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Aerosolized nicotine from
e-cigarettes alters gene
expression, increases lung
protein permeability, and impairs
viral clearance in murine
influenza infection
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E-cigarette use has rapidly increased as an alternativemeans of nicotine delivery by

heated aerosolization. Recent studies demonstrate nicotine-containing e-

cigarette aerosols can have immunosuppressive and pro-inflammatory effects,

but it remains unclear how e-cigarettes and the constituents of e-liquids may

impact acute lung injury and the development of acute respiratory distress

syndrome caused by viral pneumonia. Therefore, in these studies, mice were

exposed one hour per day over nine consecutive days to aerosol generated by the

clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a

mixture of vegetable glycerin and propylene glycol (VG/PG) with or without

nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-

relevant levels of plasma cotinine, a nicotine-derived metabolite, and an

increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the

distal airspaces. Following the e-cigarette exposure, mice were intranasally

inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols

generated from VG/PG with and without nicotine caused greater influenza-

induced production in the distal airspaces of the pro-inflammatory cytokines

IFN-g, TNFa, IL-1b, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi).

Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized

nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC)

in the distal airspaces and significantly higher lung permeability to protein and viral

load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative

downregulation of genes associated with ciliary function and fluid clearance and

an increased expression of pro-inflammatory pathways at 7 dpi. These results
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show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune

responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters

the transcriptomic response to pathogens, blunts host defense mechanisms,

increases lung barrier permeability, and reduces viral clearance during influenza

infection. In conclusion, acute exposure to aerosolized nicotine can impair

clearance of viral infection and exacerbate lung injury, findings that have

implications for the regulation of e-cigarette products.
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influenza, e-cigarette (e-cig), ARDS, nicotine, viral load
Introduction

Acute respiratory distress syndrome (ARDS) has a substantial

health burden, causing 200,000 deaths annually in the United States

and significant morbidity in survivors (1). Bacterial and viral

pneumonia are the most common cause of ARDS (2), with COVID-

19 increasing the incidence of ARDS by ten-fold in the United States

(3). Prior to the COVID-19 pandemic, influenza was the most

common virus responsible for pneumonia and ARDS (4), and new

influenza viral strains continue to present a risk for potential future

pandemics (5). While viral respiratory infections are a major risk factor

for ARDS, not all viral infections lead to ARDS and environmental

factors have an important role in developing disease (6).

The course of influenza infections is modified by cigarette

smoke, which is associated with increased influenza severity in

case-control (7) and cohort (8) studies and higher influenza

mortality in large population studies (9). Additionally, animal

studies have demonstrated that cigarette smoke exposure

increases lung injury and mortality from influenza infection (10).

Moreover, primary upper respiratory epithelial cells from smokers

have impaired antiviral immune responses, dysregulated cytokine

release, and greater viral shedding compared to non-smokers (11).

These studies establish cigarette smoke as a significant risk factor for

worse outcomes from influenza and highlight the urgent public

health need to understand how the chemicals in cigarette smoke

modify the host response to viral infections.

Nicotine is an addictive stimulant found in cigarette smoke that

can also be inhaled via electronic nicotine delivery systems, or e-

cigarettes. These devices use a heated metal coil to aerosolize

nicotine solubilized in an e-liquid mixture of vegetable glycerin

(VG) and propylene glycol (PG) as well as other additives like

flavoring compounds (12, 13). Studies have shown that exposure to

e-cigarette aerosols has injurious effects in the respiratory system

linked to different chemicals in these products (14). However, there

is still limited knowledge on the direct effects of nicotine on

pulmonary function and pathophysiology as reports of cigarette

smoking and e-cigarette use have largely not investigated nicotine in

isolation but rather in a mixture with other chemicals. Prior studies

found that intradermally administered nicotine blunted T cell and B
02
cell responses in animals (15, 16), but the impact of aerosolized

nicotine on acute respiratory viral infections remains poorly

understood. With the rapid proliferation of e-cigarette use,

studies are needed to determine how their specific chemical

constituents impact lung injury and viral infections (17).

In this study, we tested three hypotheses. First, we hypothesized

that exposure to e-cigarette aerosols generated from an e-liquid

containing VG/PG only (i.e., the carrier) or an e-liquid containing

VG/PG plus nicotine would increase pro-inflammatory responses

in the distal airspaces of the lungs. Second, we hypothesized that

following e-cigarette aerosol exposure, mice infected with influenza

A (H1N1 PR8 strain) would have an impaired capacity to clear the

influenza viral infection and show evidence of greater lung injury, as

measured by increased lung protein permeability. Third, we

hypothesized that prior exposure to e-cigarette aerosols would

cause increased expression of pro-inflammatory transcriptomic

pathways in the lungs of mice infected with influenza.
Methods

Animals and exposures to e-cigarette
aerosols and cigarette smoke

Adult (8–12 weeks old) C57BL/6 mice were purchased from the

National Cancer Institute, housed in pathogen-free housing, and

cared for in accordance with NIH guidelines by the Laboratory

Animal Resource Center of the University of California, San

Francisco (UCSF). All experiments were conducted under protocols

approved by the UCSF Institutional Animal Care and Use

Committee. For e-cigarette exposures, mice were housed in a

plexiglass chamber that was filled with air (controls) or e-cigarette

aerosol delivered by a Gram universal vaping machine via a syringe

pump (Figure 1A), as we have done in prior studies (20, 21). The e-

cigarette used in this study was the re-fillable tank-style Aspire

Nautilus atomizer (4 volts, 1.8-ohm coil, 9 watts) filled with an e-

liquid mixture of a 1/1 ratio of vegetable glycerin and propylene

glycol (VG/PG) with or without free base nicotine. Inhale (syringe

draw) and exhale (syringe infusion) periods were set at 4.1 and 2.3
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seconds with a puff volume of 80 ml. 10 puffs were initially injected

into the chamber over approximately 1 minute, followed by 110 puffs

over 1 hour. To create steady-state conditions, the chamber was

evacuated to an external fume hood at a constant rate of 2.0 L/min

during the exposure, using a calibrated flowmeter (Dwyer) to draw in

a mixture of fresh aerosol and room air. Cigarette smoke exposures

were done over five hours with 100 mg/m3 total suspended particles

(TSP) using a Teague TE-10 smoking machine with 3R4F Kentucky

research cigarettes, as we have done in prior studies (18, 19).
Bronchoalveolar lavage and measurements
of protein, cell counts, inflammatory
cytokines, and mucin protein

Mice were anesthetized with isoflurane followed by overdose with

ketamine. After tracheal cannulation, bronchoalveolar lavage (BAL)

was performed with two 250 mL aliquots of PBS and subsequently

combined together. The total number of cells in the BAL were

counted using a Cytosmart automated cell counter (Corning). Total

protein in the cell-free BAL was measured with the Pierce BCA Assay

(Thermo Fisher Scientific). Inflammatory cytokines in the BAL were

measured using a Luminex assay with a ProcartaPlex multiplex kit

(Thermo Fisher Scientific) for the following analytes: eotaxin,

granulocyte-macrophage colony stimulating factor (GM-CSF), CXC

motif chemokine ligand 1 (CXCL1), interferon (IFN) -g, interleukin
(IL) -1b, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-2, IL-22, IL-23, IL-
27, IL-4, IL-5, IL-6, IL-9, IFN-inducible protein (IP) -10, monocyte

chemoattractant protein (MCP) -1, MCP-3, macrophage

inflammatory protein (MIP) -1a, MIP-1b, MIP-2, regulated upon

activation, normal T-cell expressed and secreted (RANTES), and

tumor necrosis factor a (TNFa). Mucin 5 subtype AC (MUC5AC) in

the BAL was measured by ELISA (Novus Biologicals).
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Influenza virus infections

Mice were anesthetized with isoflurane, and 300 foci-forming

units of influenza A/H1N1/Puerto Rico/8/34 (PR8) dissolved in 30

µl of PBS was administered nasally, as in our prior work (22). Mice

were monitored daily for morbidity and mortality as per

institutional animal welfare guidelines.
Influenza viral load measurements

Mice not used for BAL were overdosed with ketamine and

underwent bilateral thoracotomy. Blood was collected by right

ventricular puncture to obtain plasma for cotinine measurements.

The left lung was placed in RNA Shield (Zymo Research), incubated

at 4°C overnight, and then frozen at −20°C. Frozen lungs were thawed,

minced, homogenized, and then samples extracted using a Zymo

Quick viral RNA kit (Zymo Research). RNA presence and quality in

extracts was tested using a DS-11 Fx+ spectrophotometer (DeNovix),

and cDNA was created using a High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems). RT-PCR was performed

using a SYBR Green Kit (Bio-Rad) and a LightCycler (Roche) with

primers specific for influenza viral nucleoprotein A, VNP, (forward:

C A G C C T A A T C A G A C C A A A T G , b a c k w a r d :

TACCTGCTTCTCAGTTCAAG) and murine GAPDH (forward:

AAGGTCATCCCAGAGCTGAA, backward: CTGCTTCACC

ACCTTCTTGA), as in our prior work (23). The mRNA

concentration specific for VNP to that of GAPDH was calculated.

To quantify the number of viral particles, the right lung was

homogenized in 1 ml of PBS and the homogenate was plated onto

96-well plates of confluent MDCK cells. 1 hour later, samples were

decanted and replaced with serum-free media containing tosyl

phenylalanine chloromethyl ketone trypsin at 1.5 mg/ml. After 15
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FIGURE 1

E-cigarette aerosol exposure system achieves appropriate plasma cotinine levels in mice. (A) Mice were housed in a plexiglass chamber. E-cigarette
aerosol was generated by the tank-style Aspire Nautilus and drawn into a syringe by the Gram Universal Vaping Machine controlled by programmed
computer software. The aerosol was injected through a three-way valve into the exposure chamber and circulated by a fan. A vacuum was used to
maintain a steady-state and draw in fresh air and aerosol. (B) Plasma cotinine levels in mice exposed for nine days, one hour/day, to aerosol
generated by the Nautilus device containing an e-liquid mixture of vegetable glycerin (VG), propylene glycol (PG), and 36 mg/ml nicotine was not
significantly different (P = 0.099, unpaired t-test) to that of mice exposed to cigarette smoke. Cigarette smoke exposures were over five hours
(single day) with a Teague TE-10 smoking machine using 3R4F Kentucky research cigarettes, as in our prior studies (18, 19). Plasma cotinine in
unexposed mice was below the limit of detection (BLD). Data are presented in nanogram/milliliter (ng/ml). Each data point represents one mouse.
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hours, the MDCK cells were fixed in 100% methanol and then

underwent indirect immunocytochemistry using mouse anti-

influenza A (MAB 8257, Millipore) at 1.25 mg/ml, followed by

biotinylated horse anti-mouse (Vector Laboratories), and the biotin/

avidin system (PK-4002, Vector Laboratories) with diaminobenzidine

as a chromogen. Samples were quantified in triplicate over 105

dilutions; foci were counted in wells containing 30-100 discrete foci.
RNA sequencing and analysis

RNA-seq libraries were prepared using the NEB Ultra-II kit and

underwent paired-end sequencing on an Illumina NovaSeq 6000.

Sequences were aligned to the murine genome using STAR (24).

Sample quality metrics, including total protein coding reads,

number of non-zero reads, hierarchical clustering, and principal

component analysis were reviewed prior to downstream analyses.

Differential expression analysis was performed using DESeq2 using

default filters (25). Empirical Bayesian posterior log-fold changes

were calculated using apeglm. Differentially expressed genes were

identified using independent hypothesis weighted false discovery

rates (FDR) (26). Genes were ranked using their shrunken log2 fold

changes for Gene Set Enrichment Analysis (GSEA). GSEA was

performed using the C5 Gene Ontology pathway reference from

msigdbr, which maps human gene symbols fromMSigDB to murine

gene symbols. Raw sequencing data are available under NCBI

BioProject ID PRJNA891788.
Statistical analyses

Comparisons between groups were made with ANOVA or

unpaired t-test. Repeated measures ANOVA was used for

comparisons of multiple groups over more than one time point, and

two-way interaction terms were created for treatment group and time.

P < 0.05 was considered to be statistically significant. Analyses were

done using Prism 8 software (GraphPad). Data are presented as mean

and standard deviation. Significant differentially expressed genes and

GSEA pathways were identified by an adjusted p-value less than 0.1.
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Results

Nine days of e-cigarette aerosol exposure
achieved plasma cotinine levels
comparable to cigarette smoke exposure

E-cigarette aerosol generated by an Aspire Nautilus device, containing

a 1/1 mixture of VG/PG (i.e., the carrier) with 36 mg/ml of nicotine, was

drawn by a Gram Universal Vaping machine controlled by programmed

software, as illustrated in Figure 1A. The aerosol was then pushed through

a three-way valve into a plexiglass chamber in whichmice were housed for

one hour per day over nine days. After the nine days of e-cigarette aerosol

exposure, there was no significant difference (P = 0.099) in the plasma

concentration of cotinine, the metabolite of nicotine produced by the liver

(27), to that of mice that were exposed to cigarette smoke for five hours

(Figure 1B). Subsequent experiments were performed with exposures to

aerosols generated using an e-liquid of only the carrier VG/PG or of VG/

PG containing 36 mg/ml nicotine (VG/PG/Nic).
Exposure to e-cigarette aerosol containing
nicotine elicited inflammatory cytokine
production in the lung airspaces

Mice were exposed to air (control) or to aerosols generated from an

e-liquid containing the carrier VG/PG only or VG/PG with 36 mg/ml

nicotine (VG/PG/Nic), enabling isolation of nicotine-specific effects

(Figure 2A). Following nine days of exposure (1 hour/day),

bronchoalveolar lavage (BAL) was done. The concentrations of the

inflammatory CXCL1, MCP-1, and IL-17A, Figures 2B–D respectively,

were significantly higher in the BAL from mice exposed to aerosolized

VG/PG/Nic than those exposed to the carrier VG/PG or to air. There

was no significant difference in BAL cytokine concentrations between

mice exposed to VG/PG only and those to air. There was no significant

difference in the number of total cells counted in the BAL between Air

(17 ± 9 cells/µl), VG/PG (11 ± 4 cells/µl), and VG/PG/Nic (16 ± 12

cells/µl). Additionally, the weight of mice was not significantly different

between the Air (28.1 ± 1.9 g), VG/PG (27.5 ± 1.4 g), and VG/PG/Nic

(28.1 ± 1.6 g) exposure groups.
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FIGURE 2

Nicotine-containing e-cigarette aerosol elicits an inflammatory response in the airspaces. (A) Timeline of e-cigarette exposures. (B–D) CXC motif
chemokine ligand 1, CXCL1 (B), monocyte chemoattractant protein-1, MCP-1 (C), and interleukin-17A, IL-17A (D), were significantly greater in the
bronchoalveolar lavage (BAL) from mice exposed to nicotine-containing aerosol (VG/PG/Nic) than in mice exposed to only VG/PG (i.e., the carrier)
or to air, suggesting a nicotine-specific effect. * P < 0.05, ** P < 0.01, 1-way ANOVA with Tukey’s multiple comparisons test. Data are presented in
picogram/milliliter (pg/ml). Each data point represents one mouse.
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Nicotine-containing e-cigarette aerosol
increased the lung protein permeability
and blunted the increase in BAL
MUC5AC concentration induced
by influenza infection

Total protein concentration measured in the BAL from mice after

nine days of e-cigarette aerosol exposure was not significantly different

between the three exposure groups (Figure 3B). After e-cigarette

exposures, mice that were inoculated intranasally with influenza A

(H1N1 PR8 strain) were sacrificed 7 days post inoculation (dpi) to

perform BAL (Figure 3A), and BAL protein was significantly increased

(p < 0.05) by influenza infection at 7 dpi (Figure 3B). BAL at 7 dpi from

mice exposed to aerosolized VG/PG/Nic had significantly higher total

protein concentration than those exposed to air and a trend for higher

BAL total protein compared to mice exposed to the carrier VG/PG

though this difference did not reach significance (P = 0.084). Mucin 5

subtype AC (MUC5AC) in the BAL was not significantly different after

nine days of e-cigarette exposure compared to air (Figure 3C).

Influenza infection significantly increased (p < 0.05) MUC5AC in

the BAL at 7 dpi but to a lesser degree in mice exposed to VG/PG/Nic

aerosol which had significantly lower BAL MUC5AC than mice

exposed to the aerosolized carrier VG/PG or to air.
E-cigarette aerosol exposure increased
influenza-induced inflammatory cytokine
production in mouse lung airspaces

At 7 dpi with influenza, BAL from mice exposed to e-cigarette

aerosol generated from the carrier VG/PG or from VG/PG/Nic had
Frontiers in Immunology 05
significantly higher levels of IFN-g, TNFa, IL-1b, IL-6, IL-17A, and
MCP-1 compared to mice exposed to air (Figure 4). No differences

in cytokine expression between VG/PG and VG/PG/Nic groups

were observed, suggesting that the increased production of

cytokines in the airspaces induced by influenza infection was

attributable to aerosols containing VG/PG and not an effect

specific to nicotine. Additionally, there were non-significant

trends for greater weight loss induced by influenza infection at 7

dpi in mice exposed to aerosolized VG/PG (16.4 ± 2.0 %; P =

0.2748) or VG/PG/Nic (17.3 ± 2.7 %; P = 0.1361) compared to Air

(13.2 ± 4.3 %). There was no significant difference in the number of

total cells counted in the BAL between Air (299 ± 46 cells/µl), VG/

PG (286 ± 61 cells/µl), and VG/PG/Nic (255 ± 68 cells/µl).
Nicotine-containing e-cigarette aerosol
impaired influenza viral clearance in
murine lungs

After nine days of e-cigarette exposure and subsequent inoculation

with influenza, mice were sacrificed at 1, 3 and 7 dpi (Figure 5A) to

harvest the lungs that were then homogenized to quantify viral load.

The expression of influenza viral nucleocapsid protein (VNP) was

determined by qPCR and the number of infective viral particles (i.e.,

foci-forming units, FFUs) was also quantified. VNP mRNA expression

was not significantly different at 1 dpi while at 7 dpi the lungs of mice

previously exposed to aerosolized VG/PG/Nic had significantly higher

VNPmRNA than those exposed to the aerosolized carrier VG/PG or to

air (Figure 5B). Influenza virus FFUs, an assay of virions capable of

producing an active infection, (Figure 5C) increased in all three groups

from 1 dpi to 3 dpi and then decreased at 7 dpi but was significantly
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FIGURE 3

Aerosolized nicotine increases the lung barrier permeability to protein and blunts the increase of MUC5AC in the airspaces induced by influenza
infection. (A) Timeline of the experiment. After nine days of e-cigarette aerosol exposure, mice were intranasally inoculated with 300 foci-forming
units of influenza A H1N1 PR8 strain and then sacrificed 7 days post inoculation (dpi) to perform BAL. (B) Total protein concentration, presented in
microgram/milliliter (µg/ml), in the BAL was not significantly different between groups after e-cigarette exposure before influenza infection. BAL
protein significantly increased (p < 0.05) after influenza infection and was significantly higher at 7 dpi in the mice that were exposed to nicotine-
containing aerosol (VG/PG/Nic) than those exposed to air. (C) Mucin 5 subtype AC (MUC5AC) concentration, presented in picogram/milliliter (pg/ml),
in the BAL was not significantly different between groups after e-cigarette exposure before infection. BAL MUC5AC was significantly increased
(p < 0.05) by influenza infection at 7 dpi but to a lesser degree in mice exposed to aerosolized VG/PG/Nic which was significantly lower compared
to mice exposed to the aerosolized carrier VG/PG or to air. * P < 0.05, ** P < 0.01, 1-way ANOVA with Tukey’s multiple comparisons test between
the three groups at 7 dpi. Each data point represents one mouse.
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higher in the lungs of mice exposed to VG/PG/Nic than those exposed

to VG/PG only or to air. Virus FFUs in the mice exposed to aerosolized

VG/PG/Nic was approximately 40-fold higher at 7 dpi than at 1 dpi,

whereas it returned to baseline in the mice exposed to the aerosolized

carrier VG/PG or to air (Figure 5D). A similar trend was evident from

comparing virus FFUs at 7 dpi to that of 3 dpi (Figure 5E), in which

there was significantly less viral clearance in the mice that were exposed

to VG/PG/Nic aerosol.
Aerosolized nicotine caused transcriptomic
changes consistent with increased pro-
inflammatory signaling and lung injury
following influenza infection

Lung gene expression in influenza-infected mice exposed to

aerosolized VG/PG/Nic markedly differed from those exposed to

the carrier VG/PG or to air (Figure 6 and Supplementary Data 1)

when measured at 7 dpi. Notably, there was no significant

differential gene expression between the VG/PG and air exposure

groups (Supplementary Data 1). Pathway analysis revealed

exposure to VG/PG/Nic aerosol relatively downregulated genes

involved in the function of cilia, ion transport, and fluid balance

following influenza infection (Figure 7 and Supplementary Data 2)

compared to mice exposed to VG/PG or to air. The lungs of mice

exposed to aerosolized VG/PG/Nic also had an upregulation of

pathways related to both innate and adaptive immune signaling

including the responses of macrophages, B cells, and T cells to

infection (Figure 7 and Supplementary Data 2) compared to control

mice exposed to air and mice exposed to aerosol of the carrier

VG/PG.
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Discussion

We investigated the effects of VG/PG and nicotine from e-

cigarette aerosols during influenza infection in a well-studied

murine model. Exposure to aerosolized VG/PG without nicotine

increased influenza infection-induced pro-inflammatory cytokine

production in the lung airspaces. E-cigarette aerosols containing

nicotine increased pro-inflammatory pulmonary gene expression,

blunted mucin production, decreased viral clearance and increased

lung barrier permeability during influenza infection. We also found

that aerosolized nicotine exposure induced pro-inflammatory

cytokine production in the lung airspaces.

With our e-cigarette aerosol exposure system (Figure 1A),

plasma levels of cotinine, the nicotine metabolite produced by the

liver (27), in mice were comparable to those reported in smokers

(28–30) and e-cigarette users (31, 32). Additionally, the plasma

cotinine levels from exposures to nicotine-containing e-cigarette

aerosols were not significantly different from those mice exposed to

cigarette smoke. This finding is important as it demonstrated that

our exposure system models real-world use. Furthermore, the 9-

watt coil and the 36 mg/ml nicotine concentration in the e-liquid

used in this study are in line with the trend for lower power and

higher nicotine concentrations in popular e-cigarette products (33).

This relatively short-term exposure to nicotine modified

inflammatory signaling in the airspaces prior to influenza exposure.

Mice exposed one hour/day over nine days to e-cigarette aerosol

containing nicotine had significantly higher airspace levels of

CXCL1, MCP-1, and IL-17A compared to mice exposed to the

carrier VG/PG and to control mice exposed to air. Given that

CXCL1 is a potent neutrophil chemoattractant (34–36), MCP-1 is

involved in leukocyte trafficking and inflammatory responses (37, 38),
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E-cigarette aerosol exposure increases influenza-induced production of key inflammatory cytokines in the airspaces 7 days after infection.
(A) Timeline of the experiment. B-G: Infection with influenza resulted in BAL concentrations of interferon-g, IFN-g (B), tumor necrosis factor a, TNFa
(C), interleukin-1b, IL-1b (D), IL-6 (E), IL-17A (F), and monocyte chemoattractant protein-1, MCP-1 (G), that were greater in mice exposed to e-
cigarette aerosols with (VG/PG/Nic) or without (VG/PG) nicotine compared to control mice (air). This effect could be attributed to the VG/PG that
serves as a carrier for other constituents of the e-liquid. * P < 0.05, ** P < 0.01, 1-way ANOVA with Tukey’s multiple comparisons test. Data are
presented in picogram/milliliter (pg/ml). Each data point represents one mouse.
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and IL-17A is involved in host defenses (39), this suggests that

aerosolized nicotine exposure may have primed the lungs of mice for

a pro-inflammatory response at baseline before influenza infection.

Interestingly, despite the higher levels of CXCL1, MCP-1, and IL-17A

after aerosolized nicotine exposure, there was no evidence of acute lung

injury as protein in the airspaces was not significantly higher than in

the lungs of mice exposed to VG/PG or to air. This finding is consistent

with previous reports of inflammatory responses caused by nicotine-

containing e-cigarette aerosols without tissue injury in murine lungs

(40, 41), and the profile of protein expression in the lung airspaces is

altered significantly more by the presence of nicotine than by VG/PG

alone (42). Additionally, there is evidence of inflammation in the lungs

of e-cigarette users inhaling nicotine (43–45). However, there is limited

knowledge about the direct effects of nicotine in the lungs as most

reports have studied cigarette smoke or a combination of different

chemicals found in e-cigarette products on the market. The findings

from this study, designed to isolate the effects of nicotine and the carrier

fluid (VG/PG), help fill knowledge gaps for how aerosolized nicotine

directly impacts lung inflammation with and without infection.

Our results suggest VG/PG and nicotine have significant and

distinct effects on the biology of influenza infection. Influenza

stimulates the production of several inflammatory cytokines as

part of the host defense responses to the virus (46, 47). The

H1N1 PR8 strain of influenza used in this study is mouse-

adapted (48, 49) and known to cause viral pneumonia and acute
Frontiers in Immunology frontiersin.or07
lung injury in mice (22, 23). Compared to controls, mice exposed to

the carrier VG/PG or to VG/PG/Nic both had higher levels of pro-

inflammatory cytokines in BAL fluid seven days after influenza

infection. The addition of nicotine did not lead to an increase in

pro-inflammatory cytokine concentrations compared to the carrier

alone, indicating this effect was attributable to the aerosolized e-

liquid carrier VG/PG and not specific to nicotine, which is in line

with a previous report (50). Exposure to aerosols containing VG

and/or PG is known to cause inflammation and injury in the lungs

(51). Several studies have reported that aerosolized VG/PG

promotes pro-inflammatory responses in the airway epithelium

(41, 52–54) and during infection (50, 55–58). This study adds to the

evidence that aerosolized VG/PG itself can have potentially harmful

effects in the form of heightened inflammatory responses during

influenza infection, an important implication considering VG and

PG are currently generally recognized as safe (59).

The 300 FFUs of influenza virus used in this study is a relatively

moderate inoculum dose, compared to our prior experiments (22,

23); this dose causes inflammation and lung injury but allows for

recovery without significant mortality. Both the mice that were

exposed to the aerosolized carrier VG/PG and those to air had

reduced influenza virus FFUs in their lungs at 7 dpi than at 3 dpi

and returned to viral loads comparable to that at 1 dpi (Figure 5),

suggesting the infection was under control at 7 dpi and recovery had

initiated in these mice. In contrast, virus FFUs remained significantly
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higher at 7 dpi and VNP mRNA expression increased significantly

from 3 dpi to 7 dpi in mice exposed to nicotine-containing aerosol,

indicating a nicotine-specific impairment of viral clearance and

failure to manage the infection. Nicotine-containing e-cigarette

exposure downregulates innate immune system genes in alveolar

epithelial cells (60), impairs macrophage phagocytic capacity (61–65),

reduces dendritic cell functions (66–68), and blunts the oxidative

burst of neutrophils (69), all of which are important for managing

and clearing viral infections (70–72). Interestingly, nicotine
Frontiers in Immunology 08
administered intradermally was reported to impair leukocyte

migration and influenza viral clearance in mice (73, 74).

In this study, we have identified that nicotine in e-cigarette

aerosols blunts the increase in the BAL concentration of mucin

protein MUC5AC induced by influenza infection. Mucins are key

proteins that form the gel-like structure of mucus that lines the

respiratory tract, which is a critical host defense mechanism against

pathogens (75, 76). MUC5AC is a major mucin making up

respiratory mucus (77) and its production in airway epithelial
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cells is increased by exposures to cigarette smoke (78, 79) and to e-

cigarette aerosols (80, 81). Moreover, the increased production of

MUC5AC is linked to aerosolized VG/PG and suppressed by the

presence of nicotine (41, 53, 79, 82). E-cigarette aerosol exposure

alone did not significantly change BAL MUC5AC concentration in

this study. Influenza infection increased BAL MUC5AC, but the

increase was significantly less in mice exposed to aerosolized

nicotine than in mice exposed to the carrier VG/PG or to air.

Influenza is known to induce the production of mucins in the

respiratory tract as part of the host defense response (83), and

increasing MUC5AC production is protective and improves viral

clearance during influenza infection (84). Given this protective role,

the reduced BAL MUC5AC concentration following influenza

infection may partially explain the impaired viral clearance in the

mice that were exposed to aerosolized nicotine.

While we did not identify significant differences between VG/

PG and VG/PG/Nic exposure in a selected panel of BAL cytokines,

an unbiased analysis of whole lung homogenate gene expression

identified a marked difference in pulmonary gene expression caused

by nicotine during influenza infection. Pathway analysis revealed

that nicotine-containing aerosol exposure downregulated the

expression of genes linked to the function of cilia, ion transport,

and fluid balance in murine lungs infected with influenza compared

to mice exposed to the aerosolized carrier VG/PG or to air. Cilia on

the cells lining the respiratory tract are a critical early point of

contact between pathogens and the host, enabling the clearance of

pathogens trapped in mucus out of the airways (85, 86). Influenza,
Frontiers in Immunology 09
in turn, is known to reduce mucosal and ciliary functions and gene

expression to evade this host defense mechanism (87). Additionally,

e-cigarette exposure impairs ciliary beating (88) and suppresses

gene expression in airway epithelial cells in vitro (89), in a murine

model of COPD (40), and in e-cigarette users (53, 90) who develop

reduced cough sensitivity (91). Moreover, the downregulation of

ion transport genes with nicotine exposure also points to impaired

ciliary function, which depend on a tightly regulated balance of

sodium and chloride (92). Taken together, the finding of an

association between exposure to aerosolized nicotine and

downregulation of pathways linked to ciliary function during

influenza infection may partially explain the higher viral load in

the lungs from nicotine-exposed mice.

The impaired influenza virus clearance could have enabled the

infection to persist and prolong viral shedding (93), which is

associated with longer and more severe illness in hospitalized

patients (94–97). Higher viral load has also been linked to

mortality in influenza (98, 99) and to higher rates of

transmissibility in the community (100, 101). Additionally,

prolonged infection can cause lung injury as evidenced by

increased barrier permeability and accumulation of proteinaceous

fluid in the lung airspaces, which is quantifiable by measuring total

protein in the BAL (102, 103). Though BAL protein was not increased

by nine days of e-cigarette exposure, it was elevated by influenza

infection and more so in mice with prior exposure to nicotine-

containing e-cigarette aerosol, indicating the nicotine exacerbated

lung injury caused by influenza. Moreover, nicotine downregulated
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pathways linked to fluid balance and ion transport during influenza

infection, which are central functions of the alveolar epithelium for

maintaining lung homeostasis (104). Though there was a trend for

greater influenza-induced weight loss in nicotine-exposed mice and a

weaker trend with VG/PG exposure, we have reported in our prior

studies that there is poor correlation between body weight and lung

injury in this model of PR8 influenza infection (22).

The higher influenza viral load caused by nicotine occurred in

parallel with an upregulation of genes related to innate immune

responses (e.g., type 1 interferon signaling) as well as adaptive

immune signaling (e.g., BCR signaling, lymphocyte co-stimulation).

Indeed, excessive immune activation is a hallmark of severe

influenza pneumonia that leads to lung injury (105, 106).

Conversely, reduced inflammation is associated with higher viral

loads, but the clinical pathology is also less severe (107). Our results

suggest nicotine primes the airspaces for increased neutrophilic

inflammation but initially impairs viral clearance, which stimulates

more robust activation of immune pathways not suppressed by

nicotine as a compensatory mechanism.

Multiple studies have reported that e-cigarette exposure has

harmful effects in the context of pathogen infections (108).

Inflammation and virulence were increased by e-cigarette aerosols

during respiratory infections with multiple bacterial species (55, 56,

109). Exposure to e-cigarette aerosols increased the infectivity of

SARS-CoV-2 in a bronchial epithelial cell line (57, 58). E-cigarette

aerosols amplified the pro-inflammatory response of distal airway

epithelial cells to influenza virus (110). Mice infected with influenza

virus had reduced survival and greater lung injury when exposed to

e-cigarette aerosols (50). The nasal mucosa of e-cigarette users had

blunted immune defense responses to live attenuated influenza

virus (111). Notably, one study has reported higher lung viral load

and mortality following influenza infection in mice exposed to

aerosols generated by an early generation e-cigarette device (112).

Importantly, these animal studies of respiratory infections

investigated the whole chemical milieu in the e-cigarette aerosol

(i.e., the nicotine, VG/PG and other additives in combination) and,

thus, could not comment conclusively on nicotine-specific effects.

In this study, we have isolated the effects of nicotine in aerosol form

to downregulate critical host defense mechanisms in the lungs and

impair viral clearance, upregulating immune responses and

increasing lung protein permeability during influenza infection.

These findings may be especially relevant to tobacco product

regulation. Over the past decade, the use of e-cigarettes has

increased substantially. These devices were initially marketed as

an aid for cigarette smoking cessation (14, 113), in part due to a

perception that the deleterious effects of cigarettes are caused by

other components of cigarette smoke. Moreover, a significant

proportion of e-cigarette users, particularly youth and young

adults, did not smoke cigarettes previously (114, 115). These

results add to the body of evidence that nicotine is harmful even

in e-cigarettes and should inform the regulation of nicotine-

containing products given that the amount of nicotine in popular
Frontiers in Immunology 10
e-cigarette products has increased over time (12) and countries are

beginning to implement limits on nicotine content (116).

Limitations of this study include the short duration of exposure

of the mice considering that e-cigarette use is often a daily habit

over months or years. The e-cigarette in this study was a re-fillable

tank-style device, whereas the major market share is currently held

by disposable pod-style devices. The advantage, though, of this

tank-style device was the ability to separate effects of nicotine from

the other chemical constituents, and these tank-style devices

continue to be used by many daily e-cigarette users (117).

Additionally, the mice were inoculated with a relatively moderate

dose of influenza virus and, thus, the influence of e-cigarette

exposure on mortality from infection could not be assessed.

Nonetheless, these limitations indicate that further studies are

necessary to understand the risks associated with e-cigarettes in a

rapidly evolving commercial landscape, particularly as synthetic

nicotine is introduced into the marketplace (12).

In summary, this study provides evidence for a nicotine-specific

impairment of influenza viral clearance in mice exposed to e-

cigarette aerosols. Additionally, aerosolized nicotine caused

inflammation in the distal airspaces prior to infection. Nicotine

exposure also caused a marked shift in pulmonary gene expression

following influenza infection characterized by increased pro-

inflammatory gene expression and downregulation of genes

linked to ciliary function and fluid clearance. Aerosolized nicotine

also reduced BAL MUC5AC concentration and increased lung

protein permeability induced by influenza infection. These

findings demonstrate nicotine has harmful effects during

influenza infection in mice and provide a rationale for using viral

infection susceptibility as a benchmark in guiding industry

regulations and product standards for e-cigarettes.
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