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Myeloid-derived suppressor cells (MDSCs) are a novel heterogenous group of

immunosuppressive cells derived from myeloid progenitors. Their role is well

known in tumors and autoimmune diseases. In recent years, the role and

function of MDSCs during reproduction have attracted increasing attention.

Improving the understanding of their strong association with recurrent

implantation failure, pathological pregnancy, and neonatal health has become a

focus area in research. In this review, we focus on the interaction between MDSCs

and other cell types (immune and non-immune cells) from embryo implantation to

postpartum. Furthermore, we discuss the molecular mechanisms that could

facilitate the therapeutic targeting of MDSCs. Therefore, this review intends to

encourage further research in the field of maternal–fetal interface immunity in

order to identify probable pathways driving the accumulation of MDSCs and to

effectively target their ability to promote embryo implantation, reduce pathological

pregnancy, and increase neonatal health.

KEYWORDS

myeloid-derived suppressor cells (MDSCs), maternal–fetal immune tolerance, embryo
implantation, pregnancy complications, newborn
1 Introduction

Recently, a population of immature cells derived from myeloid progenitors, i.e., myeloid-

derived suppressor cells (MDSCs), has entered the research spotlight (1). The molecular

phenotypes of MDSCs are CD11b and Gr1 in mice, whereas it is HLA-DRlow/−CD33+ in

humans. These can be subdivided into the monocytic and granulocytic subtypes (M-MDSCs

and G-MDSCs, respectively). Traditionally, they are defined as CD11b+Ly6ChighLy6G− and

CD11b+Ly6G+Ly6Clow in mice and CD11b+CD33+CD14+HLA-DR− / low and

CD11b+CD33+CD15+/CD66+HLA-DR− in humans, respectively (2). Recently, a number of
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novel markers and subsites of MDSCs have emerged, as shown in

Table 1. MDSCs exhibit significant heterogeneity because M-MDSCs

and G-MDSCs can further differentiate into myeloid cells.

Furthermore, it is difficult to distinguish them from mature

monocytes and granulocytes based on immune molecular markers

(30). In addition, a great deal of attention has been focused on the

immunosuppressive function of MDSCs in tumors, autoimmune

diseases, organ transplantation, and infectious diseases (31–34). In

tumors, MDSCs inhibit the antitumor functions of T cells and natural

killer (NK) cells and promote tumor progression by accelerating

angiogenesis and cell invasion (2, 35, 36). Moreover, the proportion of

MDSCs is closely associated with the clinical outcomes and

therapeutic effects in patients with cancer (37). Although MDSCs

are short-lived cells, they play crucial roles in many diseases.

The function of MDSCs during reproduction remains

controversial. Embryo implantation, including the balance of

immune cells at the maternal–fetal interface, reconstruction of the

endometrial spiral arteries, and moderate invasion of trophoblasts,

is a prerequisite for a successful pregnancy. Several studies

have described how maternal–fetal tolerance is enhanced by

accumulating MDSCs to suppress T-cell responses (38–40).

Furthermore, the proportion of MDSCs was decreased in

spontaneously aborting mice compared with controls, whereas

their depletion resulted in the increased cytotoxicity of decidual

NK cells (41). Even in infertile couples, the ratio of MDSCs in the

peripheral blood of women who undergo in vitro fertilization (IVF)

is considered an essential factor in predicting the outcomes of

pregnancy (42, 43). These findings might provide new insights

into immune-related miscarriage and IVF failure. In addition,

several studies have further demonstrated the accumulation and

augmentation of MDSCs in newborn humans and mice (44–46).

There is growing acceptance that MDSCs manipulate the maternal–

fetal immune microenvironment to promote and sustain embryo

implantation, protect the fetus during gestation, and keep the

newborn healthy.

In this review, we discuss the evidence concerning the association

of MDSCs with embryo implantation, pregnancy complications, and

newborn health and explore the potential relationship between

MDSCs and the maternal–fetal immune microenvironment.
2 MDSCs in embryo implantation

The first steps to a successful pregnancy are embryo localization,

adhesion, and invasion of the endometrium. As a type of semi-

allogeneic transplantation, the fetal trophoblasts in the maternal–fetal

interface interact with the maternal decidual stromal cells, decidual

glandular epithelial cells, and numerous immune cells (47, 48). The

maternal–fetal immune microenvironment plays a decisive role

during these events. A balance between the pro- and anti-

inflammatory cells (T cells, NK cells, and MDSCs) is crucial for

successful implantation and placentation (40, 49–53). In addition to

protecting the fetus from maternal immune attacks, immune cells

play critical roles in the migration and invasion of trophoblasts and in

forming decidual blood vessels (54). The maternal corpus luteum and

fetal placenta can signal the production of high levels of estrogen and
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progesterone (55), and interactions involving hormones and immune

cells cannot be ignored.
2.1 Immunosuppressive function of MDSCs

Immunotolerance is vital in the maternal immune system in order

to accept the embryo. As a population of novel immunoregulatory

cells, MDSCs have received increasing attention during early

pregnancy rather than in cancer and autoimmune diseases. Besides

investigations into the frequency and induction of MDSCs in

pregnant human and mouse models, studies have also focused on

understanding their immunosuppressive effects during pregnancy. G-

MDSCs and M-MDSCs exert immunosuppressive functions via

different molecular mechanisms (56). M-MDSCs function primarily

through the secretion of nitric oxide and arginase-1 (Arg-1) (57),

whereas G-MDSCs produce reactive oxygen species (ROS) and

hydrogen peroxide (58). Cytokines, growth factors, and

microorganisms enhance the immunosuppressive functions of

MDSCs in tumors or the inflammatory microenvironment through

mediators and subsequently activate nuclear factor kappa B, signal

transducer and activator of transcriptions (STATs), and other

signaling pathways (59–61).

An earlier study reported that G-MDSCs comprise the dominant

MDSC subset in the peripheral blood of pregnant women, producing

immunosuppressive enzymes such as Arg-1 and inducible nitric oxide

synthase (iNOS) (62). In an MDSC depletion pregnancy mouse model, T

cells showed higher proliferation capacity without Arg-1 and ROS (63). In

our preliminary research, the T cells in the peripheral blood of infertile

patients exhibited higher immunosuppressive function than those in the

MDSC-depleted group (43). Furthermore, it has been suggested that

MDSCs reduce the T-cell responses in a cell–cell contact manner (40). In

humans, a subpopulation of decidual MDSCs was first recognized by

Bartmann et al. in 2015. These cells secrete high levels of

immunosuppressive products, including Arg-1, iNOS, and indoleamine-

2,3-dioxygenase (IDO), and produce anti-inflammatory cytokines, such as

interleukin-10 (IL-10) and transforming growth factor beta (TGF-b), with
the ability to inhibit T-cell proliferation (64). Although the relationship

between endometriosis and embryo implantation has received increasing

attention, the underlying molecular mechanisms remain unclear. Elevated

G-MDSC counts positively regulate the immunosuppressive activity

(increased Arg-1 and ROS levels and suppressed T-cell proliferation)

and the increased number of endometrial lesions. However, MDSCs

depleted with the anti-Gr-1 antibody in mice exhibited dramatically fewer

lesions (65). This indicates thatMDSCs could possibly reduce endometrial

receptivity so as to affect embryo implantation through immune attack.

As a form of semi-allogeneic transplantation, the embryo is

considered as a foreign antigen by the maternal immune system;

therefore, appropriate immunosuppressive products are essential in

inducing immune tolerance.
2.2 MDSCs shift T-cell differentiation

The maternal immune system is a complex immune paradox. The

mother is sensitized by foreign embryos in early pregnancy under
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https://doi.org/10.3389/fimmu.2023.1080391
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Phenotypes of myeloid-derived suppressor cells (MDSCs) in mice and humans.
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estrogen and progesterone stimulation. Subsequently, immune

tolerance is induced to protect the fetus from maternal immune

attack. In recent years, the research on maternal–fetal immunity has

focused on the balance between T helper (Th) 1/Th2 cells and Th17/

regulatory T cells (Tregs) (66–68). The hyperfunction of pro-

inflammatory T cells, such as Th1 and Th17, has been confirmed to

be associated with recurrent implantation failure (69, 70).

It is well documented that MDSCs in the decidua isolated from

pregnant women can induce the expression of forkhead box P3

(Foxp3) in CD4+ T cells (Tregs) through the TGF-b/b-catenin
signaling pathway. Furthermore, CD4+Foxp3+ T cells are

associated with increased MDSC number and recruitment,

resulting in a positive feedback loop (71). In addition, MDSCs

have been reported to induce a shift toward the anti-inflammatory

subtype of Th2 cells via cell–cell interactions (72). Exosomes

released by G-MDSCs in pregnant women have the ability to

suppress T-cell proliferation, polarize Th cells to Th2 and Tregs,

and inhibit lymphocyte cytotoxicity (73). Although the exact

reason remains unclear, the reduction of L-selectin expression in

naive T cells has been considered to inhibit their trafficking toward

lymph nodes (38). Reducing the frequency of MDSCs leads to T-

cell responses that enhance and elevate the ratio of Th1 to total T

cells in pregnant women (74). In addition to T cells, multiple types

of effector immune cells, including macrophages, uterine natural

killer (uNK) cells, and immature dendritic cells (iDCs),

play substantial roles in the induction of maternal–fetal

immunotolerance (39, 75, 76).
2.3 MDSCs affect NK cell cytotoxicity

NK cells represent one of the dominant innate lymphoid cell types

that exert cytotoxic effects and primarily contribute to the killing of

pathogen-infected cells and tumor cells (77). These cells can primarily

be categorized into two subtypes: peripheral blood NK (pbNK) cells

and tissue-resident NK (trNK) cells. pbNK cells are identified as

CD3−CD56+ in humans, whereas trNK cells exhibit various

phenotypes and signatures (78, 79). Therefore, the CD45+CD56+Lin−

cells in humans or the CD45+Lin−NK1.1+NKp46+ cells in mice are

defined as uNK cells. Owing to the unique structure of the uterus,

uNK cells are mostly distributed in the endometrium. uNK cells are

also known as decidual NK cells (80). In contrast to the cytotoxicity in

pbNK cells, uNK cells facilitate decidualization and placenta

formation by remodeling the extracellular matrix and endometrial

stroma vessels (81).

NK cells can trigger targeted cell death by releasing cytotoxic

granules, such as granzymes and perforin. Furthermore, NK cells

are also employed to recognize and eliminate target cells through

the NK group protein 2D-activating NK receptor (NKG2C). A

study on mouse models identified that MDSC depletion results in

the upregulation of the embryo resorption rates and a decrease in

the uNK cell counts. Furthermore, MDSC depletion increased the

cytotoxicity of uNK cells by upregulating perforin and granzyme B

in the cytoplasm and NKG2C on the cell surface (38, 41, 63). It

cannot be ignored that MDSCs also represent something of a

double-edged sword during pregnancy because of the

immunosuppressive function of pbNK cells. In a pregnant mouse
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model with breast cancer, MDSC accumulation led to the inhibition

of NK cell activity and the subsequent promotion of tumor

metastasis and disease progression (82).
2.4 MDSCs promote angiogenesis

Epidemiological and experimental research confirmed that an

imbalance in circulating angiogenic factors directly leads to embryo

implantation failure and maternal pregnancy complications, such as

preeclampsia (83, 84). Although several potential cellular immunities

associated with MDSCs at the maternal–fetal interface have been

identified, MDSCs are related to vascular remodeling during embryo

implantation and placentation. For instance, it is well documented

that MDSCs support angiogenesis in tumor environments (36, 85,

86). Adequate invasion of extravillous trophoblasts into the

endometrium with dilated and reconstructed spiral arteries in the

myometrium so as to maintain an adequate blood supply is a

prerequisite for a successful pregnancy. It has been shown that

MDSCs play crucial roles during placental formation, similar to

that during tumorigenesis (87). However, there is no direct

evidence suggesting that MDSCs promote angiogenesis during

human placentation. In rats, the MDSC-derived vascular

endothelial growth factor (VEGF) has been confirmed to promote

the development of maternal uterine spiral arteries and placenta to

elevate the reception of implantation (88). In patients undergoing

IVF, elevated serum VEGF levels were positively related to the MDSC

ratio. Furthermore, the VEGF level and MDSC ratio positively

correlated with the pregnancy rates (43). In addition to VEGF,

MDSCs have also been discovered to secrete various bioactive

factors, including CXC chemokine receptor 2 (CXCR2), CXCR4,

IL-6, TGF-b, and metalloproteinases, that could facilitate tumor

migration and metastasis and promote angiogenesis (36). G-

MDSCs in the decidua with a high expression of CXCR2 have also

been found at the maternal–fetal interface and supposedly induced

angiogenesis (89, 90). In patients with spontaneous miscarriage,

VEGF activated the VEGF or MEK/ERK signaling pathways in the

villi to govern uterine angiogenesis and vascular remodeling during

pregnancy (91, 92). In general, promoting angiogenesis may be

another role of MDSCs in promoting embryo implantation.
2.5 Mutual promotion of MDSCs
and trophoblasts

The embryo must experience the cleavage stage and the

blastocyst stage and finally implant into the endometrium.

MDSCs are more abundant in the peripheral blood and decidua

of pregnant women and mice than in those of non-pregnant

individuals (74, 81). In one of our preliminary experiments to

investigate the relationship between MDSCs and trophoblasts, we

showed that the proportion of MDSCs in the peripheral blood of

IVF patients was positively correlated with pregnancy outcomes (43,

62). These findings suggest that MDSCs enhance trophoblast cell

activity. Trophoblasts are also effective players in the expansion of
Frontiers in Immunology 05
MDSCs. An in vitro study using a trophoblast cell line (HTR8/

SVneo) reported the successful triggering of peripheral CD14+

myelomonocytic cell differentiation into MDSCs with high

expression of IDO1 and Arg-1. Notably, these cells also expressed

higher levels of STAT3, indicating the potential mechanisms

underlying trophoblast-induced MDSC differentiation (93).

Together, these findings reveal the positive feedback loop of

trophoblast implantation and MDSC recruitment at the maternal–

fetal interface.
2.6 Expansion and differentiation of MDSCs
under conditions of hormone stimulation

During gestation, the maternal corpus luteum and fetal placenta

can relay to produce high levels of estrogen and progesterone (55),

and the interactions between hormones and MDSCs cannot be

ignored. The MDSC count and frequency steadily increase during

pregnancy and peak in the second trimester, showing parallel

changes with the circulating estradiol and progesterone levels.

Exosomes isolated from the peripheral blood MDSCs of pregnant

women exhibited various abilities involving differentiation and

suppressive functions according to the stage of gestation (73).

Growing evidence has shown that the recruitment and the

accumulation of MDSCs depend on estradiol signaling in cancer

patients (94). During human gestation, high estradiol and

progesterone levels considerably facilitate the ratio and

suppressive functions in both G-MDSCs and M-MDSCs via the

STAT3 signaling pathway (40, 95). Estradiol alone may induce an

increased VEGF expression in MDSCs to promote maternal uterine

spiral arteries and placental development in rats (88, 96). Similar to

the above-mentioned hormones, human leukocyte antigen G (HLA-

G), a molecule secreted and expressed by several cells in the

maternal–fetal interface, is also a crucial player in MDSC

accumulation in the decidua (97) . I t usual ly binds to

immunoglobulin-like transcript 4 and induces the expansion and

differentiation of MDSCs in peripheral blood mononuclear cells

through STAT3 signaling (98, 99). A recent study has shown that

the estradiol receptor negatively modulated the expression of

hypoxia-inducible factor-1 alpha (HIF-1a) (100). HIF-1a
deficiency at the maternal–fetal interface leads to a decrease in the

MDSC counts. Furthermore, silencing the expression of HIF-1a in

MDSCs results in an impaired immunosuppressive function and

renders them susceptible to apoptosis (101). Therefore, hormones

protect and ensure embryo implantation and regulate the function

of MDSCs through multiple pathways.
2.7 Lipid metabolism of MDSCs

Cellular energy metabolism is currently a critical area of focus in

scientific research. Understanding the role of energy metabolism

could help in better comprehending the fate of MDSCs during

gestation or in pathological processes. An association between

MDSCs and lipid metabolism was first recognized in 2011 by Xia
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et al. (102). The authors identified that MDSCs accumulated in the

fat tissue, the liver, and peripheral blood, with pro-inflammation

and reestablishment of metabolic homeostatic functions, even

increasing insulin resistance. In contrast, the adoptive transfer of

MDSCs reduced obesity-associated inflammation and improved

insulin sensitivity (103). In humans, the M-MDSC counts were

higher in the peripheral blood of obese men compared to those in

the control group (104). Mechanistically, excessive adipocytes

secreted pro-inflammatory mediators, including prostaglandin E2,

tumor necrosis factor alpha (TNF-a), interleukin 6 (IL-6), and IL-

1b (105), and MDSCs were recruited to the adipose tissue,

subsequently resulting in a substantially worse immune response

cascade (106–108). Dyslipidemia may also lead to the accumulation

and immunosuppressive capacity enhancement of MDSCs,

indicating that exogenous lipids may be taken up by MDSCs (11).

In patients experiencing unexplained recurrent pregnancy loss, G-

MDSC differentiation was associated with the pSTAT3/FABP5/

PGE2 pathway (109). These findings are instrumental in

understanding the physiological mechanisms of immune tolerance

in pregnancy.
3 MDSCs during pregnancy

Recently, the numbers of studies investigating the role of

MDSCs during pregnancy have increased. MDSCs are

accumulated in a time-dependent manner during gestation (62,

74). Abnormal pregnancies and pregnancy complications, including

spontaneous miscarriage, intrauterine growth restriction (IUGR),

and preeclampsia (PE), are also closely related to an imbalance in

the maternal–fetal immunological tolerance (51, 110, 111). As

reviewed and discussed previously, MDSC deficiency may

participate in such adverse events.
3.1 MDSC deficiency leads
to spontaneous miscarriage

Spontaneous miscarriage is the loss of a pregnancy before

viability with no manual intervention. This condition occurs in up

to 20% of recognized pregnancies (109). As listed above, there is a

reciprocal causation between MDSC deficiency and spontaneous

miscarriage in the first or the second trimester. A reduction in the

MDSC ratio, accompanied by a decrease in the levels of Arg-1,

iNOS, IL-10, and TGF-b, has been observed in a spontaneous

abortion mouse model compared to controls (41). The proportion

of MDSCs was significantly increased in the decidua of early

pregnant women compared to non-pregnant women (71, 112).

Decidual G-MDSC apoptosis is mediated by TNF-related

apoptosis-induced ligand (TRAIL) in a caspase 3-dependent

manner. Notably, downregulated expression of the TRAIL

receptor DcR2 leads to increased G-MDSC apoptosis, and this is

responsible for spontaneous miscarriage (113). Generally, high

levels of estradiol and progesterone lead to the recruitment of

MDSCs, and an increase in their counts, during gestation. MDSCs
Frontiers in Immunology 06
manipula te the outcomes of pregnancy by producing

immunosuppressive molecules (62, 74), regulating immune

tolerance (96, 114), promoting angiogenesis (95), and inducing

trophoblast implantation (40, 63).
3.2 MDSC deficiency results
in pregnancy complications

IUGR represents an abnormal pregnancy and is the second

leading cause of perinatal morbidity and mortality, affecting 5% of

pregnancies (114). IUGR is one of the major causes of spontaneous

miscarriage, prematurity, stillbirth, and even infant mortality (115).

On the other hand, PE is characterized by new-onset hypertension,

usually occurring after 20 weeks of gestation and affecting 3%–8% of

pregnancies (116). The causes of IUGR and PE are multifactorial,

including maternal age and nutrition, thrombophilia, placental

dysfunction, and fetal factors (117). Placental dysfunction includes

uteroplacental insufficiency, vessel thrombosis, placenta or spiral

artery arteritis, chronic villitis, and umbilical cord abnormalities

(118, 119). There is still a lack of IUGR and PE animal models;

therefore, investigations have been primarily conducted in humans.

As mentioned previously, G-MDSCs are observed in all stages of

pregnancy and are accompanied by high cellular levels of Arg-1 and

ROS activity; however, patients with IUGR exhibit a significantly

lower suppressive activity. Moreover, the frequency of G-MDSCs is

negatively correlated with adverse outcomes in newborns from

pregnancies with IUGR (120). The MDSC ratio and serum Arg-1

levels in patients with PE are much lower than those in healthy

pregnant women (111). Furthermore, the frequency of T-cell

immunoglobulin and mucin domain-containing protein 3 (TIM3)+

MDSCs is also more elevated in patients with PE than in healthy

controls, and the Tim-3/galectin-9 pathway is considered to modulate

the function of MDSCs so as to affect the pathogenesis of PE (121).

We speculate that adverse pregnancy outcomes associated with IUGR

and PE may be related to immune imbalance, angiogenesis disorders,

and shallow placental implantation caused by MDSC deficiency

during early pregnancy.
4 MDSCs in postpartum and newborns

MDSCs play an immunosuppressive role in tumors (122, 123) and

a pro-inflammatory role in autoimmune diseases (124, 125). Similarly,

there is a shift from the early anti-inflammatory profiles that contribute

to embryo implantation to a late pro-inflammatory cytokine profile that

promotes fetal delivery (126). Notably, the MDSC counts decline

rapidly in the peripheral blood of women after parturition (62). A

transcriptome study that compared pregnancy-induced MDSCs to

tumor-induced MDSCs revealed similar transcriptomes in both

conditions. However, the antimicrobial-associated protein levels were

higher in pregnancy-induced MDSCs (127). Furthermore, the MDSCs

in neonates exhibited antimicrobial activity by secreting higher levels of

cathepsin G, neutrophil cytosolic factor 1, S100 calcium-binding

protein A8/A9, myeloperoxidase, lysozyme, neutrophil elastase, and
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lipocalin 2 (127). Similarly, the MDSCs in breast milk have also been

found to protect infants from necrotizing enterocolitis and nosocomial

bacterial infections (128). It appears that the MDSCs transferred from

themother to the fetus during delivery via the umbilical cord and breast

milk harbor antimicrobial effects in infants.

In addition to this protective function, MDSCs may also play a

negative role in postnatal immune development, increasing

susceptibility to infections in neonates. Estradiol levels are high in

newborns, and there is estradiol-dominant MDSC recruitment and

augmentation. Among infants, preterm babies show elevated

estradiol levels in serum compared to full-term babies, while the

MDSCs in umbilical cord blood also exhibit an abnormal increase

(129). Premature infants are more susceptible to necrotizing

enterocolitis, bronchopulmonary dysplasia, and sepsis (44, 127,

128). The underlying mechanisms may be associated with

immune regulation activity and the immunosuppressive

characteristics of MDSCs.

During the neonatal period, a balance between immune attack

and tolerance is extremely important (130). Generally, the

immunosuppressive functions of umbilical cord blood MDSCs

are to inhibit the differentiation and proliferation of Th1 and

Th17 cells by producing Arg-1 and ROS and inducing cell–cell

contact and to enhance the accumulation of immune regulatory

Th2 cells and Tregs (131–134). Furthermore, MDSCs also suppress
Frontiers in Immunology 07
the cytotoxic NK cells through cell–cell interactions (131). When

an anti-inflammatory immune reaction is activated (represented

by Th2 and Treg hyperfunction), the newborn will not exhibit

excessive immune attack when exposed to various antigens,

bacteria, and viruses. However, in preterm infants, the high

frequency of MDSCs enhances immune tolerance, leading to

insufficient immune responses and neonatal diseases (46,

134–136).
5 Conclusion

The immune environment at the maternal–fetal interface is

complex and mysterious. MDSCs, as immunoregulatory cells with

both pro-inflammatory and anti-inflammatory functions, are

well documented to act as an escort throughout pregnancy

(schematic diagram shown in Figure 1). Identifying the

molecular mechanisms underlying the angiogenesis promotion

and trophoblast implantation-inducing functions of these cells

will enable precision therapy. During the window of implantation,

intra-uterus transfusion of induced MDSCs or augment MDSCs in

the decidua using multiple cytokines may provide tangible clinical

benefits, such as elevate the live birth rate in recurrent embryo

implantation failure, decrease pregnancy complications, and
FIGURE 1

Schematic diagram. Myeloid-derived suppressor cells (MDSCs) secrete high levels of immunosuppressive products, including arginase-1 (Arg-1), reactive
oxygen species (ROS), inducible nitric oxide synthase (iNOS), and indoleamine-2,3-dioxygenase (IDO), and produce anti-inflammatory cytokines, such as
interleukin 10 (IL-10) and transforming growth factor beta (TGF-b), with the ability to inhibit T-cell proliferation. In addition, MDSCs shift the T helper (Th)
1/Th2 cell and Th17/regulatory T cell (Treg) subsets to exert immunoregulation function. They also enhance uterine natural killer (uNK) cells to facilitate
decidualization and placenta formation by downregulating perforin and granzyme B in the cytoplasm and NK group protein 2 D‐activating NK receptor
(NKG2C) on the cell surface and promote angiogenesis and placental implantation through the VEGF and TIM3 pathway. During pregnancy, high levels of
estrogen and trophoblasts may recruit, accumulate, or even induce the differentiation of MDSCs. MDSCs deficiency is considered to be associated with
embryo implantation failure, spontaneous miscarriage, intrauterine growth restriction, and preeclampsia. Furthermore, MDSCs even play crucial roles to
enhance immune tolerance in neonates.
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promote neonatal health. However, whether immunosuppression

during pregnancy promotes the occurrence and progression of

tumors remains uncertain. Further studies focusing on this aspect

still need to be conducted.
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