in vitro study, we identified

palmitoyl-protein thioesterase 1 (PPT1) was a specific prognostic gene and

therapeutic target for mHCC1.

Conclusion: Our study highlighted mechanistic differences among metabolic

subtypes and identified potential therapeutic targets for subtype-specific

treatment strategies targeting unique metabolic vulnerabilities. The immune

heterogeneities across metabolic subtypes may help further clarify the
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association between metabolism and immune environment and guide the

development of novel strategies through targeting both unique metabolic

vulnerabilities and immunosuppressive triggers.
KEYWORDS

hepatocellular carcinoma, metabolism, differential gene expression, personalized
treatment, metabolic subtype, PPT1
Introduction

Hepatocellular carcinoma (HCC) is the leading cause of cancer-

related death in many parts of the world (1). In the past decade,

considerable improvements have been made in prevention,

surveillance, early detection, diagnosis, and treatment, but HCC

remains one of the few cancers with a continued increase in both

incidence and mortality (1, 2). The positive results of treatment with

sorafenib, a small-molecule multi-kinase inhibitor, in the first-line

systemic treatment of advanced HCC, triggered the evaluation of

molecular targeted therapy in this disease (3). However, despite

several new multi-kinase inhibitors showed survival benefits (4–6),

there are still limited therapy options in patients with HCC, with

HCC prognosis remaining poor (7, 8). Therefore, an improved

understanding of HCC biology that will contribute to expansion of

therapeutic arsenal for HCC is clearly and urgently needed.

Cellular metabolism reprogramming is a well-established

hallmark of cancer that presents opportunities for cancer

diagnosis and therapy (9). Tumors adjust their metabolism to

provide sufficient energy and biosynthetic metabolites, which is

necessary for malignant cellular proliferation (10, 11). Due to their

pivotal cellular functions, recent efforts have sought to devise

novel cancer treatments through targeting metabolism

vulnerabilities. In addition to metabolism targeted therapy,

tumor immunotherapy is raising with both approaches being

promising tools to treat tumors (12); in particular, strategies

targeting immune checkpoints have shown substantial efficacy in

a variety of tumors (13, 14). In HCC, promising responses to

immune checkpoint inhibitors PD-1/PD-L1 have been recently

reported (15), but similarly to other solid tumors, the response

rate was low. Therefore, strategies to improve the efficacy of

immune checkpoint inhibitors and to direct individualized

medication are urgently required (16, 17).

Since liver is a key organ for whole body energy homeostasis,

pathological changes of liver, especially during carcinogenesis, often

involve the reprogramming of normal metabolic processes (18). In

this scenario, the HCC represents an optimal candidate as a

malignancy for developing therapeutics targeting altered

metabolism (19). However, HCC is a highly heterogeneous tumor

(20). It has not been well established, whether this heterogeneity is

caused by distinct metabolic pathways that can be used to stratify

HCC into subgroups with clinical significance and biological

characteristics (21). Classification of total metabolic characteristics

could undoubtedly provide useful information on the metabolic
02
pathways at the systems level of HCC (22). Besides, increasing

evidences suggest that alterations in tumor metabolism can also

contribute to the inhibition of antitumor response (23, 24).

Immunosuppression in the tumor microenvironment is suggested

to be based on the mutual metabolic requirements of immune cells

and tumor cells (25, 26). Therefore, the investigation of metabolic

heterogeneity as well as the association between the tumor

metabolism and the tumor immune microenvironment could

provide a better understanding of the complex molecular

pathogenesis of HCC and lead to discoveries of new possible

treatment targets and strategies.
Methods

Data resources and reprocessing

The normalized level 3 RNA-sequencing (RNA-seq) data and

corresponding clinical information of HCC patients were collected

from The Cancer Genome Atlas (TCGA) database portal. RNA-seq

data (FPKM values) were transformed into transcripts per kilobase

million (TPM) values, which are closer in format to those resulting

from microarrays and more comparable between samples.

Mutational data for all samples with RNA-seq data available was

also downloaded. Furthermore, other HCC datasets were obtained

from the GEO public database.
Consensus clustering for
metabolic subtype

Genes belonging to the KEGG subset of canonical pathways were

searched in the Molecular Signature Database (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb) (27), and genes involved in the

metabolism pathways were collected. Genes displaying a median TPM

< 1 across patients were considered extremely low expression and were

removed from the consensus clustering analysis. Consensus clustering

was performed on metabolic genes using ConsensusClusterPlus R

package (parameters: 160 reps=50, pItem=0.8, pFeature=1). The

optimum cluster number was determined by testing 2 to 10 clusters,

and based on CDF and D(K). The collected pathways and their

respective genes were subjected clustering analysis are listed in

Supplementary Table S1.
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Identification of maker genes of
HCC subtypes

Hierarchical clustering is used to classify samples into different

categories based on the sample’s gene expression matrix, and label

different sample categories (28). Taking the expression value of the

gene as an input feature and the classification of the sample as an

output value, a random forest algorithm was used to construct a

prediction model. We used the out-of-bag error rate as an index to

evaluate the importance of the features and rank them, and take the

first 100 and the first 50 features as the features for subsequent

analysis. Scikit-learn was used as a tool for related calculations (29).
Differentially expressed mRNA analysis

Level-3 RNA-sequencing (RNA-seq) data containing 374 HCC

samples and 50 normal controls was downloaded from The Cancer

Genome Atlas (TCGA). The differentially expressed genes (DEGs)

were identified using the Edge R package for R software. |Fold

change| > 2 and adjusted P-values < 0.05 were set as the thresholds.
Gene set enrichment analysis

The Gene set enrichment analysis (GSEA) was performed to

identify enrichment degree of gene set among tumors of a certain

metabolic subtype and compared with other samles (27).

Significance was considered for values of corrected P as

recommended by the software (https://www.gsea-msigdb.org/

gsea/downloads.jsp). Gene sets were downloaded from the

MSigDB. The GSEA results were merged by using GSVA R package.
Estimation of metabolic pathways’ activity

Gene Set Variation Analysis (GSVA) is a pathway/gene set-

based analysis approach that provides an overall pathway or gene-

set activity score for each sample (30). We estimated the activities of

metabolic pathways through GSVA. GSVA z-scores for KEGG

metabolic gene-sets from the MSigDB and other gene-sets were

calculated using the GSVA R package. We considered that the

activity a given metabolic pathway was different between two

groups if the median of GSVA values across one group differed

significantly (Mann-Whitney q-value<0.1) and more than 0.2 from

that measured across another group. Besides, we estimated T cell

exhaustion scores for each HCC sample by using GSVA and a gene

set including signature genes of exhausted CD8+ T cells (31).
Estimation of the abundance of immune
cell populations

GSVA and the single sample Gene Set Enrichment Analysis

(ssGSEA) are two most widely used methods that carry out sample

level enrichment analysis. Both are unsupervised gene set
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integrating the collective expression of a given gene set relative to

the other genes in the sample. A previous study revealed a

significant consistency of the two methods in evaluating immune

populations across 28 cancer types (32). Besides, they also

compared different signatures identifying immune cell

populations reported in previous articles and constructed a new

set of gene signatures with better discrimination than that shown in

previous sets. According to their experience, we chose GSVA

method because its advantage in reducing the noise of the data;

the immune signatures were also retrieved from the same

publication (32).
Analysis of PPT1 expression in different cell
types in HCC at the single-cell level.

Tumor Immune Single Cell Hub (TISCH, http://tisch.comp-

genomics.org), a single cell RNA sequencing (scRNA-seq)

application platform that can systematically and comprehensively

study the heterogeneity of tumor microenvironment (TME) (33),

was used to explore the relationship between PPT1 and the TME on

cell level.
Cell culture

The human HCC cell lines Huh-7 (JCRB0403) and JHH-7

(JCRB1031) were obtained from the Health Science Research

Resources Bank (Osaka, Japan). Cells were grown in Dulbecco’s

Modified Essential Media (DMEM, Hyclone) supplemented with

10% fetal bovine serum (FBS) and penicillin/streptomycin (Gibco,

Grand Island, NY, USA) in a humidified incubator at 37°C in a 5%

CO2 atmosphere.
Vector construction and
lentivirus transfection

Human pyruvate kinase M2 (PKM2) cDNA was cloned into the

pCDH-CMV-MCS-EF1-Neo vector and palmitoyl-protein

thioesterase 1 (PPT1) was cloned into the pCDH-CMV-MCS-

EF1-Puro vector by IGE (Guangzhou, China). After confirming

the PKM2 and PPT1 sequence by sequencing, the plasmid was co-

transfected into HEK293T cells (ATCC, RRID: CVCL_0063) with

the lentivirus packaging plasmids psPAX2 and pMD2G to produce

lentivirus particles. To knock down the PKM2 and PPT1

expression, the shRNA sequence of PKM2 was cloned into the

pLKO.1-Neo lentiviral vector and the shRNA sequence of PPT1 was

cloned into the pLKO.1-Puro lentiviral vector by IGE (Guangzhou,

China). The oligonucleotide sequences of shRNAs are listed in

Supplementary Table S5. Similarly, the lentiviral vector was

transfected into HEK293T cells together with packaging vectors

pMD2.G and psPAX2 to produce lentivirus particles. The media

containing retroviruses were collected 72h after transfection,

centrifuged to remove cell debris, and then filtered. The lentivirus
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particles were then used to transduce Huh-7 and JHH-7 cells.

Control cells were transfected with a control empty vector.
Western blotting

Total protein was extracted by using RIPA lysis buffer containing

a cocktail of protease and phosphatase inhibitors. Using the BCA

Protein Assay Kit (CWBio, China, Cat#CW0014S), the concentration

of the protein was determined. Following the previous process, 20 mg
total proteins extracted from Huh-7 cells were separated

electrophoretically in 10% SDS polyacrylamide gels. Separated

proteins are transferred to polyvinylidene fluoride (PVDF)

membranes. The membrane was then blocked with 5% BSA at

room temperature for 1h before being incubated with the primary

antibodies overnight at 4°C. Next day, the membranes were

incubated for 1h at room temperature with secondary antibodies.

Eventually, the immunoblotting was tested using the ECL

Chemiluminescence Kit (Thermo Fisher Scientific, USA,

Cat#32109). The antibodies are shown in Supplementary Table S4.
Cell viability assay

MTT assay was used to evaluate cell viability. Cells were seeded

in 96-well plates (2 × 103/well) (in triplicate for each condition) and

were cultured for different hours (34). The 20 µl MTT (Sigma, Saint

Louis, USA) stock solution (5 mg/ml) was added to each well and

incubated for 2h, the absorbance was measured at a wavelength of

570 nm.
Glycolysis stress tests (ECAR)

ECAR was estimated by using Seahorse assays with a Seahorse

XFp Analyzer, 2.0 × 104 Huh-7 cells per well were plated onto 8-well

plates and glycolysis stress test was performed following the

manufacturer’s specifications (35, 36). The assay DMEM media

was free of glucose and pyruvate. The concentration of drugs used

for test were as following: glucose (10.0 µM), oligomycin A (1.0

µM), and 2-deoxy-D-glucose (2-DG, 100 µM).
Lactate production assay

5 x 105 HCC cells were incubated in phenol red-free medium at

37°C, 5% CO2 for 1h. The supernatant medium was collected. The

lactate secreted by the cells was measured using the Lactate

Colorimetric/Fluorometric Assay Kit according to the

manufacturer’s protocol (BioVision, Inc.) (37).
Statistical tests

All quantitative data were conducted at least three independent

experiments and expressed as the mean ± SD. For comparisons
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between two groups, statistical significance for normal distribution

data was estimated by unpaired Student t-test, otherwise Mann-

Whitney U test was applied. For comparisons of more than two

groups, One-way ANOVA multiple comparison was used.

Correlation coefficients were computed by Spearman and distance

correlation analyses. The influence of a single factor on the survival

was evaluated through the Cox proportional hazard model, Kaplan-

Meier survival curves, or Log-rank test. All statistical analyses were

conducted using R (https://www.r-project.org/) or SPSS software

(version 17.0). Two-sided P values of less than 0.05 were considered

statistically significant.
Results

Classification of metabolic subtypes
in HCC

We obtained four robust subtypes of HCC in TCGA dataset

(Supplementary Table S2). A heatmap based on one hundred genes

obtained with machine learning was shown in Figure 1A. The

robust classification revealed that HCC tumors displayed highly

heterogeneous expression of genes that were directly involved in

metabolism. The mHCC1 was defined as the largest group (144/

371; 38.8%), followed by mHCC2 (138/371; 37.2%), mHCC4 (51/

371; 13.7%), and mHCC3 (38/371; 10.2%). These subtypes are

henceforth termed mHCC1 (cluster 1), mHCC2 (cluster 2),

mHCC3 (cluster 3), and mHCC4 (cluster 4). We noted distinct

patterns of gene mutations across the four different metabolic

subtypes (Figures 1B, C). For example, mutations in TP53 were

enriched in mHCC1, and 76% of MHCC4 tumors showed

mutations in CTNNB1. In addition, co-occurrence analysis using

the five most frequent mutations in HCC indicated different

relationships among the five common mutations across four

subtypes. A mutual exclusion between TP53 mutations and

CTNNB1 mutations in mHCC1 tumors was observed, while co-

occurrence between TTN mutations and mutations in CTNNB1 or

ALB were found in mHCC2. These results indicated that there are

multiple metabolic phenotypes in HCC driven by different

oncogenic mutations. The mHCC1 was associated with the

shortest survival while the prognosis of other three subtypes were

similar (Figures 1D, E).
Landscape of functional annotations across
four subtypes

To identify the underlying biological functional characteristics

of each subtype, signature genes in each group were collected.

KEGG analysis of the signature genes was conducted and the results

were visualized in Figure 2. Among those signature genes

dysregulated in each subtype/cluster, we identified that the

mHCC1 had much larger proportion of genes enriched in

metabolism-related pathways than that in other clusters;

especially including “carbohydrate metabolism” , “ l ipid

metabolism”, and “amino acid metabolism”, which were major
frontiersin.org
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reprogrammed metabolic pathways in malignant cells. In addition,

we noted that most genes that were enriched in “signal

transduction”, “signaling molecules and interaction”, and “cellular

community” came from mHCC4, followed by mHCC2 and

mHCC3, but barely from mHCC1. Besides, immune-related

pathways were more likely to be enriched by genes from mHCC3

and mHCC4, such as “Immune system”, “Infectious disease:

bacterial”, “Infectious disease: viral”, “Infectious disease: parasite”,

and “Immune disease”.
Frontiers in Immunology 05
Association of different subtypes with
metabolic pathway profiles

We next supposed that subtypes produced through gene

clustering had specific features in different metabolic pathways and

employed a sample-level gene set enrichment method (GSVA) to

compute the GSVA enrichment scores of the selected metabolic

pathways. The differences in GSVA scores for each pathway between

normal liver and four subtypes were calculated. As shown in

Figure 3A, compared with other subtypes, mHCC1 displayed

significantly dysregulated fold change in GSVA scores with

reference to those in normal livers. It was well known that HCC

cells are metabolically distinct from normal hepatocytes and express

different metabolic enzymes (38, 39). Our next gene set enrichment

analysis (GSEA) using a gene set involving metabolic genes of normal

liver revealed a significant absence of normal metabolic genes in

samples of mHCC1 and mHCC4, but no significant differences in

mHCC2 and mHCC3 (Figure 3B). These results were consistent with

the KEGG analysis visualized in Figure 2 and suggested different

types of metabolism impairments among subtypes. Similarly, as

shown in Figures 3C, D, there was a remarkable difference between

GSVA scores for most metabolic pathways of the mHCC1 and other

three clusters as well as normal liver samples; in contrast, GSVA

scores of the most pathways in both mHCC2 and mHCC3 showed

limited differences compared with normal liver samples, which is

consistent with the GSEA results.

We next compared GSVA scores of major metabolism reactions

that are critical to carcinogenesis, including carbohydrate

metabolism (Figure 3E), amino acid metabolism (Figure 3F), and

lipid metabolism (Figure 3G). Overall, compared with normal liver
FIGURE 2

A circular plot showing the differentially expressed genes and their
associated biological processes. The differentially expressed genes in
each group were calculated separately, using 50 normal liver
samples as control group.
B

C D

E

A

FIGURE 1

The metabolic subtypes in HCC. (A) Unsupervised clustering of HCC samples for 371 HCC patients in the TCGA cohort. (B) Correlation between the
distribution of highly variant mutated genes and metabolic subtypes. (C) Co-occurrence analysis of mutations in whole cohort and each subtype.
(D) Kaplan-Meier curves with univariate analyses of overall survival in patients stratified by metabolic subgroup. (E) Kaplan-Meier curves with univariate
analyses of overall survival in patients of cluster 1 versus those of other three clusters. Log-rank test P values are shown.
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samples, tumors in mHCC1 were most significantly differentially

enriched for almost all the selected pathways. The GSVA

enrichment pattern in different pathways of carbohydrate

metabolism was identical, mHCC1 had most significant

differences in GSVA scores than in normal liver, followed by

mHCC4, while mHCC2 and mHCC3 had similar scores

compared with each other. In the respect of amino acid

metabolism and lipid metabolism, mHCC2, mHCC3, and

mHCC4 had similar enrichment in many pathways but mHCC1

still showed a significantly differential enrichment for all pathways.

Specifically, mHCC4 displayed much more significant enrichment

in “Pentose phosphate pathway” than other clusters and showed a

similar enrichment in both “Alanine aspartate and glutamate

pathway” and “Glycolipid metabolism pathway” compared with

mHCC1. In addition to the characteristic metabolic pathways

specifically present above, there are some amino acid metabolic

pathways that are significantly reduced in mHCC1.
Analysis of differences in specific metabolic
pathways across four subtypes

To complete the landscape of the metabolic pathways across the

four subtypes, we further evaluated whether each subtype had unique

metabolic pathways enriched. If a pathway was especially different

(Mann-Whitney q-value<0.05 and difference between medians of
Frontiers in Immunology 06
GSVA was more than 0.2) in only one cluster, it was regarded as a

characteristic metabolic pathway in corresponding subtype. As

shown in Figures 4A–C, there were six characteristic pathways in

total identified in mHCC1, mHCC3, and mHCC4. “Lysine

Degradation” and “On-Carbon-Pool by Folate” were identified as

characteristic metabolic pathways of mHCC1, “Oxidative

Phosphorylation” and “O-Glycan Biosynthesis” in mHCC3, and

two sub-pathways of “Glycosphingolipid Biosynthesis” in mHCC4,

while none in mHCC2. In addition to the characteristic metabolic

pathways specifically present above, there are some amino acid

metabolic pathways that are significantly reduced in mHCC1.
Identification of survival signatures and its
heterogeneity across metabolic subtypes

The above observations led us to question how these differences

among metabolic subtypes relate to clinical outcome of the patients.

Therefore, the prognostic value of metabolic genes in each subtype

was investigated using log-rank test and univariate Cox regression

model. The results of survival analysis are summarized in

Supplementary Table S3. Remarkably, only a small portion of

metabolic genes with prognostic significance were shared by multi-

subtypes, and none was shared by all four subtypes (Figures 5A, B),

suggesting distinct role of genes across subtypes even for the same

metabolic pathway. Furthermore, survival analysis based on genes
B

C D

E F G

A

FIGURE 3

Metabolic landscape across metabolic subgroups. (A) In samples of normal livers and each subtype, the GSVA values of 69 KEGG metabolic pathways
were measured respectively. With the normal liver as the control group, fold changes of GSVA values in each subtype were obtained and shown in a box
plot. Each dot represents the fold change in GSVA value of one metabolic pathway between a subtype and the control group. (B) Gene set enrichment
analysis of a gene sets including metabolic genes in healthy liver, with all transcripts ranked by the log2 (Fold Change) between clusters and normal liver.
(C) Heatmap depicting GSVA values of metabolic pathways across each subgroup. (D) Heatmap showing the results of KEGG clustering results based on
differentially expressed genes in each subgroup. (E–G) The GSVA values of pathways involved in glucose metabolism (E), amino acid metabolism (F), and
fatty acid metabolism (G) for samples in each subgroup were shown in box plots. (ns: not significant, **: P < 0.01, ***: P < 0.001).
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involved in the six characteristic metabolic pathways also revealed

specific prognostic value of metabolic genes in their corresponding

clusters (Figures 5C, D). These data suggested subtype-specific roles

for these unique tumor metabolic pathways as mechanisms

contributing to tumor progression and identified some genes of

unique metabolic pathways as potential targetable metabolic

vulnerabilities in subtype-specific manner.
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Relevance of metabolic clusters in
immune features

The immune response is associated with dramatic modifications

in tissue metabolism, and emerging evidences suggested the

tremendous impact of tumor metabolic reprogramming on the

immune response (40). Therefore, we assessed the relationship
B

C D

A

FIGURE 5

Heterogeneity in prognostic significance of metabolic genes stratified by the metabolic subtypes. (A) A venn diagram showing common and specific
prognostic genes across four subtypes. (B) The hazard ratio values (HRs) of prognostic genes involved in glucose metabolism, amino acid metabolism,
and fatty acid metabolism are depicted in heatmap. Only HRs of genes with significant prognostic significance are shown. (C) Dot plot depicting the
prognostic genes involved in unique metabolic pathways described in Figure 4B. (D) Several genes were selected from (C), including KMT5A, GALNT14,
and ST6GALNAC4. Survival curves showing the predictive role of these genes for over survival in each subtype.
B CA

FIGURE 4

Identification of unique metabolic characteristics in each subtype. (A) Heatmap displaying the GSVA score of which pathway has exclusivity
significant difference between a subtype and normal control group. Pathways that showed significant difference in only one group were marked with
dotted box, and were shown in box plots of (B, C), respectively. (ns: not significant, ***: P < 0.001).
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between the metabolic subtypes and previously defined scores

which indicating the abundance of various immune cell

populations. The immune landscape revealed significant intra-

cluster heterogeneity (Figure 6A). Consistent with an immune-

cold phenotype, tumors in mHCC3 had the lowest rate of

leukocytes infiltration. Contrary to the immune-cold mHCC3,

tumors in mHCC1 had the highest cell infiltration fraction and it

was mainly characterized by higher infiltration of lymphocytes.

Interestingly, although tumors in mHCC1 displayed the highest

infiltration of cytotoxic cells including CD8+ T cells, Tgd, and NK

cells, mHCC1 was the subtype with both poorest prognosis and

highest T cell exhaustion score (Figure 6B), suggesting that the

tumor microenvironment of mHCC1 was immune-hot but highly

immune-exhausted type. Most suppressive ligands and receptors

for immune checkpoint showed the highest expression levels in

mHCC1 (Figure 6C), which is consistent with an immune-

suppressive phenotype. Emerging experimental data indicated

that the presence of a pre-existing intra-tumoral T cell

infiltration, checkpoint molecules (PD-1, PD-L1 expression) could

favor a clinical response (41), therefore, we hypothesized that this

subtype could benefit much from immune therapy only if the

immunosuppressive situation was relieved.

Different from the extreme low/high immune infiltration shown

above for mHCC3 and mHCC1, mHCC2 demonstrated a more

balanced and favorable immune profile. One major difference from

mHCC1 is that the immune composition in mHCC2 was enriched

with B cells, macrophages, mast cells, and neutrophils, suggesting

an immune microenvironment tended to towards innate immunity

and inflammation. The remaining mHCC4 were more diverse with

intermediate levels of immune features. The mHCC4 had high
Frontiers in Immunology 08
infiltration levels of NKdim, Th, Tcm, and Tgd, but showed a low

level of other lymphocytic cells, and extremely low levels of B cells,

macrophages, mast cells, and neutrophils, which was opposite to

mHCC2. Additionally, mHCC4 had the highest level of eosinophils.

Together with the specificity of eosinophils infiltration as an index

for good prognosis in mHCC4, the above findings supported the

major anti-tumor role of eosinophils in the metabolic

subtype mHCC4.

The prognostic role of immune cells shown by survival analysis

between inter-and intra-cluster was in a high degree of

heterogeneity (Figure 6D). For example, among the important

cytotoxic T cells, such as CD8+ T cells, and Tgd cells, we found

that increased rate of CD8+ T cell infiltration was associated with

good prognosis in mHCC1, mHCC2, and mHCC3, but it was not

linked with prognosis in mHCC4; in contrast, Tgd infiltration was

associated with significantly poor prognosis in mHCC4, but showed

no correlation with prognosis in other three clusters. Meanwhile,

some immune cells had the opposite prognostic role in different

clusters, such as that infiltration of Treg cells was a poor factor in

the prognosis of mHCC4 but a good factor of prognosis in mHCC3.

The prognostic heterogeneity of immune infiltration revealed

different roles of immune cells in different HCC subtypes. Since

the metabolic subtypes were produced based on metabolism genes

that did not involve signature genes of immune cells, these results

suggest a high heterogeneity in component and function of immune

microenvironment across these four metabolic subtypes, and

support a combination treatment strategy targeting metabolism

and immune microenvironment, or the attempt to dig out new

target of dual function that combined metabolism-regulation as well

as immune-modulation.
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FIGURE 6

Immune characteristics of metabolic subtypes. (A) Box plots depicting the abundance of immune cell populations in each subgroup. (B) Violin plots
showing the distribution of T cell exhaustion scores (Tex Score) in samples of each group. (C) Box plots depicting the expression of immune
checkpoints across metabolic subtypes. (D) The prognostic significance of the abundance of each immune cell population in each subtype are
summarized in a forest plot. (*P < 0.05, **P < 0.01, ***P < 0.001).
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Identification of palmitoyl-protein
thioesterase 1, a metabolic gene, as a
therapy target for T cell exhaustion with
metabolic subgroup specific

Considering that mHCC1 had the poorest prognosis, we tried to

identify new therapeutic targets for this subtype. The prognostic

metabolic genes were identified, and their correlation with T cell

exhaustion, the important feature of mHCC1, was investigated

(Figure 7A). Of genes most closely related with T cell exhaustion,

we identified palmitoyl-protein thioesterase 1 (PPT1), which was
Frontiers in Immunology 09
specifically upregulated in mHCC1 and was a specific prognosis

factor for mHCC1 (Figures 7B, C). The positive correlation between

PPT1 and Tex score (Figure 7D, R = 0.3495, P<0.0001) suggested

that PPT1 might contribute to T cell exhaustion. To determine the

relationship between PPT1 and glucose metabolism, we analyzed

the data of Transcriptomics and metabolomics in the study of

Chaisaingmongkol et al. (42). Data LIHC_GSE76297 was used to

confirm the high expression of PPT1 in HCC tumor tissues.

Through the analysis of glucose metabolism-related metabolites,

the content of glucose, maltose and maltotriose decreased in the

high expression group of PPT1, suggested that the level of glycolysis
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FIGURE 7

Identification of PPT1 as a therapy target. (A) Heatmap showing the correlation between prognostic metabolic genes and Tex score. The top 10
most positively/negatively correlated genes are shown. (B) Survival curves showing the distinctive prognostic value of PPT1 in different metabolic
subtypes. (C) Violin plots showing the expression of PPT1 in samples of different subtypes. (D) Scatter plot depicting the correlation between PPT1
gene expression and Tex score. (E) PPT1 expression in HCC and non-tumorous tissues was analyzed using data in the LIHC_GSE76297. (F) Box plots
depicting the glycolytic related metabolites between low and high PPT1 expression subgroup. (G) Single-cell RNA sequencing revealed the cell types
and distribution of HCC. (H) Violin plots showing the PPT1 expression between malignant and epithelial cells. (I, J) The KEGG pathways (I) and GO
biological processes (J) enrichment analysis of PPT1 in malignant cells. (ns: not significant, *: P < 0.05, **: P < 0.01, ***: P < 0.001).
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was exuberant in tissues with high expression of PPT1 (Figures 7E,

F). Then, we analyzed the data LIHC_GSE166635 in GEO database

using TISCH platform, and the results showed that the expression

of PPT1 in malignant cell was strikingly higher than that in

epithelial cells (Figures 7G, H). To verify the biological function

and mechanism of PPT1, functional annotation analysis was

performed on PPT1 in malignant cell. The KEGG pathways and

GO biological processes enrichment suggested that PPT1 was

closely related to tumor metabolism, immunity, tumor

microenvironment and extracellular matrix (Figures 7I, J), which

was consistent with the above results that PPT1 is related to tumor

metabolism and immunosuppression (43, 44).

In a very recent study, Rebecca et al. identified PPT1 is

the molecular target of a novel chloroquine derivative, the

DC661; they found that knockout of PPT1 in several cancer cell

lines using CRISPR-Cas9 editing resulted in significant

impairment of tumor growth similar to that observed with

DC661 treatment, which supported the tumor driver role of PPT1

in cancer (45, 46). Therefore, a further question was raised whether

PPT1 as a therapeutic target had subtype-specific property and

immunomodulating function. In vitro study was carried out to

verify the above questions. We enhanced the glycolysis activity

through overexpression of PKM2 in Huh-7 and JHH-7 cells, cell

lines with the intermediate glycolysis level. Downregulation of

PPT1 significantly neutralized the proliferative advantage of

PKM2 overexpression cells (Figures 8A–C). In addition, PKM2

overexpression markedly increased ECAR (Figure 8D), and we

found downregulation of PPT1 in PKM2-overexpressed cells

induced a larger drop in ECAR than it did in normal cells, and

the same was observed for the lactate production ability (Figure 8E),

which partly explained the positive correlation between PPT1

expression and Tex score. We next divided TCGA samples into

two groups based on the expression of PKM2, HK2, or FBP1,

respectively. Interestingly, the prognostic value of PPT1 expression

was only significant in TCGA samples with higher expression of

PKM2 (Figure 8F) or HK2 (Figure 8G), two enzymes promote

glycolysis, or in TCGA samples with lower expression of FBP1

(Figure 8H), an enzyme inhibits glycolysis.
PPT1 promotes the proliferation, migration,
and invasion of HCC in vitro and vivo.

Recently, it has been reported that PPT1 is essential for the

function of lysosomes, which, as the center of cellular energy sensing

and metabolic regulation, play a driving role in the malignant

progression of tumor cells (45). In HCC, the increase of glycolysis

level and the further enhancement of lysosome and autophagy

activity lead to poor prognosis of patients (47). PKM2 is a key rate-

limiting enzyme in glycolysis and an important factor in HCC

metabolism (48). Therefore, we decided to find out whether PPT1

depends on PKM2 to promote tumor progression through

autophagy. Chloroquine, a lysosomal autophagy inhibitor, was used

to inhibit autophagy. In Colony formation assay (Figures 9A–D and

Supplementary Figures S1A–D), Transwell assay (Figures 9E–H and
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Supplementary Figures S1E–H) and EdU assay (Figures 9I–L and

Supplementary Figures S1I–L), compared with the stably knockdown

PKM2 cells, PPT1 could significantly promote the proliferation,

migration and invasion of HCC tumor cells in stable

overexpression of PKM2 between Huh-7 and JHH-7 cells,

interestingly, the proliferation, migration and invasion of tumor

cells decreased strikingly after the treatment of chloroquine.

Furthermore, Western blotting analysis showed that under the

condition of high expression of PKM2, PPT1 could significantly

affect the expression of autophagosome protein marker LC3B, while

the accumulation of LC3B -II expression increased after chloroquine

was added, suggesting that the lysosomal function might be impaired

(Figures 9M, N). Collectively, PPT1 may be dependent on PKM2 to

promote the progress of HCC through the autophagy.

To further verify the role of PPT1, we constructed Mouse

subcutaneous xenograft models. Compared with the control

group, the injection of Huh-7 cells stably overexpressing PPT1

and PKM2 significantly promoted tumor growth, while after

treatment with chloroquine, tumor growth was inhibited to some

extent (Figures 10A–D). In addition, IHC staining showed that Ki-

67 levels were notably increased in the tissues of mice treated with

stable overexpression of PPT1 and PKM2, suggesting that tumor

proliferation was obvious (Figures 10E, F). Taken together, PPT1

relies on PKM2 to promote the malignant progression of HCC by

mediating autophagy.
Discussion

HCC is highly heterogeneous and thus difficult for treatment

cancer (49). In this regard, continuous progress in the understanding

of molecular tumor subtypes is needed to accelerate the development

of personalized treatment for HCC patients. Our study established

four HCC subtypes with distinct profiles based on the expression of

metabolic genes. We found distinct differences in metabolic

pathways, immune profiles, and in clinical survival between four

major HCC subtypes. Moreover, the markedly immune heterogeneity

among the metabolic subtypes provides more biological and clinical

significance to our classifier and suggests subtype-specific therapeutic

strategies targeting metabolic dependencies and immune regulators

alone each or in combination.

Clear evidences supported that metabolic alterations are common

for all tumor types (50). As a key organ for whole body energy

homeostasis, the liver carries out many metabolic functions (51).

Consequently, it is not surprising that metabolic reprogramming is

critical during HCC carcinogenesis. Our study demonstrated that

HCC was characterized by the absence of normal metabolic genes in

noncancerous liver, which was more evident in individual subtypes.

This result suggested that alterations in the expression of genes

involved in metabolism of normal liver contributed to HCC

metabolic heterogeneity. An enzyme or a metabolic pathway

enriched in HCC and not in the corresponding normal liver tissue

could be used to selectively target tumor cells. Therefore, the degree of

normal metabolic genes loss seems an indicator for the success of

therapies targeting metabolism.
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Among all four subtypes, the first subtype (mHCC1)

demonstrated the worst prognosis, significant downregulation of

metabolic genes enriched in normal liver, and broad alternations in

most metabolic pathways. HCC involves multiple metabolic

abnormalities. In addition to unique metabolic features,

alternations in glucose metabolism, lipid metabolism, and amino
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acid metabolism attracted much wider attention over the past few

years (52–54). Most cancer cells reprogram cellular glucose

metabolism to constitute a selective advantage for proliferation

(55). Among them, HCC probably displays the most comprehensive

reprogramming of glucose metabolism, which was essential for the

maintaining of tumor growth and progression (56). Altered amino
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FIGURE 8

Effect of PPT1 knockdown on human HCC cells. (A, B) Stable knockdown of PPT1, and overexpression of PKM2 in Huh-7 (A) and JHH-7 (B) cells by
lentiviral vector transfection. The knockdown effect on protein levels were shown for normal control cells (NC), cells transfected with empty vector
(Vector), PPT1 knockdown cells (sh-PPT1#1), PKM2 overexpression cells (PKM2), and combination of PKM2 overexpression and PPT1 knockdown (PKM2
+ sh-PPT1#1). b-Actin was used as a loading control. (C) In vitro cell proliferation curves showing the effect of PKM2 overexpression, PPT1 knockdown,
or in combination of PKM2 overexpression and PPT1 knockdown on huh-7 cells. (D) Seahorse metabolic analysis (ECAR) of normal control cells (NC),
cells transfected with empty vector (Vector), PPT1 knockdown cells (sh-PPT1#1), PKM2 overexpression cells (PKM2), and combination of PKM2
overexpression and PPT1 knockdown (PKM2+ sh-PPT1#1). (E) Relative lactate production from hun-7 cells upon treatment as annotated. (F–H) Survival
curves showing the predictive role of PPT1 for prognosis stratified by PKM2 expression (F), HK2 expression (G), or FBP1 expression (H). The error bars are
expressed as the mean ± SD of three independent experiments. (ns: not significant, *: P < 0.05, **: P < 0.01, ***: P < 0.001).
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acid metabolism and lipid metabolism also characterize HCC

compared with other liver diseases. GSVA analysis indicated that

tumors of the first subtype had significant alternations in all

pathways associated with glucose metabolism, and most pathways

involved in lipid and amino metabolism in comparison with other

tumors and normal liver tissues. This finding suggests that tumors

in this subtype rely heavily on reprogramed metabolism, which is

therefore an appropriate candidate for metabolism-target therapy.

One of the clinical-translational relevance of this subtype

classification is that it suggested that different metabolic subtypes

have different therapeutic and prognostic targets, since the

prognostic significance of a particular metabolic gene could be

different between each subtype. For example, PPT1, a gene that was

detected as a special prognostic factor only for mHCC1, regulates

the lysosomal acidity necessary for cellular catabolism. The

catabolic function and nutrient sensing activity of the lysosome

make it as a metabolic signaling center (57). Lysosome is a key

central delivery port for substrates destined for breakdown and

serve to recycle the constituent building blocks (58). The central

position of the lysosome system in cancer have made it a promising

target in anti-tumor therapy, especially for those alterations that are

highly dependent on metabolism to fulfill their anabolic demands

(46). A previous study has identified that KO PPT1 cells showed

impaired lysosomal deacidification, decreased proliferation, and

increased apoptosis both in vitro and in vivo (45). Consistent

with the above assumption, we found PPT1 have special

prognostic value in the first subtype, and knockdown of PPT1

significantly neutralized the PKM2 overexpression-induced growth
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advantage in HCC cells. Despite PPT1 being a promising target for

HCC tumors with relatively abundant metabolism alternations,

these findings supported that the therapy strategy in a metabolic

subtype-specific manner might be more efficient than those trying

to cover all patients. The subtype classification of this study

provided clues for future research.

In healthy tissues, neighboring cells cooperate to build a

harmonious metabolic environment, which is usually disrupted in

cancer tissues (59). As a result of altered tumor metabolism, cells in

tumor microenvironment suffer from lacking essential nutrients while

atypical metabolites accumulate, along with impaired antitumor

immunity (40, 60, 61). One example is the competition for glucose

between T lymphocytes and tumor cells; T cells consume extracellular

glucose to fulfill their activation, and suppression of glucose take up,

such as knockout glucose transporters, inhibited proliferation of

activated CD4+ T cells and generation of effector T cells (62). In

turn, elevated lactate production in glycolytic cancer cells suppressed

survival of effector T and NK cells and promoted immune escape (63).

In this study, perhaps surprisingly, we found distinct immune

infiltration profiles, as well as expression of immune checkpoints and

T cell exhaustion levels in different metabolic subtypes. Additionally,

the prognostic significance of infiltration level for the same immune cell

was distinct in different subgroups. These findings revealed an intimate

link between metabolic subtypes and immune heterogeneity; suggested

personalized immunotherapy strategy according to the metabolic

subtypes. For example, the mHCC1, despite its significantly altered

metabolic pathways, was characterized by high immune infiltration,

high T cell-exhausted signature, and high expression of suppressive
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FIGURE 9

PPT1 promotes the proliferation, migration and invasion of HCC via lysosomes in vitro. (A–D) The colony formation was counted in stable
overexpression of PKM2 between Huh-7 (A, B) and JHH-7 (C, D) cells. (E–H) Representative images and histogram analysis of Transwell migration and
Matrigel invasion assays in stable overexpression of PKM2 between Huh-7 (E, F) and JHH-7 (G, H) cells. Scale bars: 100 mm. (I-L) Representative images
and histogram analysis of EdU assays in stable overexpression of PKM2 between Huh-7 (I, J) and JHH-7 (K, L) cells. Scale bars: 100 mm. (M, N) Western
blotting analysis of PPT1 and LC3B in stable overexpression of PKM2 between Huh-7 (M) and JHH-7 (N) cells. b-Actin was used as a loading control. The
error bars are expressed as the mean ± SD of three independent experiments. (***: P < 0.001).
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immune checkpoints; all indicating the applicability of treatment

strategy through combination of metabolism-targeted and immune-

targeted therapies in this subtype. In contrast, mHCC2 was the only

subtype which did not show significantly altered expression of normal

metabolic genes in the GSEA analysis, suggesting that metabolism-

targeted therapy is not a priority for patients with this subtype.

Tumors in mHCC4 had distinct mutations compared with other

three groups. More than 76% of patients with this subtype harbored

mutations in CTNNB1. A very recent report discovered that Wnt/

CTNNB1 mutations could characterize the immune excluded class

(cold tumors) and might represent the biomarkers predicting

resistance to immune checkpoint inhibitors (64, 65). Consistent

with this report, subtype 4 showed a low enrichment level for

signatures of most immune cells. Only in subtype 4, CD8+ T cell

infiltration had almost no correlation with the prognosis. Besides,

many immunosuppressive checkpoints, including PD1, PD-L1, TIM-

3, LAG3, and others, showed the lowest expression levels in this

subtype. All these suggested innate resistance to checkpoint
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inhibitors. But fortunately, tumors of this subtype demonstrate

highly altered metabolism which is second only to subtype 1.

Therefore, effort to uncover new metabolism-related targets in this

subtype might be helpful. Additionally, unlike the other three

subtypes, increased infiltration of aDC, iDC, or Tgd were all

associated with poor prognosis. The unique roles of these immune

cells and their correlation with metabolism merits further study.

Another interesting finding in the present study was that some

molecules might be good target to “kill two birds with one stone”. For

example, PPT1 showed much more correlation with cell viability,

glucose metabolism activity, lactate production, and T cell exhaustion

in HCCs with enhanced metabolic alterations, which should be

especially applicable for the mHCC1 tumors with obvious

alterations in metabolism and enhanced proliferation. This also

provided clues for the treatment strategy for other subtypes. The

tumors in subtype 3 also seemed like “cold’ tumors”; they had

aberrant decreased enrichment of immune signatures and showed a

low level of metabolism alteration. However, the mHCC3 had its own
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FIGURE 10

PPT1 promotes HCC tumorigenicity and progression in vivo. (A, B) Representative images of subcutaneous xenograft tumors in stable overexpression of
PKM2 Huh-7 cells treated with Vector, Chloroquine, PPT1 lentivirus and PPT1 lentivirus + Chloroquine (n=5). (C, D) The tumor volume (C) and weight (D)
were evaluated in each group. (E, F) Representative images (E) and histogram analysis (F) of IHC for Ki-67. Scale bars: 200× =50 mm; 400× =20 mm. The
error bars are expressed as the mean ± SD of three independent experiments. (*: P < 0.05, ***: P < 0.001).
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unique characteristic: CTNNB1 mutations was rare in this subtype; it

was the only subtype that benefited from enrichment in aDC;

moreover, CD8+ T cell enrichment showed the lowest HR value,

suggesting a high anti-tumor activity of effector T cells in tumors of

this subtype. Therefore, the barrier for immunotherapy in this

subtype seemed more from impaired in immune chemotaxis,

immune presentation, and expansion, but which has rare relation

with CTNNB1 mutations and PD1/PD-L1. We noted that mHCC3

was characterized by significant altered O-Glycan biosynthesis

metabolisms. Although the impact of tumor glycans on anti-tumor

immunity has not yet been fully elucidated, the abundant and

aberrant cancer glycosylation profile is currently accepted as a

distinct hallmark of cancer, and tumor-associated O-glycans bind a

variety of receptors on immune cells to facilitate the subsequently

induction of immunosuppression (66). Determining whether O-

Glycan metabolism could play a dual role as both metabolism and

immunotherapy targets requires further investigation.

In summary, our study introduced a novel metabolic class in

HCC cases, which comprise not onlymetabolic heterogeneity but also

immune heterogeneity. The metabolic heterogeneity demonstrated

that some reprogrammed metabolic pathways affected tumor

progression in different rates depending on the subtype, which

supports the development of subtype-specific treatment strategies

targeting unique metabolic vulnerabilities. The immune

heterogeneity across metabolic subtypes suggested that it might be

effective to select different immune therapeutic strategies according to

different metabolic subtypes. The correlation between immune

characters and metabolic features also helped us to find an

individualized therapeutic target, the PPT1. Further investigations

of the effect of metabolism pathways on both tumor progression and

immunologic microenvironment is worthy of study.
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