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Single-cell protein activity
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and the corresponding key
master regulator proteins
associated with anti-senescence
and OA progression
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and Gao Xiang1*

1Department of Orthopedics, The Fourth Hospital of China Medical University, Shenyang, China,
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Background: Osteoarthritis (OA) is a prevalent senescence-related disease with

substantial joint pain, loss of joint function, and cartilage degeneration. Because

of the paucity of single-cell studies of OA and the gene dropout problem of

single-cell RNA sequencing, it is difficult to acquire an in-depth understanding of

the molecular characteristics of various chondrocyte clusters.

Methods: Here, we aimed to provide new insights into chondrocyte senescence

and a rationale for the development of effective intervention strategies for OA by

using published single-cell RNA-sequencing data sets and the metaVIPER

algorithm (Virtual Inference of Protein activity by Enriched Regulon). This

algorithm was employed to present a proteome catalog of 62,449

chondrocytes from the cartilage of healthy individuals and OA patients at

single-cell resolution. Furthermore, histopathologic analysis was carried out in

cartilage samples from clinical patients and experimental mousemodels of OA to

validate above results.

Results: We identified 16 protein-activity-based chondrocyte clusters as well as

the underlying master regulators in each cluster. By assessing the enrichment

score of each cluster in bulk RNA-sequencing data, followed by gene-set

variation analysis, we preliminarily identified a novel subpopulation of

chondrocytes (cluster 3). This clinically relevant cluster was predicted to be the

main chondrocyte cluster responsible for maintaining cellular homeostasis and

anti-senescence. Specifically, we uncovered a set of the key leading-edge

proteins of cluster 3 by validating the robustness of the above results using

another human chondrocyte single-cell RNA-sequencing data set, consisting of

24,675 chondrocytes. Furthermore, cartilage samples from clinical patients and
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experimental mouse models of OA were used to evaluate the expression

patterns of these leading-edge proteins, and the results indicated that NDRG2,

TSPYL2, JMJD6 and HMGB2 are closely associated with OA pathogenesis and

might play critical roles in modulating cellular homeostasis and anti-senescence

in chondrocytes.

Conclusion: Our study revealed a novel subpopulation of chondrocytes that are

critical for anti-progression of OA and the corresponding master regulator

proteins, which might serve as therapeutic targets in OA.
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Introduction

Osteoarthritis (OA) is a prevalent condition associated with

substantial joint pain and loss of function and is predicted to

become the main cause of disability among people > 40 years old

by 2040 (1). Although the pathogenesis of OA has been studied

extensively, there is currently no efficient treatment that can arrest

or reverse OA progression. Although several factors, such as body

weight, genetic heritage, mechanical stress, trauma, and

metabolism, are associated with OA progression, the alterations

in cell signaling and homeostasis that occur in chondrocytes are not

yet fully known (2, 3). As age is increasingly recognized to be closely

related to cellular senescence and OA (4), and chondrocytes (a

unique resident cell type in the articular cartilage) are primarily

thought to play a major role in maintaining cartilage homeostasis, it

is reasonable to hypothesize that chondrocyte senescence is a

critical component of OA pathology.

Cellular senescence is a stress response that is primarily

designed to eliminate damaged cells and facilitate tissue

regeneration. However, with aging or persistent stress, senescence

may directly induce the pathogenesis of diseases through stable cell-

cycle arrest, DNA damage, and impaired tissue regeneration (5).

Multiple signaling pathways involved in cellular senescence, such as

the DNA repair, NF-kB, and mTOR signaling pathways, have been

described in detail (6–8). Chondrocyte senescence has been

increasingly implicated in inflammatory responses, mitochondrial

function, and cell cycle, all of which are involved in OA (9–11). The

role of senescence in OA has been studied in recent years. For

example, previous studies have demonstrated that the proportion of

chondrocytes expressing the senescence marker SA-b-Gal increases
with the degree of articular lesions in the knee (12). However, since

the phenotypic presentation of senescence is highly heterogeneous

among tissue types, the underlying mechanism of senescence in OA

remains unclear.

Single-cell RNA sequencing (scRNA-seq) has recently emerged

as a novel and powerful technology that allows the assessment of the

transcriptional states and fundamental biological properties of cell

populations at single-cell resolution. scRNA-seq has helped us to
02
better understand many degenerative diseases. For example,

Fuchou Tang et al. have preliminarily identified 7 chondrocyte

clusters during OA progression by profiling the scRNA-seq data of

1464 chondrocytes from patients with different stages of OA (13).

Another scRNA-seq study has reported the profiling of the articular

cartilage chondrocytes from healthy and injured mouse knee joints

and identified 9 chondrocyte clusters with different biological

functions (14). Furthermore, it is worth noting that Tamas Kiss

et al. have identified senescent cerebromicrovascular endothelial

cells in the aged mouse brain via scRNA-seq and enrichment

analysis (15). However, it is well known that scRNA-seq-

generated gene-expression data are extremely sparse, with as

many as 80%–90% of unique mRNA molecules left undetected in

every single cell, a problem that is known as “gene dropout.” Thus,

although scRNA-seq is effective in distinguishing between cellular

subpopulations, it cannot be used to detect the subtle differences

between cells or characterize sophisticated biological mechanisms

or critical genes, such as transcription factors. This limitation

becomes more pronounced in the application of scRNA-seq on

the cartilage tissue because the heterogeneity between healthy and

OA chondrocytes is not as much as that between different cell types,

such as chondrocytes and synoviocytes. To partly compensate for

this limitation of scRNA-seq, Andrea Califano et al. have developed

the metaVIPER algorithm (Virtual Inference of Protein activity by

Enriched Regulon), which can infer accurate and quantitative

assessment of protein activity from scRNA-seq data (16). Protein-

activity–based clustering can help differentiate between subtle

subpopulations and master regulator proteins (MRs) that are

responsible for key cellular phenotypes. For instance, the

application of the metaVIPER algorithm in clear cell renal

carcinoma has helped to identify a subpopulation of recurrence-

associated renal tumor macrophages (17).

This study primarily aimed to provide new insights into OA

pathogenesis and a rationale for the development of effective

intervention strategies against OA, by using the scRNA-seq

analysis and metaVIPER algorithm. In this study, scRNA-seq data

of chondrocytes (accession numbers: GSE169454 and GSE152805)

were subjected to VIPER-based scRNA-seq analysis. Consequently,
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a new subpopulation of chondrocytes that are mainly responsible

for maintaining cellular homeostasis and anti-senescence, as well as

potential therapeutic targets were identified. Furthermore, we used

human cartilage samples and mouse models of OA to assess for the

involvement of these predicted factors in the pathogenesis of OA.
Methods

Human chondrocyte single-cell RNA-seq
data preprocessing and quality control

Two Human chondrocytes 10X Genomics scRNA-seq data

(Gene expression UMI count matrices), GSE169454 and

GSE152805 were downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/gds) respectively,

which is based on the Illumina HiSeq 2500 and Illumina HiSeq

4000 platforms (Illumina, Inc.). GSE169454 was mainly analyzed,

while GSE152805 was used to further validation. There were 7

cartilage samples obtained from femoral condyle cartilage in

GSE169454, 4 OA samples of which were obtained from 4

patients receiving total knee arthroplasty surgery for OA, and 3

healthy samples of which were obtained from fresh osteochondral

allografts discarded following donor plug harvesting during surgical

osteochondral allograft implantation and also procured from NDRI

(National Disease Research Interchange, Philadelphia, PA). 6

cartilage samples in GSE152805 were harvested from 3 OA

patients’ smooth articular surfaces area in lateral platform of

tibial (relatively healthy cartilage) and damaged cartilage articular

surfaces area in medial platform of tibial (typical degenerative

cartilage) respectively. The detailed patient’s information, sample

preparation and scRNA-seq process were described in the authors’

publication (18, 19). Seurat R package (version 4.1.1) (20) was used

to data quality control and further analyze the scRNA-seq data.

Gene expression UMI count matrices for each sample were read

into Seurat respectively by CreateSeuratObject function with the

default parameters. Subsequently, cells were removed that had

either fewer than 1000 UMIs, over 8000 or below 300 expressed

genes, over 5% UMIs derived from mitochondrial genome, or log10

UMIs of per gene lower than 0.8 as a further quality control. After

this quality control step, Sctransform function, using regularized

negative binomial regression, was used to normalize the data set

based on the 3000 most variable genes for each sample. Next,

FindIntegration Anchors and IntegrateData function with the

default parameters, as suggested by Seurat pipeline, were used to

combine scRNA-seq data across all samples.
Human chondrocyte single-cell RNA-seq
data clustering and identification of
marker genes

After data integration, the dataset was reduced by principal

component analysis (PCA), and the number of principal

components was estimated by an Elbow plot for downstream

analysis. We then performed a non-linear dimensional reduction
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via uniform manifold approximation and projection (UMAP).

Subsequently, total cell clustering was performed using Seurat’s

FindNeighbors and FindClusters functions based on the Euclidean

distance in PCA space and Louvain algorithm. Marker genes per

cluster were determined by Seurat’s FindAllMarkers function with

the ‘MAST’ test option. All provided p-values were adjusted by

bonferroni correction. The results of marker genes were visualized

by heatmap and dotplot using the pheatmap (version 1.0.12) and

Seurat R package.
GO and KEGG enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

using the ClusterProfiler R package (version 4.2.2) (21). p−value

<0.05 (adjusted by bonferroni correction) was set as the cutoff

criterion for the functional enrichment analysis. The results were

visualized by dotplot using the ggplot2 package (version 3.3.6).
Protein activity inference for single-cell
RNA-seq data

After quality control, the human chondrocyte scRNA-seq data

(Gene Expression UMI count matrices) was implemented via the

Seurat Sctransform algorithm and integration. Then, we performed

PCA and UMAP to reduce dimensionality of dataset. To generate a

stable regulatory network, initial unsupervised clustering was

performed in a resolution-optimized louvain algorithm.

First, to select an optimum resolution value, Seurat Louvain

clustering is performed with different resolution values ranging

from 0.01 to 1.0. For each resolution value ranging from 0.01 to

1.0, silhouette score is computed with correlation distance metric.

This procedure is repeated for 100 random samples to select the

resolution value with maximizes mean silhouette score as the

optimal resolution to perform initial Clustering For each cluster

subsequently, 250 metaCells per cluster were computed by pooling

cells that are close together in either gene expression. PISCES uses

a simple K-nearest-neighbors approach to pool cells, then sums

reads across neighbors and re-normalizing. Next, the metaCells

file of each cluster was subjected to ARACNe algorithm to

generate a regulatory network in a 100 bootstrap iterations way

using 1785 transcription factors (genes annotated in gene

ontology molecular function database as GO:0003700,

‘‘transcription factor activity,’’ or as GO:0003677, ‘‘DNA

binding’’ and GO:0030528, ‘‘transcription regulator activity,’’ or

as GO:0003677 and GO:0045449, ‘‘regulation of transcription’’),

668 transcriptional cofactors (a manually curated list, not

overlapping with the transcription factor list, built upon genes

annotated as GO:0003712, ‘‘transcription cofactor activity’’ or

GO:0030528 or GO:0045449), 3455 signaling pathway related

genes (annotated in GO biological process database as

GO:0007165, ‘ ‘signal transduction ’ ’ and in GO cellular

component database as GO:0005622, ‘ ‘intracellular ’ ’ or

GO:0005886, ‘‘plasma membrane’’), and 3620 surface markers
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(annotated as GO:0005886 or as GO:0009986, ‘‘cell surface’’). The

detailed workflow for ARACNe can be downloaded from Github

(https://github.com/califano-lab/ARACNe-AP). Each gene set is

run respectively. Once a set of regulons has been inferred for each

group of regulators, the results are combined into a network.The

Parameters are set as follows: zero DPI, MI (Mutual Information)

p-value threshold of 10. Based on cluster-specific regulatory

networks, protein activity was inferred for scRNA-seq data by a

final metaVIPER algorithm run. Then the VIPER-inferred protein

activity matrices can be re-clustered also in a resolution-optimized

louvain algorithm way after RunPCA and RunUMAP function.

The master regulator of each VIPER cluster was identified using

bootstrapped t test (100 bootstraps). Then, the top MRs for each

cluster were used for downstream analysis. The detailed workflow

and statistical method were described in the authors’ publication

(16, 22). The gene list used to generate regulatory network can be

downloaded from Github (https://github.com/califano-

lab/PISCES).
Bulk RNA-seq data processing

The dataset GSE114007 [deposited by Fisch et al. ((23))], which

contains 18 healthy and 20 OA human knee cartilage samples, was

downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/

geo/). Subsequently, the mRNA count data were subjected to EdgeR

(version 3.36.0) package for normalization, counts per million

(CPM) and log2CPM transform (24). The microarray data probe

was transformed to gene symbols with Bioconductor Annotation

Data software packages (version 1.20.0) (25). In the case that 1

single gene symbol was captured by several probes, the final gene

expression level was calculated from the average value of those

probes. When one probe was mapped to multiple gene sets,

information about the probe was deleted. The differential

expressed genes (DEGs) between OA and healthy samples were

identified through the limma-voom (26). A | Log2(fold change) |>1

and adjusted p-value of < 0.05 were set as the cut-off criteria. To

control the false discovery rate, adjusted p-values were computed

for multiple testing corrections of the raw p-value through the

benjamini-hochberg (BH) method. The detailed patient’s

information, sample preparation and RNA sequencing process

were described in the authors’ publication (23).
Gene set enrichment analysis

In order to explore the relationship between MRs of VIPER

clusters and OA progression, gene set enrichment analysis (GSEA)

was performed. Enrichment of the top100 MRs in each of the

VIPER clusters in the DEGs list ranked by fold change of gene

expression between OA group and healthy group from bulk-

RNASeq was computed respectively by clusterProfiler R package

(version 4.2.2) (21). |NES|>1 and p <0.05 were considered to be

enrichment significant. MRs in the leading edge of the enrichment

was used for further analysis.
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Gene set variation analysis

In order to explore the relationship between VIPER clusters and

senescence associated signaling pathways, GSVA enrichment score

of the “DNA Repair signaling pathway”, “NF-kB signaling

pathway”, “mTOR signaling pathway”, “Mitochondria pathway”,

“Biological Oxidations” and “IGF-1/AKT signaling pathway” in

each chondrocyte of scRNA-seq data were calculated using the

“GSVA” R package (version 1.40.1) (27). The GSVA enrichment

score variation in different group (healthy and OA) and VIPER

clusters (1-16 clusters) were visualized by violin plot.
Real-time reverse transcription-polymerase
chain reaction

For RNA extaction, about 1g of cartilage was frozen in liquid

nitrogen and crushed, then homogenized in Trizol at a

concentration of 1g tissue per 10ml Trizol (Invitrogen) followed

by incubation at 4°C for 2 hours. 0.2 volumes of chloroform was

added, vortexed for 20s, and centrifuged at 14000 rpm for 15

minutes at 4°C. The colorless upper aqueous phase was removed

gently into a new tube, and mixed with an equal volume of 100%

isopropanol followed by incubation at room temperature for 10

minutes. The mixture was centrifuged at 14000 rpm for 20min at 4°

C, and the RNA formed a gel-like pellet on the bottom of the tube.

After cleanup using 75% ethanol in RNase-free water, the RNA was

dried for 5 minutes.

Single-stranded cDNA was synthesized from purified RNA

using a RevertAid first-strand cDNA synthesis kit (Thermo Fisher

Scientific, USA) in accordance with the manufacturer’s instructions.

Each cycle consisted 30s for denaturation at 95°C, 30s of annealing

at 56.5, 57, 57.5 or 58°C, and 30s for extension at 72°C, with total of

35 cycles. The reverse transcription was performed at 37° C for 15

minutes while the heat inactivation of the reverse transcriptase was

performed at 85° C for 5 seconds. cDNA was used for real-time PCR

analysis using a SYBR® Premix Ex TaqTM kit (Takara Bio, China)

on an ABI 7500 Fast Real-Time PCR system (Applied Biosystems,

USA) according to the manufacturer’s instructions. The primer

sequences are listed in Table S1. All samples were analyzed in

triplicate. The mRNA value for the target gene was determined

using the 2−DDCt method.
Human articular cartilage samples and
animal OA model

Clinical sample collection in this study was reviewed and

approved by the Institutional Review Board (IRB) of the First

Hospital of China Medical University (EC-2021-HS-004).

All patients involved in this study gave informed consent. 10

pairs of smooth and damaged cartilage samples (condyles of

femur) were obtained from 10 patients with medial compartment

OA who had just undergone total knee arthroplasty (Total cartilage

samples = 20). The difference between the smooth (relatively
frontiersin.org
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healthy area) and damaged (severely damaged area) articular

surfaces was distinguished using the Mankin scoring system (28).

Detailed patients’ information is listed in Table S2. The animal

experiments were carried out with the approval of the Animal

Ethical Committee of China Medical University (CMU2021029).

All mice were housed with a 12 h light/dark cycle at a constant room

temperature (25° C) with free access to food and water. The

experimental mice were anesthetized with 3% isoflurane.

Experimental OA was induced in 12-week-old male mice

(C57BL/6J) by destabilization of the medial meniscus (DMM)

surgery as described by Glasson et al. (29). The medial meniscus

tibial ligament was exposed without sectioning in sham

surgery. Mice were sacrificed 8 weeks after DMM or sham

surgery and subjected to histological analyses. After surgical

harvesting, the samples from patient or mice were immediately

stored at -80° C for mRNA extraction or fixed in 4%

paraformaldehyde for histological and immunohistochemical

analyses. All human cartilage samples were used for both real-

time reverse transcription-polymerase chain reaction and

immunohistochemistry. All cartilage samples from OA animal

model and aged mouse were used for immunohistochemistry.
Histopathologic analysis

Human knee articular samples and mice knee joints were

prepared and fixed in 4% paraformaldehyde. Then, the samples

were decalcified in 10% EDTA for 21 days and embedded in

paraffin. Tissue sections (5mm) were stained with safranin O/fast

green following standard protocols to determine cartilage

degradation under light microscopic examination. The

Osteoarthritis Research Society International (OARSI) scoring

system was used to assess joint cartilage degeneration. Because

both the tibial and femoral cartilages were assessed in the present

study, the maximum OARSI score was 12. Three independent

investigators who were blinded to the experimental groups

performed the scoring. Immunohistochemistry was further

performed to analyze the protein expression in histological

sections of human knee articular samples and mice knee joints.

Primary antibodies were used at 1:100-1:200 dilutions and

incubated overnight at 4° C. Then, the sections were incubated

with a biotinylated secondary antibody. The reaction was developed

using a DAB kit (BD Bioscience, Franklin Lakes, NJ, USA). Primary

antibodies against NDRG2 (Proteintech, Cat No. 12015-1-AP),

WSB1 (Proteintech, Cat No. 11666-1-AP; Santa Cruz, Cat No. sc-

393200), JMJD6 (Proteintech, Cat No. 16476-1-AP), TSPYL2

(Abcam, Cat No. ab240596), HMGB2(Proteintech, Cat No.

14597-1-AP) and PPP1R15A (Proteintech, Cat No. 10449-1-AP)

were used at 1:100-1:200 dilutions. The expression levels were

evaluated by calculating the percentage of immunopositive cells.

Stained positive were defined as the cells are reflective of greater

than 10-fold intensity above the background (ImageJ, scanning

densitometry). For each joint, the percentage of positive cells was

counted on 5 fields and the median percentage was representative

for each mouse.
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Statistical analysis

All statistical analyses were performed using R packages.

Student’s t test was used for comparing two groups. A normality

test was applied first for continuous variables before any further

comparison analyses. Nonparametric Mann–Whitney U test were

used when the data were not normally distributed. OARSI grade

data are not continuous and do not follow a normal distribution,

were analyzed using non-parametric statistical methods. All

histology and immunohistochemistry experiments were

conducted on at least three independent biological replicates. The

n-value indicates the number of human specimens or mice per

group. The sample size n required for each group for animal studies

to provide sufficient power was determined based on the design of

our previous study. No statistical method was used to predetermine

clinical sample sizes. A p-value < 0.05 was considered

statistically significant.
Results

Single-cell transcriptome profiling and
clustering of chondrocytes from the
human cartilage

To characterize the pathological process of OA at single-cell

resolution, we downloaded the GSE169454 dataset from the GEO

database. This dataset contains 4 OA and 3 healthy cartilage

samples obtained from femoral condyle cartilage. After quality

control (Figures S1A, B), we retained a total of 62449 cells from 7

individuals (8632 cells from 3 healthy samples and 53817

cells from 4OA samples), which were considered to comprise

high-quality data for subsequent analyses through standard

seurat process. To investigate chondrocyte heterogeneity

in human OA cartilage, after PCA (Figures S1C, D) we

clustered all the 62449 human chondrocytes by using UMAP,

whereby we identified a total of 6 chondrocyte clusters (seurat

cluster 1-6) (Figure 1A). The chondrocytes in all the samples and

groups (healthy and OA) were spread out on the UMAP plot

(Figures S1F, G). Cellular cluster composition was similar

between the healthy and OA human cartilage group (Figure

S1H). The proportions of seurat cluster 3 and 5 were significantly

different between the healthy and OA human cartilage samples,

whereas the proportions of seurat clusters 1, 2, 4, and 6 were

comparable across all the cartilage samples (Figures 1B, C; S1E).

However, in the UMAP plot, the separation distances among

the identified seurat chondrocyte clusters were not well

distinguished, consistent with previous reports (13, 18). This

suggesting that the chondrocyte heterogeneity isn’t evident

between seurat clusters.

We next used differential gene expression analysis to identify

marker genes with highly different levels among the seurat clusters

(Figure 1D; Table S3). The heatmap shows the top 5 marker genes

that are most highly and uniquely expressed in each seurat cluster,

such as S100A16, FTH1, SPARC, PRG4, HSP90AB1, and CDC42SE1
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(Figure 1E). To assess the involvement of each cluster in biological

processes and signaling pathways, GO and KEGG analyses were

performed using the top 50 marker genes, whereby we identified the

distinct physiological functions of the seurat clusters (Figure 1F).

For example, seurat cluster 3 was significantly enriched in the PI3K-

Akt signaling pathway and extracellular matrix organization,

whereas seurat cluster 4 was significantly enriched in the MAPK

signaling pathway and response to carbohydrate.
Inference of the protein activity from the
scRNA-seq data of chondrocytes from the
human cartilage

The main limitation of scRNA-seq is the low signal-to-noise

ratio and high dropout rate at the individual gene level (16). To

compensate for this limitation, metaVIPER algorithm was invented

to transform highly sparse single-cell gene expression matrix to

accurate protein activity matrix, which including transcription

factors (TFs), co-factors (co-TFs), signaling proteins (SPs), and

surface markers (SMs), based on the expression of their

downstream regulatory targets. Therefore, we performed VIPER

analysis based on metaVIPER R package to assess whether protein-
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activity–based clustering can help us to identify the chondrocyte

clusters that are visually distinct from the other clusters in UMAP

and critical for maintaining chondrocyte homeostasis. By using the

ARACNe algorithm, the regulatory networks for each of the clusters

identified using Seurat were generated. Then, protein activity was

inferred from multiple networks by running metaVIPER, resulting

in 4331 proteins with successfully inferred activity across all the

human chondrocyte samples. Afterward, we re-clustered the

protein-activity–based data by using resolution-optimized louvain

and thereby identified 16 VIPER clusters (Figure 2A). Unlike the

RNA expression-based seurat clustering, the UMAP visualization

showed that the VIPER cluster 3 was distinctly separated from the

other clusters (Figure 2A). This suggesting that the phenotype of

VIPER cluster 3 is highly different from other VIPER clusters. The

proportions of VIPER clusters 3, 7, and 15 were significantly

different, whereas those of the other VIPER clusters were

comparable, between the healthy and OA human cartilage

samples (Figures 2B; S2A, B).

We next used bootstrapped t-test (100 bootstraps) in

metaVIPER R package to identify MRs that driving regulators of

the differential VIPER cluster as suggested by metaVIPER pipeline

(Table S4). These MRs represent novel mechanistic drivers of the

transcriptional state of these VIPER clusters. The heatmap shows
D
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FIGURE 1

Single-cell Transcriptome profiling and clustering of human cartilage chondrocytes. (A) Visualization of umap colored according to cell clusters for
62449 chondrocytes from human OA cartilage single-cell transcriptomes. (B) Bar plots showing the comparison of different cell clusters between
normal and OA samples. (C) Pie chart showing the distribution of different cell clusters. (D) Dot plot showing the expression of selected markers (top
5 marker genes, ranked by ‘‘logFC’’) of various cell clusters. (E) Heatmap of the scaled expression of top 5 marker genes for each cluster. (F) Dot plot
showing the significant signaling pathways and biological processes identified by GO and KEGG enrichment analysis. All data are expressed as the
mean ± SD. Student’s t test was used for statistical analysis. p < 0.05 was considered statistically significant.
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the top 5 MRs in each VIPER cluster, such as XNR2, CRYL1,

PNRC2, FAT3, ITGB8, TREM1, and FGF2 (Figure 2C). We also

found that the MRs of the VIPER cluster more accurately

distinguish the difference between the healthy and OA cartilage

samples than the marker genes of the seurat cluster (Figures 2C;

1E), which indicating that the MRs of the VIPER cluster are closely

related to OA onset and progression. We also observed that the

representative proteins of VIPER cluster 3, mapped onto the UMAP

plots, were expressed at relatively higher levels than those of most

other clusters (Figure 2D). Furthermore, KEGG and GO

enrichment analyses revealed the involvement of each VIPER

cluster in biological processes and signaling pathways. For

example, VIPER clusters 10 and 16 were significantly enriched in

the TNF and p53 signaling pathways, regulation of inflammatory

response, and positive regulation of cell-cell adhesion, whereas

VIPER clusters 2 and 3 were significantly enriched in the MAPK

signaling pathway, EGFR tyrosine kinase inhibitor resistance, and

response to unfolded protein (Figure 2E).
Frontiers in Immunology 07
Protein-activity analysis in chondrocytes
distinguishes the main subpopulation
responsible for modulating cellular
homeostasis and anti-senescence

As described above, we preliminarily identified a set of

chondrocyte clusters based on the protein activity and MRs, such

as XNR2, CRYL1, and PNRC2, of each VIPER cluster. To reveal the

key cluster that maintains chondrocyte homeostasis, we explored

the relationship between the VIPER clusters and OA progression.

We first downloaded the bulk RNA-seq data set GSE114007

[deposited by Fisch et al. (23)] from the GEO database. This data

set contains 18 healthy and 20 OA human knee cartilage tissues and

was selected for analysis because of its large sample size and detailed

clinical data. Chondrocyte senescence is thought to play a critical

role in the pathogenesis of OA, and we found that the mean age of

the healthy group in the GSE114007 data set was significantly lower

than that of the OA group (36.61 ± 13.46 vs. 66.2 ± 7.16). Therefore,
D

A B

E

C

FIGURE 2

Identification of chondrocyte populations and master regulators from VIPER-Inferred protein activity. (A) Visualization of umap colored according to
cell clusters for VIPER-Inferred protein activity across all normal and OA samples. (B) Bar plots showing the comparison of different cell clusters by
VIPER-inferred activity between normal and OA samples. (C) Heatmap of the scaled expression of top 5 master regulator proteins of various cell
clusters from inferred proteomic data. (D) Dot plots showing the top 1 master regulator proteins based on VIPER-inferred protein activity for each
viper cluster on the umap. Each dotted line circle in the dot plots represents a viper cluster. Dot colour corresponds to the level of gene expression
in each cell. (E) Dot plot showing the significant signaling pathways and biological processes identified by GO and KEGG enrichment analysis from
inferred proteomic data. All data are expressed as the mean ± SD. Student’s t test was used for statistical analysis. p < 0.05 was considered
statistically significant.
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we infer that the difference between the OA and healthy group in

this data set not only represents the occurrence of OA but also

represents the appearance of tissue aging. After the standard pre-

processing of the bulk RNA-seq data, the differentially expressed

genes (DEGs) between the OA and healthy patients were identified

and ranked by logFC. Then the normalized enrichment score (NES)

of the top 100 MRs in each VIPER cluster was computed based on

the list of ranked DEGs, with the OA bulk RNA-seq data compared

with the healthy-cartilage data. The results of this analysis revealed

that VIPER cluster 3 (NES = –3.01, p = 8.0e-10) and cluster 13 (NES

= 2.07, p = 6.26e-06) have the strongest negative and positive

enrichment scores in the OA cartilage, respectively, compared with

the healthy cartilage (Figures 3A; S2C). This result suggesting that

VIPER cluster 3 and cluster 13 are associated with OA progression

and chondrocyte senescence. The leading-edge proteins in

enrichment analysis represents the core enriched proteins which

may play a critical role in VIPER clusters. And we found that the

leading-edge proteins of VIPER cluster 3 and cluster 13 could

accurately distinguish between the healthy- and OA-cartilage bulk

RNA-seq data (Figure 3B; Table S5).

To explore the key process that maintains cellular homeostasis

and anti-senescence in chondrocytes, we focused on VIPER cluster

3. The expression levels of the top leading-edge proteins of VIPER

cluster 3 were visualized on a UMAP dot plot (Figure 3C). Since

aging is the primary OA risk factor, and senescence of chondrocytes
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plays a critical role in the pathogenesis of OA (10), we next

performed GSVA to assign the estimated activities of senescence-

associated signaling pathways, such as the DNA repair, NF-kB, and

mTOR signaling pathways, to the individual cells. GSVA is a

popular framework to detect subtle pathway activity changes

from expression matrix. We first assessed the difference in

senescence-associated signaling pathway activity between the

healthy and OA groups via a protein-activity matrix. The DNA-

repair signaling pathway was suppressed in the OA group,

consistent with the previous reports that DNA-repair genes are

crucial for the maintenance of cell homeostasis (6) (Figure S2D).

Conversely, the NF-kB (7), mTOR (8), and mitochondria (30)

pathways, biological oxidations (31), and the IGF-1/AKT

signaling pathway (32), which are closely related to senescence,

were activated in the OA group (Figure S2D). Consistently, we also

observed that the DNA-repair signaling pathway was activated and

the NF-kB, mTOR, and mitochondria pathways, biological

oxidations, and the IGF-1/AKT signaling pathway were

suppressed in the VIPER cluster 3 (Figure 3D). No significant

changes were observed in the rest of VIPER clusters. Collectively,

these results indicate that the VIPER cluster 3 might be the main

cluster responsible for modulating chondrocyte homeostasis and

anti-senescence. Moreover, as the leading-edge proteins of VIPER

cluster 3, which were identified via gene set enrichment analysis

(GSEA), were strongly associated with the clinical outcomes of OA
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FIGURE 3

Enrichment of top master regulator proteins of cluster3 and cluster13 from inferred proteomic data in bulk RNA-seq data is associated with OA
progression. (A) Gene set enrichment analysis (GSEA) of top 100 master regulator proteins of cluster3 and cluster13 from inferred proteomic data in
ranked differential expressed genes list of bulkRNA-seq data from 20 patients with OA versus 18 patients with normal cartilage. (B) Heatmap of
leading-edge protein set of protein activity-based cluster 3 and cluster 13 from GSEA analysis. (C) Dot plots showing the top 6 leading-edge protein
of cluster 3 based on VIPER-inferred protein activity on the umap. (D) Violin plots showing the gene set variation score of DNA Repair signaling
pathway, NF-kB signaling pathway, mTOR signaling pathway, Mitochondria pathway, Biological Oxidations, and IGF-1/AKT signaling pathway in
various protein activity-based cell clusters.
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and were the top MRs in VIPER cluster 3, we assume that these

proteins are critical regulators of cartilage homeostasis and may

serve as therapeutic targets in OA.
Validation of the robustness of the
leading-edge proteins via a VIPER-inferred
protein-activity matrix

To more fully validate the robustness and repeatability of the

leading-edge proteins, we analyzed another 10× genomics scRNA-

seq data set of human chondrocytes (GSE152805), which contains

samples of the smooth articular surface in the lateral tibial platform

and damaged articular surface in the medial tibial platform from

three OA patients (n = 3 per group). The analytic content is

consistent with the above description. After quality control

(Figures S3A, B), we retained a total of 24675 cells, which

comprised high-quality data for PCA (Figures S3C, D), UMAP,

and clustering analyses (Figures S4A, C, D). There are 14349 cells

from 3 smooth cartilage samples and 10326 cells from 3 damaged

cartilage samples. Cellular cluster composition (Figure S4B) and the

proportions of all the six seurat clusters (Figures S4E, F) were

similar between the smooth and damaged human cartilage samples.

The heatmap shows the top 5 marker genes most uniquely highly

expressed in each seurat cluster, such as COL9A1, NNMT, CRTAC1,

ACTB, C2orf82, and NFKB1A (Figure S4G; Table S6). Then, protein

activity was inferred by running metaVIPER, resulting in 4168

proteins with successfully inferred activity across all the human
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chondrocytes. We re-clustered the data via resolution-optimized

louvain and thereby identified 11 VIPER clusters (Figure 4A). We

next used bootstrapped t-test (100 bootstraps) to identify the MRs

driving the regulators of the differential cluster (Table S7). The

heatmap shows the top 5 MRs, such as NRN1, ITM2C, HERPUD1,

BTG1, TNXB, GAS1, and MMP2, in each VIPER cluster

(Figure 4B). The NES of the top 100 MRs in each VIPER cluster

was computed based on the ranked DEG list of the bulk RNA-seq

data, with the OA-cartilage bulk RNA-seq data compared with the

healthy-cartilage data. The results of this analysis revealed that

VIPER cluster 3 (NES = –2.95, p = 1.83e-10) had a higher negative

enrichment score in the OA cartilage than in the healthy cartilage

(Figure 4C). As shown in the heatmap in Figure 4D, the leading-

edge proteins of VIPER cluster 3 could accurately distinguish

between the healthy-cartilage bulk RNA-seq data and the bulk

RNA-seq data from typical degenerative cartilage (Figure 4D). The

above results show that the VIPER cluster 3 in GSE152805 is the key

cluster that maintains chondrocyte homeostasis.

It was imperative that the leading-edge analysis found the

VIPER cluster 3 in GSE152805 shares many of the same proteins

with the VIPER cluster 3 in GSE169454 (13 proteins, 17.8%), such

as TSPYL2, WSB1, HMGB2, BAG3 and PPP1R15A (Figures 4E, F;

Table S8). We defined the robust leading-edge proteins that are

common between the VIPER cluster 3 in GSE169454 and

GSE152805 as the key leading-edge proteins (Figure 4E).

Interestingly, these common leading-edge proteins, such as WSB1

(33), BAG3 (34), TSPYL2 (35), HMGB2 (36), PPP1R15A (37), and

GADD45B (38, 39), have been reported to be intimately correlated
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FIGURE 4

Validation for the robustness of leading-edge proteins based on VIPER-inferred protein activity matrix. (A) Visualization of umap colored according
to cell clusters for VIPER-Inferred protein activity across 6 cartilage samples. (B) Heatmap of the scaled expression of top 5 master regulator proteins
of various cell clusters from inferred proteomic data. (C) Gene set enrichment analysis (GSEA) of top 100 master regulator proteins of cluster3 from
inferred proteomic data in ranked differential expressed genes list of bulkRNA-seq data from 20 patients with OA versus 18 patients with normal
cartilage. (D) Heatmap of leading-edge protein set of protein activity-based cluster 3 from GSEA analysis. (E) Venn plots showing the shared leading-
edge proteins of protein activity-based cluster 3 between GSE169454 and GSE152805. (F) Dot plots showing the top 5 leading-edge protein of
cluster 3 based on VIPER-inferred protein activity on the umap.
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with cell senescence. However, we observed that in the UMAP, the

separation of the VIPER cluster 3 from the other clusters was not as

distinct as in GSE169454 (Figure 4A). We infer the reason for this

unexpected result is that the cellular difference between the medial

and lateral platform cartilage from the same OA patients is not as

much as the difference between healthy and OA cartilage from

different patients. Taken together, these results suggest that the

leading-edge proteins function as critical regulators of chondrocyte

homeostasis and anti-senescence and may serve as therapeutic

targets in OA.
The key leading-edge proteins are
associated with OA progression

To test the validity of the above results, we collected 10 pairs of

smooth and damaged cartilage samples from 10 patients with medial

compartment OA who had just undergone total knee arthroplasty

(Figure 5A). Histological differences between the smooth and

damaged samples were explored via safranin-O/fast-green staining.

Severe cartilage loss was observed in the damaged cartilage tissues

(reduced safranin-O staining) (Figure 5B). Consistent with previous

reports, immunostaining results revealed that compared with the

levels in the smooth cartilage, the damaged cartilage displayed

downregulated COL2A1 and upregulated MMP13, reflecting

cartilage degradation (Figure 5C). We next explored the

expression patterns of the key leading-edge proteins in the smooth
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and damaged cartilage samples. Among the 13 key leading-edge

proteins, the mRNA levels of NDRG2, WSB1, JMJD6, TSPYL2,

HMGB2, and PPP1R15A were considerably lower in the damaged

cartilage than in the smooth cartilage (Figure S5). To test the validity

of this finding at the protein level, immunohistochemistry was

performed, and the results revealed that compared with the levels

in the smooth cartilage, the damaged cartilage displayed decreased

protein levels of NDRG2, JMJD6, TSPYL2, and HMGB2

(Figure 5D). However, there was no significant difference in the

levels of the WSB1 and PPP1R15A proteins between the smooth and

damaged cartilage samples (Figure 5D). However, these key leading-

edge proteins were validated only in human OA samples (smooth

and damaged cartilage area) which cannot completely represent

pathological differences between healthy and OA condition, such as

aging condition. More reliable and comprehensive verification

results or therapeutic targets may be obtained from OA and

healthy individuals.

To further validate the involvement of this set of six leading-

edge proteins (NDRG2, WSB1, JMJD6, TSPYL2, HMGB2, and

PPP1R15A) in OA, we analyzed their expression levels in the

C57BL/6 mouse model of OA, which is induced via

destabilization of the medial meniscus (DMM) surgery

(Figure 6A). Severe cartilage loss was observed in the damaged

cartilage tissues, as determined via safranin-O staining and OARSI

grade scoring (Figure 6B). 3D reconstructions of micro-computed

tomography (µCT) scans depicted a gradual increase in mineralized

osteophyte formation in the DMM group, compared with the level
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FIGURE 5

The expression of key leading-edge proteins in the human knee cartilage samples. (A) Representative X-rays and intraoperative photographs of
clinical cartilage samples (n=10). (B) Representative images of safranin O/fast green staining in smooth and damaged cartilage from human knee
joints. (C) Representative images of immunohistochemical staining with antibodies against MMP13 and COL2A1 in smooth and damaged cartilage
from human knee. (D) Representative images of immunohistochemical staining with antibodies against NDRG2, WSB1, JMJD6, TSPYL2, HMGB2 and
PPP1R15A in smooth and damaged cartilage from human knee. The right panels show the quantification of the immunohistochemical staining. The
scale bar represents 50mm. AP, Anteroposterior; Lat, lateral; S, smooth cartilage; D, damaged cartilage. All data are expressed as the mean ± SD.
Student’s t test was used for statistical analysis. p < 0.05 was considered statistically significant.
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in the sham group, reflecting OA progression (Figure 6C). The

results from immunohistochemical staining revealed that compared

with the levels in the sham group, the DMM group displayed

downregulated NDRG2, TSPYL2, HMGB2, and PPP1R15A

(Figure 6D). However, there was no significant difference in the

levels of the WSB1 and JMJD6 proteins between the DMM and

sham groups (Figure 6D). To further confirm that these six leading-

edge proteins are closely related to senescence, we analyzed their

expression levels in aged mouse model of OA (Figures 7A, B).

Similarly, the expression of NDRG2, HMGB2, and PPP1R15A

protein were markedly suppressed in an aged mouse model of

knee OA whereas the expression of p16INK4a was increased in the

aging-associated OA cartilage (Figures 7C, D).The increased

expression of p16INK4a indicating that increased senescent cells

underlie cartilage aging, However, the expression of JMJD6

protein was markedly suppressed in an aged mouse model of

knee OA whereas the expression of TSPYL2 protein was not

changed, which are different from the results in DMM induced

mouse model of OA (Figure 7D).
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Discussion

Although several scRNA-seq studies on OA have been reported,

the cellular alterations and the disruption of cellular homeostasis in

chondrocytes during OA are not yet fully characterized (13, 14, 19,

40). This is probably because first, since chondrocytes are the

unique resident cell types in the articular cartilage, the

heterogeneity among chondrocytes is not as much as that among

the cell types in any other organ. Second, the “gene dropout”

problem of the scRNA-seq technology causes gene expression

data to be extremely sparse, with as many as 80%–90% of unique

mRNA molecules undetected in every single cell. To address this

problem, we employed the metaVIPER algorithm in this study,

which can accurately infer protein activity through scRNA-seq–

generated gene-expression data based on the assumption that only

regulons that accurately represent the transcriptional targets of

specific proteins in the tissue of interest produce statistically

significant enrichment of genes that are differentially expressed in

the corresponding tissue (16). Previous studies have shown that
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FIGURE 6

The expression of key leading-edge proteins in the DMM induced mouse model of OA. (A) Surgical approach to the right mouse knee joint with
transection of the medial meniscotibial ligament. (B) Cartilage destruction was determined by safranin O staining and evaluated by OARSI grade.
(C) representative three-dimensional (3D) reconstruction images of mouse knee joints showing abnormal growth of osteophytes.(n=11 per group).
(D) Representative images of immunohistochemical staining with antibodies against NDRG2, WSB1, JMJD6, TSPYL2, HMGB2 and PPP1R15A in sham
and DMM mouse model of OA. The right panels show the quantification of the immunohistochemical staining. The scale bar represents 50mm.
MMLT, medial meniscotibial ligament; DMM, destabilization of the medial meniscus; Sham, sham surgery group; AP, Anteroposterior; Lat, lateral.
OARSI grade data are expressed as the interquartile range (from the 25th to the 75th percentiles), with the centerline corresponding to the median.
IHC quantification data are expressed as the mean ± SD. Mann–Whitney U test was used for OARSI grade statistical analysis; Student’s t test was
used for IHC quantification statistical analysis. p < 0.05 was considered statistically significant.
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metaVIPER is a useful methodology for the analysis of single cell

data, and represents a stable repeatability and robustness in protein

activity inference (16). Hong Ding et al. conclude that even in the

absence of a tissue-matched model, most tissues may be studied

virtually without loss of resolution using metaVIPER (16).

Aleksandar et al. performed a comprehensive validation of VIPER

results using high-parameter spectral flow cytometry. The results

found that metaVIPER may potentially outperform antibody-based

measurements in terms of both detection and reproducibility, while

providing quantitative protein activity inference. By contrast, gene

expression-based analyses of scRNA-seq data could not recapitulate

flow cytometry results (17). Furthermore, unsupervised clustering

analysis of metaVIPER-inferred protein activity efficiently

separated single cells with different phenotype (16).

Via scRNA-seq–based gene-expression data and the

metaVIPER algorithm, we uncovered the main subpopulation of

chondrocytes that are responsible for modulating the cellular

homeostasis and anti-senescence in OA. We then identified the

MRs and key leading-edge proteins of this chondrocyte

subpopulation based on the protein activity, GSEA analysis, and

bulk RNA-seq data from human knee cartilage samples. To

validate the above results, we used human knee cartilage

samples and OA animal models and thereby assessed for an
Frontiers in Immunology 12
association between the key leading-edge proteins and

OA progression.

As described in the results, previous scRNA-seq studies on OA

have shown that the separation among the identified chondrocyte

clusters in UMAP or t-SNE plots is not distinct enough (13, 14, 19,

40). However, in the present study, the UMAP visualization showed

that the VIPER cluster 3 was distinctly separated from the other

clusters, and the top MRs of VIPER cluster are more accurate to

distinguish the difference between healthy and OA cartilage samples

in heatmap compare with top marker genes of the mRNA

expression-based cluster. Thus, these data demonstrate that

metaVIPER algorithm provide an efficient way to understand the

comprehensive atlas of cartilage chondrocytes for which a scRNA-

seq generated gene-expression data may be missing. Based on the

protein-activity matrix inferred by the metaVIPER algorithm, we

identified the MRs of each VIPER cluster. A set of MRs, namely

PNRC2, CHD2, NDRG1, CRY1, and TSPYL2, were highly

expressed specifically in the VIPER cluster 3. A previous study

has demonstrated that CHD2 can effectively promote DNA repair

pathway (41). Jinlong Li et al. have reported that CRY1, a circadian-

clock protein, can prevent cell senescence by promoting p53

degradation (42). The MRs of each VIPER cluster (Table S4) may

serve as a reference for future studies.
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FIGURE 7

The expression of key leading-edge proteins in aged mouse model of OA. (A) Representative photograph of 3-month-old (n=12 per group) and 24-
month-old mouse (n=14 per group). (B) Cartilage degeneration was determined by safranin O staining and evaluated by OARSI grade. (C)
Representative images of immunohistochemical staining with antibodies against p16INK4a in 3-month-old and 24-month-old mouse. (D)
Representative images of immunohistochemical staining with antibodies against NDRG2, WSB1, JMJD6, TSPYL2, HMGB2 and PPP1R15A in 3-month-
old and 24-month-old mouse. The right panels show the quantification of the immunohistochemical staining. The scale bar represents 50mm.
OARSI grade data are expressed as the interquartile range (from the 25th to the 75th percentiles), with the centerline corresponding to the median.
IHC quantification data are expressed as the mean ± SD. Mann–Whitney U test was used for OARSI grade statistical analysis; Student’s t test was
used for IHC quantification statistical analysis. p < 0.05 was considered statistically significant.
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To assess for the clinical relevance of the VIPER clusters, we

used GSEA combined with bulk RNA-seq data and thereby

computed the enrichment scores of the top MRs of each cluster

in the ranked DEGs of the OA clinical samples, compared with

those of the healthy-cartilage samples. We found that the VIPER

cluster 3 had a higher negative enrichment score in the OA-cartilage

samples than in the healthy-cartilage samples (NES = –3.01, p =

8.0e-10). Although several factors, such as body weight, genetic

heritage, mechanical stress, trauma, and metabolism are thought to

be associated with OA, recent studies have indicated that cellular

senescence in the cartilage is the primary driver of OA (10).

Notably, the bulk RNA-seq data (GSE114007) used in this study

comprised 18 healthy and 20 OA human knee cartilage samples,

and the mean age of the healthy group was significantly lower than

that of the OA group (36.61 ± 13.46 versus 66.2 ± 7.16). This

indicates that the difference between the OA and healthy groups in

the bulk RNA seq data represents not only OA pathogenesis but

also tissue aging. This allowed us to infer whether the VIPER cluster

3 is the critical chondrocyte subpopulation in the cartilage to

modulate cellular homeostasis and anti-senescence. By calculating

the gene set variation of each cell in the protein-activity matrix to

assess the activity of senescence-associated signaling pathways (the

DNA repair, NF-kB, IGF-1/AKT, and mTOR signaling pathways,

mitochondria pathway, and biological oxidations), we observed

high activity of the DNA repair signaling pathway in VIPER

cluster 3. Conversely, we observed low activity of the NF-kB,

mTOR, and IGF-1/AKT signaling pathways, mitochondria

pathway, and biological oxidations in VIPER cluster 3, suggesting

that VIPER cluster 3 is mainly responsible for modulating

chondrocyte homeostasis and senescence. For instance, the DNA-

repair signaling pathway, with high activity in the VIPER cluster 3,

is a fundamental and conserved mechanism responsible for

repairing damaged DNA and involved in anti-senescence (43).

To explore the core proteins in VIPER cluster 3 that maintain

cellular homeostasis and anti-senescence, we analyzed the leading-

edge proteins of VIPER cluster 3, namely JMJD6, CREBRF,

SLC16A1, NFATC1, and PIK3R3, via GSEA (Table S5). Yvan

Canitrot et al. have reported that JMJD6 is required for DNA

stability through its role in the formation of nucleolar caps (44).

PIK3R3, one of the regulatory subunits of phosphoinositide 3-

kinase, can inhibit cell senescence through the p53/p21 signaling

(45). To validate the robustness of the leading-edge proteins

identified in the VIPER-inferred protein-activity matrix, we

analyzed another 10× genomics human chondrocyte scRNA-seq

data set (GSE152805) through the same process as above. Of note,

we also identified a subpopulation of cluster 3 with a stronger

negative enrichment score in the OA cartilage than in the healthy

cartilage and found that many of the leading-edge proteins of the

VIPER cluster 3 of GSE152805 were also among those of the VIPER

cluster 3 of GSE169454, such as TSPYL2, WSB1, HMGB2, BAG3,

and PPP1R15A. We consider these common robust leading-edge

proteins the key leading-edge proteins, which might be directly or

indirectly involved in modulating chondrocyte homeostasis and

anti-senescence. We tried to test the correlation between leading

edge proteins (NDRG2, WSB1, JMJD6, TSPYL2, HMGB2) and

chondrocyte senescence marker proteins in protein activity matrix,
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such as p16, p21, SOX9, COL10A1. However, we found that

metaVIPER didn’t detect the protein activity of p16, p21, and

there is no significant correlation between leading edge proteins

(NDRG2, WSB1, JMJD6, TSPYL2, HMGB2) and chondrocyte

senescence marker proteins (SOX9, COL10A1). This may be

partly caused by the insufficient sequencing depth and high

dropout rate of scRNA-seq. Furthermore, a specific gene

expression or not are varies greatly in each cell, which may bias

the results of correlation analysis.

To assess for the involvement of these key leading-edge proteins

in OA pathogenesis, we evaluated their mRNA expression patterns

in clinical cartilage samples via reverse transcription–quantitative

polymerase reaction. Among the 13 key leading-edge proteins, the

mRNA levels of only NDRG2, WSB1, JMJD6, TSPYL2, HMGB2,

and PPP1R15A were significantly downregulated in the damaged

cartilage samples, compared with the levels in the smooth cartilage

samples. Interestingly, these proteins have been reported to be

intimately correlated with cell senescence. For instance, WSB1

expression in primary cells promotes ATM ubiquitination,

resulting in ATM degradation and helps the bypass of Oncogene-

induced senescence (33). Mechanistically, WSB-1 is involved in

DNA damage response to regulate cell senescence (46). In response

to DNA damage, JMJD6 is required for rDNA stability through its

role in nucleolar caps formation (44). Among these 6 proteins,

however, only the levels of the NDRG2, JMJD6, TSPYL2, and

HMGB2 proteins showed significant changes, based on the

immunohistochemical results.

Senescence is also a feature of the chondrocytes in the cartilage

of post-traumatic OA (47). Thus, we also evaluated the levels of the

NDRG2, WSB1, JMJD6, TSPYL2, HMGB2, and PPP1R15A

proteins in a DMM-induced OA mouse model. We observed that

only the levels of the NDRG2, TSPYL2, HMGB2, and PPP1R15A

proteins were significantly decreased in the cartilage of the OA

mouse model. These results are partly different from what we

observed in clinical human cartilage samples. We specifically

focused on NDRG2, TSPYL2, and HMGB2 since they were

identified as the differentially expressed proteins between the

healthy- and OA-cartilage samples both in humans and mice.

The IL-1b pro-inflammatory cytokine is usually used to

stimulate chondrocytes to undergo OA-like changes in vitro.

NDRG2 expression is much lower in IL-1b–treated chondrocytes

than in untreated cells, and its overexpression by transfection of

pcDNA3.1(+)/NDRG2 restores the inflammatory response and

ECM degradation in chondrocytes (48). Furthermore, NDRG2

expression level is significantly correlated with astrocyte

senescence, and NDRG2 can directly interact with NF-kB and

inhibit the nuclear import and DNA-binding activity of the NF-

kB p65 subunit in primary astrocytes (49, 50). However, the exact

mechanism of NDRG2 in senescence and OA progression deserves

further study.

It is well known that the DNA repair signaling pathway is

crucial for the maintenance of chondrocyte homeostasis and anti-

senescence, especially during aging (51). Previous studies have

shown that TSPYL2 plays an important role in DNA damage

repair and revealed the molecular mechanisms whereby TSPYL2

regulates SIRT1 and p53 activity upon DNA damage (35, 52).
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Therefore, we infer that TSPYL2 plays an important role in

senescence through regulate DNA repair signaling pathway.

However, the mechanism of TSPYL2 in OA progression remains

to be further investigated.

Numerous studies have shown that HMGB2 is closely related to

senescence. Notably, several studies have found that HMGB2 plays

a role in chondrocytes. For instance, previous studies have indicated

that chondrocyte senescence is associated with a loss of HMGB2

expression, and HMGB2 promotes chondrocyte proliferation (53,

54). Studies on the molecular mechanism of HMGB2 have shown

that HMGB2-mediated genomic reorganization initiates a

senescence program and holds the key to the senescence-

associated secretory phenotype (36, 55). Furthermore, knocking

down HMGB2 suffices for senescence-induced CTCF clustering and

for loop reshuffling (36).

This is the first scRNA-seq study to explore chondrocyte

senescence and OA pathogenesis based on single-cell protein-

activity analysis. However, there are several limitations to this

study. First, cell-type annotation of the protein-activity–based

clusters, which is a specific challenge in the field of OA research,

was not carried out. Second, we did not fully address the accuracy

of the metaVIPER-algorithm–inferred protein-activity matrix via

high dimensional flow cytometry, which was performed in the

corresponding publication (17). Thirdly, the author of GSE169454

didn’t mention the 7 cartilage samples were obtained from medial

or lateral condylar and GSE152805 scRNA-seq data used in the

validation all came from OA samples cannot completely represent

pathological change between healthy and OA condition. The

above reasons may cause partial information to be obscured in

the results of this bioinformatic analysis. Lastly, the present results

in our study are based on a bioinformatics analysis and the exact

mechanism of NDRG2, WSB1, JMJD6, TSPYL2, HMGB2 in

senescence and OA progression deserves further study. We

therefore consider these approaches, including the study of

osteoarthritis development in surgical and aging models, as the

next steps in our quest to understand the role of NDRG2, WSB1,

JMJD6, TSPYL2, HMGB2 and PPP1R15A in osteoarthritis and

their inner mechanistic links.
Conclusion

In summary, our study shows for the first time that a novel

subpopulation of chondrocytes is mainly responsible for

maintaining cellular homeostasis and closely associated with OA

progression. We identified protein-activity–based cluster-specific

MRs, which highlighted the molecular characteristics of steady-

state chondrocytes. A significant association between certain key

leading-edge proteins (NDRG2, TSPYL2, and HMGB2) and OA

pathogenesis was found. These key proteins are predicted

to modulate chondrocyte homeostasis and may serve as

therapeutic targets in OA. Additionally, our study suggests that

metaVIPER can be effectively applied to other tissue-based

scRNA-seq studies.
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SUPPLEMENTARY FIGURE 1

Quality control of single-cell RNA-seq data and clustering of human

chondrocytes. (A) Number of UMI, number of features, percent of

mitochondrial gene and log10GenesPerUMI distribution of human
chondrocytes in each of cartilage sample. (B) Visualize the correlation

between the number of detected genes and the number of UMI. (C) Elbow
plot showing the ranking of principle components based on the percentage

of variance explained by each one. (D) PCA plot of single-cell transcriptomes,
colored according to the 7 samples. (E) Proportion of different cluster in each

clinical sample. (F) Visualization of umap colored according to each clinical
sample. (G) Visualization of umap colored according to the group of clinical

samples. (H) Visualization of umap colored according to cell clusters for

62449 chondrocytes from human OA cartilage split by OA versus
normal label.

SUPPLEMENTARY FIGURE 2

Identification of chondrocyte populations from VIPER-Inferred protein
activity, GSEA and GSVA analysis. (A) Pie chart showing the distribution of

different cell clusters from VIPER-Inferred protein activity. (B) Proportion of

different protein activity-based clusters in each clinical sample. (C) Gene set
enrichment analysis (GSEA) of top 100 master regulator proteins of different

clusters from inferred proteomic data in ranked differential expressed genes
list of bulkRNA-seq data from 20 patients with OA versus 18 patients with

healthy cartilage. Gene list were ranked by the fold change in OA versus
healthy patient; the p value was computed by GSEA versus gene shuffling the

null model with 1,000 permutations. Bar graph represents the leading-edge

subset. NES represents normalized enrichment score. (D) Box plots showing
the comparison of gene set variation score of DNA Repair signaling pathway,

NF-kB signaling pathway, mTOR signaling pathway, Mitochondria pathway,
Biological Oxidations, and IGF-1/AKT signaling pathway between normal and
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OA group. GSVA score data are expressed as the the interquartile range (from
the 25th to the 75th percentiles), with the centerline corresponding to the

median. For GSVA score analysis, statistical analysis was performed using

Mann–Whitney U test. p < 0.05 was considered statistically significant.

SUPPLEMENTARY FIGURE 3

Quality control of single-cell RNA-seq data and clustering of human

chondrocytes. (A) Number of UMI, number of features, percent of
mitochondrial gene and log10GenesPerUMI distribution of human

chondrocytes in each of cartilage sample. (B) Visualize the correlation

between the number of detected genes and the number of UMI. (C) Elbow
plot showing the ranking of principle components based on the percentage

of variance explained by each one. (D) PCA plot of single-cell transcriptomes,
colored according to the 7 samples.

SUPPLEMENTARY FIGURE 4

Single-cell Transcriptome profiling and clustering of human cartilage

chondrocytes. (A) Visualization of umap colored according to cell clusters
for 24675 chondrocytes from human OA cartilage single-cell transcriptomes.

(B) Visualization of umap colored according to cell clusters for 24675

chondrocytes from human OA cartilage split by smooth versus damage
label. (C) Visualization of umap colored according to each clinical sample.

(D) Visualization of umap colored according to the group of clinical samples.
(E) Proportion of different cluster in each clinical sample. (F) Bar plots showing

the comparison of different cell clusters between smooth and damage group.
(G) Heatmap of the scaled expression of top 5 marker genes for each cluster.

All data are expressed as the mean ± SD. Student’s t test was used for

statistical analysis. p < 0.05 was considered statistically significant.

SUPPLEMENTARY FIGURE 5

The mRNA expression levels of key leading-edge proteins in the human knee
cartilage samples. Real-time PCR analysis was used to assess the mRNA levels

of NDRG2, WSB1, BAG3, JMJD6, TSPYL2, HMGB2, CCNL1, TIPARP, PPP1R15A,
GADD45B, TRIB3, MAFF and ATF3 in smooth and damage cartilage from

human OA patients (n = 10 per group). All data are expressed as the mean ±

SD. Student’s t test was used for statistical analysis. p < 0.05 was considered
statistically significant.
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