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cuproptosis-related prognostic
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University, Guangzhou, China
Background: Cuproptosis, a newly reported type of programmed cell death, takes

part in the regulation of tumor progression, treatment response, and prognosis.

But the specific effect of cuproptosis-related genes (CRGs) on glioblastoma (GBM)

is still unclear.

Methods: The transcriptome data and corresponding clinical data of GBM samples

were downloaded from the TCGA and GEO databases. R software and R packages

were used to perform statistical analysis, consensus cluster analysis, survival

analysis, Cox regression analysis, Lasso regression analysis, and tumor

microenvironment analysis. The mRNA and protein expression levels of model-

related genes were detected by RT-qPCR and Western blot assays, respectively.

Results: The expression profile of CRGs in 209 GBM samples from two separate

datasets was obtained. Two cuproptosis subtypes, CRGcluster A and CRGcluster B,

were identified by consensus cluster analysis. There were apparent differences in

prognosis, tumor microenvironment, and immune checkpoint expression levels

between the two subtypes, and there were 79 prognostic differentially expressed

genes (DEGs). According to the prognostic DEGs, two gene subtypes, geneCluster

A and geneCluster B, were identified, and a prognostic risk score model was

constructed and validated. This model consists of five prognostic DEGs, including

PDIA4, DUSP6, PTPRN, PILRB, and CBLN1. Ultimately, to improve the applicability

of the model, a nomogram was established. Patients with GBM in the low-risk

cluster have a higher mutation burden and predict a longer OS than in the high-risk

group. Moreover, the risk score was related to drug sensitivity and negatively

correlated with the CSC index.

Conclusion:We successfully constructed a cuproptosis-related prognostic model,

which can independently predict the prognosis of GBM patients. These results

further complement the understanding of cuproptosis and provide new theoretical

support for developing a more effective treatment strategy.
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Introduction

According to the traditional histopathological characteristics,

gliomas can be divided into WHO I-IV types, among which GBM

is the most malignant and belongs to WHO IV. Despite standard

treatment, including surgery and chemoradiotherapy, the prognosis

of GBM is dismal (1, 2). It effectively improves the clinical prognosis

of GBM by via exploring new prognostic models, identifying high-

risk patients, and providing precise treatment.

Cuproptosis, a novel form of programmed cell death, was first

reported by Tsvetkov et al. in the journal of Science in March 2022.

Different from the known apoptosis, pyroptosis, and ferroptosis, studies

have indicated that, in the process of cuproptosis, Cu2+ combines with

the lipoylated components of the tricarboxylic acid cycle in the

mitochondrial respiratory chain, resulting in the aggregation of

lipoylated protein and down-regulation of iron-sulfur cluster protein,

followed by proteotoxic stress as well as cell death (3). In addition, the

researchers preliminarily identified 12 CRGs, such as CDKN2A,

PDHB, GLS, LIPT1, FDX1, DLD, MTF1, ATP7B, LIAS, DLAT,

PDHA1, and SLC31A1 (3). In the past several months, prognostic

models based on cuproptosis have been published in many kinds of

tumors, such as head and neck squamous cell carcinoma (4), triple-

negative breast cancer (5), lung adenocarcinoma (6), renal clear cell

carcinoma (7), melanoma (8), hepatocellular carcinoma (9), and low-

grade glioma (10), which accurately predict prognosis, tumor immune

microenvironment, and response to chemotherapy or immunotherapy.

However, no cuproptosis-related prognostic model has been reported

in GBM. To explore the significance of CRGs in predicting the

prognosis of GBM, this research intends to develop and verify a risk

score model according to CRGs by analyzing the transcriptome

expression profile as well as clinical parameters downloaded from the

public databases, and further construct a nomogram to elevate

the applicability of this model. Moreover, we conducted analyses of

the TME, immune checkpoints, TMB, and sensitivities of drugs or
Frontiers in Immunology 02
compounds. This study may provide a novel insight into the prognostic

prediction and precise treatments and ultimately improve the prognosis

of GBM patients.
Materials and methods

Data collection

Figure 1 displays the process of this research. The transcriptome

expression profile (TPM) and associated clinical data for GBM were

downloaded from public databases, including TCGA and GEO. We

obtained a TCGA GBM cohort and two GEO GBM cohorts

(GSE83300 cohort and GSE74187 cohort) for subsequent analyses.

First, the original files were background adjusted and quantile

normalized, and then the two datasets were combined after

eliminating batch effects by applying the “Combat” algorithm.

Excluding samples without OS information, 209 GBM samples were

included. Table S1 provides detailed clinical information about the

209 GBM patients, including age, sex, overall survival time, survival

status, and IDH1 mutation status.
Consensus clustering analysis of CRGs

Twelve CRGs were retrieved from previous publications. In

consensus clustering analysis, the R package “ConsensusClusterPlus”

was applied. The clustering criteria were as follows: the cumulative

distribution function (CDF) curve is relatively flat rather than steep, the

sample size of each subtype should not be too small, and the correlation

within subtypes was enhanced after clustering, while the correlation

between subtypes was weakened. Based on the expression

profile of prognostic CRGs, samples were classified into distinct

cuproptosis subtypes.
FIGURE 1

The entire analytical process of the study.
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Relationship of cuproptosis subtypes with
clinical features

To identify the clinical significance of the classification above,

analyses of the relationship between cuproptosis subtypes and age, sex,

and prognosis were conducted, respectively. Using R packages

“survminer” and “survival”, we conducted a Kaplan-Meier survival

analysis to compare the difference of OS in different cuproptosis subtypes.
Relationship between cuproptosis
subtypes and TME

Based on the ssGSEA algorithm, we obtained the relative contents

of 23 kinds of immune cells in every GBM sample. Furthermore, in

light of the ESTIMATE algorithm, we obtained the ImmuneScore,

StromalScore, and ESTIMATEScore of every GBM sample. Three of

the most studied immune checkpoints were selected, including

CTLA-4, PD-L1, and PD-1, and differentially expressed analyses of

checkpoints between two cuproptosis subtypes were performed.
DEG identification and consensus
clustering analysis

Based on the R package “limma”, we obtained DEGs between the

two cuproptosis subtypes with screening conditions of fold change

(FC) > 1.5 and adjusted P< 0.05. Then, a univariate Cox regression

analysis was conducted to obtain the prognostic DEGs. Finally, in

light of the prognostic DEGs, unsupervised cluster analysis was

performed to categorize GBM samples into distinct gene subtypes.
Construct and validate the cuproptosis-
related risk score model

GBM samples were randomly categorized into the training set

and the testing set. Sample sizes of the two sets were about the same,

with 105 GBM patients in the training set and 104 GBM patients in

the testing set. We chose the training set to establish a risk score

model. Briefly, using the R package “glmnet”, Lasso Cox regression

analysis was conducted in light of the prognostic DEGs. We

established the risk score model by analyzing the change trajectory

of every gene and using the 10-fold cross-validation method.

The calculation formula is as follows: Risk score = S (Coefi × Exp)

In this formula, Coefi indicates the risk coefficient, and Exp indicates

the expression level. In the training set, samples were categorized into

high-risk and low-risk clusters in light of the median. Then a Kaplan-

Meier survival analysis was conducted to compare the OS difference

between the high-risk and low-risk clusters. Next, using the R package

“ggplot2”, PCA was performed to observe the distinction between the

two risk clusters. Finally, the ROC curve was constructed to assess the

prognostic prediction performance of this model. For further

verification, samples in the testing set, GSE83300 cohort, and

GSE74187 cohort were categorized based on the median risk score,

respectively, followed by Kaplan-Meier survival analysis, PCA, and

ROC curve construction.
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Tissue samples collection

The Ethics Committee permitted this experiment, and all

included patients signed informed consent. Five pairs of GBM

specimens and nearby non-tumor specimens were collected from

the Department of Neurosurgery from 2017 to 2020. Samples were

stored at -80°C immediately after resection and then transferred to

liquid nitrogen.
RNA isolation and qRT-PCR

Firstly, based on the manufacturer’s instructions, tissue RNA was

extracted by Trizol (Invitrogen, USA). Secondly, reverse transcription

was conducted by PrimeScript™ RT Mix (Takara) containing

random and oligo primers to obtain cDNA. Finally, qPCR analysis

was performed on a Light-Cycler 480 qPCR instrument with

LightCycler® 480 SYBR Master (Roche). Here are the PCR

conditions: preincubation at 96°C for 6 minutes, 39 cycles of

amplification with 9 s at 93°C, 19 s at 58°C, followed by an

extension at 68°C for 16 s. The expression levels of target genes

were obtained by a formula of 2-DDCt. Table S2 provides sequences of

primers used in this research.
Western blotting

The protein expression levels of model-related genes were verified

by Western blotting. Samples were treated with RIPA lysis buffer. A

BCA assay kit (Thermofisher, USA) was used to determine the

protein concentration. An equal amount of protein (20 mg) was

loaded into lanes. After being separated by electrophoresis, proteins

were electrically transferred to a PVDF membrane (Millipore, USA).

After blockaded with 5% milk, the membrane was incubated with the

primary antibodies: anti-PDIA4 (SAB1404743, Sigma-Aldrich, St.

Louis, MO, USA), anti-DUSP6 (SAB1410312, Sigma-Aldrich, St.

Louis, MO, USA), anti-PTPRN (ab207750, Abcam, Cambridge,

MA, USA), anti-PILRB (ab198267, Abcam, Cambridge, MA, USA),

anti-CBLN1 (ab181379, Abcam, Cambridge, MA, USA), and anti-

GAPDH (ab181602, Abcam, Cambridge, MA, USA), each was diluted

at a ratio of 1:1000 and incubated over-night at 4 °C. After incubation

with the corresponding horseradish peroxidase-linked secondary

antibody at room temperature for 1 h, target proteins were

developed by the enhanced chemiluminescence kit (Millipore, USA).
Relationship analyses between clinical
characteristics and risk score and
stratification analyses

Three clinical characteristics, age, gender, and IDH1 mutation

status, were selected, and samples were categorized based on each

clinical characteristic. Then we conducted a differential analysis of

risk score with the Chi-square test. We conducted univariate and

multivariate regression analyses to verify if the risk score is an

independent prognostic factor. Moreover, we conducted

stratification analyses. Briefly, the samples were stratified according
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to each selected clinical characteristic. The stratified samples were

further stratified in light of the median risk score, followed by Kaplan-

Meier survival analyses to observe if the OS difference in each

subgroup was statistically significant.
Relationship of risk score with immune
status and cancer stem cell index

In light of the CIBERSORT algorithm, we obtained the relative

contents of 22 types of immune cells in every GBM sample. Next, we

conducted correlation analyses between risk scores and the contents

of immune cells and the correlation analyses between the contents of

immune cells and the expression of model-related genes. Moreover, in

light of the ESTIMATE algorithm, we obtained the ImmuneScore,

StromalScore, and ESTIMATEScore of every GBM sample. The

differential analyses of ImmuneScore, StromalScore, and

ESTIMATEScore between the high-risk and low-risk clusters were

conducted. Moreover, we picked multiple immune checkpoint

molecules followed by differential analyses of immune checkpoint

expression levels between the two risk clusters. Finally, a correlation

analysis between CSC indexes and risk scores was conducted. The

CSC index is an indicator describing the degree of similarity between

tumor cells and stem cells, which can be considered as the

quantification of CSCs. Each CSC index ranges from low (zero) to

high (one) stemness. The CSC index was calculated using the

innovative one-class logistic regression (OCLR) machine learning

algorithm (11).
Mutation analyses and drug
sensitivity analyses

Based on the R package “maftools”, we obtained the TMB of every

GBM sample. Next, the differential analysis of TMB between the two

risk clusters was conducted. Moreover, we calculated the IC50 values

of chemotherapeutic drugs commonly used using the R package

“pRRophetic”. It’s an R package predicting chemotherapeutic

response based on tumor gene expression profiles (12). Next,

differential analyses of the IC50 values between the high-risk and

low-risk clusters were performed to assess the differences in

therapeutic effects.
Construct a nomogram to improve
the applicability

Using the R package “rms”, a predictive nomogram was

constructed according to clinical features and risk score. A patient’s

score equals the sum of the corresponding scores for every variable.

Based on the total score, we can predict the survival rates of a patient

at 0.5, 1.0, and 1.5 years. Moreover, ROC curves were constructed to

obtain the AUC values of 0.5, 1.0, and 1.5 years to assess the

performance of this nomogram. Finally, a calibration plot was

established to observe the differences between the predicted survival

events of 0.5, 1.0, and 1.5 years and the actual results, thus further

assessing the performance of this nomogram.
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Statistical analyses

R was used for most of the statistical analyses in this study.
Results

Differential expression of CRGs between the
tumor and normal tissues

In this study, a total of 12 CRGs were included. We conducted

differentially expressed analyses of CRGs between normal and GBM

samples and found that 10 CRGs were significantly up-regulated in

GBM samples, including SLC31A1, CDKN2A, MTF1, LIPT1, FDX1,

PDHB, PDHA1, LIAS, DLD, and DLAT. Conversely, 2 CRGs were

significantly down-regulated, including ATP7B and GLS (Figure 2A).

Next, analysis of somatic mutations in 12 CRGs revealed a low-

frequency mutation in GBM samples. Of 461 GBM samples, there

were 16 (3.47%) mutations in CRGs. Five CRGs (CDKN2A, MTF1,

ATP7B, DLD, and GLS) had a mutation frequency of 1%, respectively,

while three CRGs (FDX1, LIAS, and LIPT1) did not have any

mutations (Figure 2B). Furthermore, we analyzed the copy number

variation (CNV) in 12 CRGs and discovered frequent CNV in only 2

CRGs. CDKN2A and ATP7B showed an apparent CNV decrease

(Figure 2D). Figure 2C displays the locations of 12 CNV on their

respective chromosomes. CRG with CNV loss, such as ATP7B, the

expression level was lower in the GBM sample than that in the normal

sample, while the other CRG with CNV loss, CDKN2A, was

significantly elevated in the GBM sample. Besides, other

significantly differentially expressed CRGs showed very low

frequencies of CNV.
Identification of cuproptosis subtypes
in GBM

A total of 209 patients from two GBM cohorts (TCGA-GBM and

GSE83300 cohort) were merged. Detailed information on the 209

GBM samples was obtained. The prognostic significance of 12 CRGs

was determined by Kaplan-Meier survival analyses and univariate

Cox regression analyses. Five CRGs, including ATP7B, CDKN2A,

DLD, MTF1, and SLC31A1, were identified as prognostic CRGs

(Table S3). As shown in Figure 3A, a cuproptosis network

systematically revealed the interactions and prognostic significances

of CRGs in GBM.

Further, according to the expression profiles of the five prognostic

CRGs, GBM samples were classified by consensus clustering

algorithm. The consensus matrix heatmap showed that k = 2 is the

optimal classification method, and the GBM samples were classified

into CRGcluster A (number of samples = 119) and CRGcluster B

(number of samples = 90) (Figure 3B). PCA indicated that the

cuproptosis transcription profiles of the two subtypes were different

(Figure 3C). Moreover, Kaplan-Meier curves showed that GBM

samples in CRGcluster B had a longer OS than samples in

CRGcluster A (chi-square test, P = 0.048; Figure 3D). By

comparing the clinical characteristics of the two subtypes, no

noticeable difference in age and sex was observed (Figure 3E).
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While the expression levels of most CRGs in CRGcluster A were

higher than that in CRGcluster B (Figures 3E, F).
Characteristics of the TME in distinct
cuproptosis subtypes

First, based on the ssGSEA algorithm, we obtained the relative

contents of 23 kinds of immune cells in every GBM sample. And the

relative contents of some kinds of immune cells, including MDSCs,

CD56+ natural killer cells, macrophages, eosinophils, type 2 T helper

cells, mast cells, monocytes, and CD56- natural killer cells, significantly

differed between the two subtypes (Figure 4A). As for the immune

checkpoints, the expression level of PD-L1 in CRGcluster B was lower

than that in CRGcluster A, while the expression levels of CTLA4 and

PD-1 were higher than that in CRGcluster A (Figure 4B). Moreover,
Frontiers in Immunology 05
using the ESTIMATE algorithm, we obtained the TME scores of every

GBM sample, including ImmuneScore, StromalScore, and

ESTIMATEScore. ImmuneScore represents the content of the

immune component, StromalScore represents the content of

the matrix component, and ESTIMATEScore is the sum of the two.

The differential analysis showed that TME scores were slightly higher in

CRGcluster B, but no significant difference was observed (Figure 4C).
Identification of prognostic DEGs and
classification of gene subtypes

Using the R package “limma”, we identified 360 cuproptosis

subtype-related DEGs. And via univariate Cox regression analysis,

we identified 79 prognostic DEGs. Furthermore, according to the

expression profiles of the 79 prognostic DEGs, GBM samples were
A

B

D

C

FIGURE 2

Transcriptional and genetic alterations of 12 CRGs in GBM. (A) Differentially expressed analyses of 12 CRGs between normal and GBM samples. (B) Mutation
frequencies of 12 CRGs in 461 patients with GBM from the TCGA cohort. (C) Locations of CNV alterations in CRGs on 23 chromosomes. (D) Frequencies of CNV
gain, loss, and non-CNV among CRGs. CRGs, cuproptosis-related genes; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CNV, copy number variant.
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classified by consensus clustering algorithm. The consensus matrix

heatmap showed that k = 2 is the optimal classification method, and

the GBM samples were classified into geneCluster A (number of

samples = 96) and geneCluster B (number of samples = 113)

(Figure 5A). Kaplan-Meier curves revealed that GBM samples in

geneCluster B had a longer OS than in geneCluster A (chi-square test,

P = 0.018; Figure 5B). By comparing the clinical characteristics of the

two subtypes, no noticeable difference in age and sex was observed.

While the expression levels of most prognostic DEGs in geneCluster

A were higher than in geneCluster B (Figure 5C). The differentially

expressed analysis of 12 CRGs between geneCluster A and

geneCluster B is shown in Figure 5D.
Frontiers in Immunology 06
Established and validated a risk score model

According to cuproptosis subtype-related DEGs, a prognostic risk

score model was developed. Figure 6A displays the distribution of

GBM samples by different classification methods. Firstly, patients

with GBM were randomly categorized into training and testing sets.

Sample sizes of the two sets were about the same, with 105 GBM

samples in the training set and 104 GBM samples in the testing set.

Secondly, we conducted LASSO regression analysis of the 79

prognostic DEGs and obtained seven candidate genes for the risk

score model (Figures 6B, C), followed by multivariate Cox analysis of

the seven candidate genes, and finally obtained five target genes
A B

D

E F

C

FIGURE 3

Identification of cuproptosis subtypes and comparison of clinical characteristics and CRGs expression levels between the two subtypes. (A) Interaction
among CRGs in GBM. The line connecting the CRGs represents their interaction, with the line thickness indicating the strength of the association
between CRGs. Pink lines and blue lines represent positive and negative correlations, respectively. (B) Unsupervised clustering analysis of prognostic
CRGs. Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (C) The PCA analysis based on the prognostic CRGs
demonstrated that the patients in the different cuproptosis subtypes were distributed in two directions. Blue and yellow dots represent CRGcluster A and
CRGcluster B. (D) Kaplan-Meier curves for OS of the two cuproptosis subtypes (chi-square test, p = 0.048). (E) The heat map shows the differences in
clinical features and CRGs expression levels between CRGcluster A and CRGcluster (B, F) Box plot shows the differences of CRGs expression levels
between CRGcluster A and CRGcluster B. CRGs, cuproptosis-related genes; GBM, glioblastoma; PCA, principal components analysis; OS, overall survival.
*p< 0.05, **p< 0.01, ***p< 0.001 vs. CRGcluster A.
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(PDIA4, PILRB, DUSP6, CBLN1, and PTPRN), including four high-

risk genes (PDIA4, PILRB, DUSP6, and PTPRN) and one low-risk

gene (CBLN1). Calculation formula: Risk score = (0.2988 × PDIA4) +

(0.1705 × PILRB) + (0.2448 ×DUSP6) + (0.3055 × PTPRN) + (-0.2095

× CBLN1).

The differential analyses indicated that the risk scores of

geneCluster A and CRGcluster A were higher than that of

geneCluster B and CRGcluster B, respectively (Figures 6D, E). In

the training set, according to the median, GBM samples were

classified into a low-risk cluster (n = 53) and a high-risk cluster (n

= 52). With the increase in risk score, the OS of GBM patients

gradually decreased, and the deaths steadily increased (Figure 6F).

PCA clearly distinguishes the two risk clusters (Figure 6G). Survival

curves revealed that GBM samples in the low-risk cluster had a longer

OS than in the high-risk group (chi-square test, p< 0.001; Figure 6H).

Furthermore, AUC values of 0.5-, 1.0-, and 1.5-year based on this

model were 0.643, 0.709, and 0.751, respectively (Figure 6I).

Next, this model was verified in the testing set, GSE83300 cohort,

and GSE74187 cohort, respectively (Figure 7). According to the

median risk score, GBM samples of the testing set, GSE83300

cohort, and GSE74187 cohort were categorized, respectively. With

the increase in risk score, the OS of GBM patients gradually

decreased, and the deaths steadily increased (Figures 7A, E, I). PCA

clearly distinguishes the two risk clusters (Figures 7B, F, J). In the

testing set, Kaplan-Meier curves revealed that GBM in the low-risk

cluster had a longer OS than in the high-risk group (chi-square test, p

= 0.018; Figure 7C). In the GSE83300 cohort, although the result of

survival analysis did not reach statistical significance, GBM samples in
Frontiers in Immunology 07
the low-risk cluster tended to prolonged OS (chi-square test, p =

0.121; Figure 7G). In the GSE74187 cohort, Kaplan-Meier curves

revealed that GBM in the low-risk cluster had a longer OS than in the

high-risk group (chi-square test, p = 0.007; Figure 7K). In the testing

set, AUC values of 0.5-, 1.0-, and 1.5-year survival rates based on this

model were 0.610, 0.671, and 0.708, respectively (Figure 7D). In the

GSE83300 cohort, the AUC values of 0.5-, 1.0-, and 1.5-year survival

rates based on this model were 0.676, 0.731, and 0.718, respectively

(Figure 7H). In the GSE74187 cohort, the AUC values of 0.5-, 1.0-,

and 1.5-year survival rates based on this model were 0.619, 0.731, and

0.741, respectively (Figure 7l).
Validated the expression of the five model-
related genes

Using RT-qPCR assay, the mRNA expression levels of the five

model-related genes in five pairs of GBM and adjacent tissues were

detected. Compared with the paired adjacent specimens, the

expression levels of PDIA4, DUSP6, and PTPRN were upregulated;

however, the expression levels of PILRB and CBLN1 were

downregulated in GBM specimens (Figures 8A–E). To validate the

protein expression levels of the five model-related genes, a WB assay

was conducted. Consistently, compared with the paired adjacent

specimens, the protein expression levels of PDIA4, DUSP6, and

PTPRN were upregulated, and the protein expression levels of

PILRB and CBLN1 were downregulated in GBM specimens

(Figures 8F, G).
A

B C

FIGURE 4

Correlations of the tumor microenvironment and the two cuproptosis subtypes. (A) The abundance of 23 infiltrating immune cell types in the two
cuproptosis subtypes. (B) The expression levels of PD-1, PD-L1, and CTLA4 in the two cuproptosis subtypes. The blue boxes represent CRGcluster A, and the
yellow boxes represent CRGcluster B. (C) The violin diagram shows the three kinds of TME scores in CRGcluster A and CRGcluster B. *p< 0.05, **p< 0.01,
***p< 0.001 vs. CRGcluster A.
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Clinical correlation analysis and stratification
analysis of the prognostic risk score

The risk score in the IDH1 mutant cluster was lower than in the

IDH1 wild-type cluster (P< 0.0001; Figure 9A). Results of univariate

and multivariate regression analyses revealed that both prognostic
Frontiers in Immunology 08
risk score and IDH1 mutation status were independent prognostic

factors (Figures 9B, C). In addition, stratification analyses were

performed to evaluate if the model had broad applicability. Kaplan-

Meier curves revealed that GBM in the low-risk cluster always had a

longer OS than in the high-risk group, and p< 0.001 in the subcluster

of age younger than 60, p = 0.005 in the subcluster of age older than
A B

D

C

FIGURE 5

Identification of gene subtypes and comparison of clinical characteristics and CRGs expression levels between the two gene subtypes. (A) Unsupervised
clustering analysis of prognostic DEGs between the two cuproptosis subtypes. Consensus matrix heatmap defining two clusters (k = 2) and their
correlation area. (B) Kaplan-Meier curves for OS of the two gene subtypes (chi-square test, p = 0.018). (C) The heat map shows the differences in clinical
features, and prognostic DEGs expression levels between geneCluster A and geneCluster B. (D) Box plot shows the differences of CRGs expression levels
between geneCluster A and geneCluster B. DEGs, differentially expressed genes; CRGs, cuproptosis-related genes. *p< 0.05, **p< 0.01, ***p< 0.001 vs.
geneCluster A.
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60, p< 0.001 in subcluster of male, p = 0.015 in subcluster of female,

p< 0.001 in subcluster of IDH1 mutation, and p = 0.003 in subcluster

of IDH1 wild-type (Figures 9D–I).
Evaluation of TME and checkpoints between
the two risk score groups

Results of correlation analyses between the risk scores and the

contents of immune cells indicated that they were positively

correlated in regulatory T cells, follicular helper T cells, neutrophils,

resting NK cells, and M0 macrophages, while negatively correlated in

eosinophils, M2 macrophages, monocytes, and activated NK cells,

(Figure 10A). Moreover, correlation analyses between the contents of

immune cells and the expression levels of 5 model-related genes

showed obvious correlations between some kinds of immune cells and

specific genes (Figure 10B). Furthermore, GBM samples in the low-

risk cluster had a significantly lower StromalScore and

ESTIMATEScore than samples in the high-risk group (Figure 10C).

Finally, differentially expressed analyses of immune checkpoints

between the high-risk cluster and the low-risk cluster were

conducted. Results revealed that the expression levels of 15 immune
Frontiers in Immunology 09
checkpoints were lower in the low-risk cluster than in the high-risk

cluster, for example, PD-1 and PD-L1 (Figure 10D).
Evaluated the association of risk score with
CSC index, TMB, and drug sensitivity

Results of the correlation analysis between the CSC indexes and

risk scores indicated that they were negatively correlated (R = -0.35,

P = 6.5e-06); that is, the stem cell characteristics of GBM patients with

low-risk scores were more significant (Figure 11A). It is generally

believed that tumors with high TMB would respond better to

immunotherapy and thus have a better prognosis. Based on

mutation data of the TCGA GBM cohort, the differential analysis

demonstrated that TMB was lower in the high-risk cluster than in the

low-risk group (Figure 11B). Next, the result of the correlation

analysis between TMB and risk score indicated that they were

negatively correlated (R = -0.048, p = 0.049; Figure 11C).

Interestingly, there was no significant correlation in the low-risk

group (R = 0.044, p = 0.12; Figure 11D) and a negative correlation in

the high-risk group (R = -0.012, p = 0.04; Figure 11E). To determine

the specific distribution of somatic mutations, we constructed the
A B
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C

FIGURE 6

Constructed a risk score model in the training set. (A) Alluvial diagram of subtype distributions and prognosis of GBM patients. (B, C) LASSO regression
analysis identified representative candidate prognostic genes and partial likelihood deviance on the prognostic genes. (D) The difference in risk scores
between the two gene subtypes. (E) The difference in risk scores between the two cuproptosis subtypes. (F) The ranked dot plot indicates the risk score
distribution, and the scatter plot presents the patients’ survival status. (G) The PCA analysis based on the prognostic signature demonstrated that the
patients in the different risk score groups were distributed in two directions. Red and blue dots represent the high-risk group and the low-risk group.
(H) Kaplan-Meier curves for OS of the two risk groups (chi-square test, p< 0.001). (I) ROC curves to predict the sensitivity and specificity of 0.5-, 1.0-,
and 1.5-year survival according to the risk score. ROC, receiver operating characteristic.
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waterfall diagrams of the two risk score groups, and the ten most

frequently mutated genes in the high-risk cluster were PTEN, EGFR,

TP53, TTN, NF1, MUC16, PIK3CA, LRP2, RYR2, and SPTA1

(Figure 11F), while, in the low-risk cluster were TP53, PTEN, TTN,
Frontiers in Immunology 10
EGFR, MUC16, ATRX, SPTA1, FLG, IDH1, and RYR2 (Figure 11G).

The mutation frequencies of PTEN, EGFR, and NF1 in the low-risk

cluster were lower than in the high-risk cluster, while the mutation

frequencies of ATRX, IDH1, TP53, MUC16, and PIK3R1 in the low-
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FIGURE 7

Validation of risk score in the testing set, GSE83300 cohort, and GSE74187 cohort. (A, E, I) The ranked dot plot indicates the risk score distribution, and the
scatter plot presents the patients’ survival status. (B, F, J) The PCA analysis based on the prognostic signature demonstrated that the patients in the different
risk score groups were distributed in two directions. Red and blue dots represent the high-risk group and the low-risk group. (C) Kaplan-Meier curves for OS
of the two risk groups (chi-square test, p = 0.018). (G) Kaplan-Meier curves for OS of the two risk groups (chi-square test, p = 0.121). (K) Kaplan-Meier curves
for OS of the two risk groups (chi-square test, p = 0.007). (D, H, L) ROC curves to predict the sensitivity and specificity of 0.5-, 1.0-, and 1.5-year survival
according to the risk score.
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FIGURE 8

The expression levels of 5 model-related genes in GBM tissues and corresponding normal tissues were validated by RT-qPCR and WB. (A–E) RT-qPCR
validated the mRNA expression levels of genes. (F) WB assay validated the protein expression levels of genes. (G) Relative density is determined by the
densitometry of the blots. N, normal; T, tumor. **p< 0.01, ***p< 0.001 vs. normal group.
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risk cluster were higher than in the high-risk cluster (Figures 11F, G).

Furthermore, common drugs or compounds were selected to detect

the association between drug sensitivities and risk scores. Results of

differential analyses of IC50 values between the two risk clusters

indicated that IC50 values of bryostatin, midostaurin, mirdametinib,

ponatinib, and tipifarnib in the high-risk cluster were lower than in

the low-risk cluster. In comparison, the IC50 values of afatinib and

elesclomol in the high-risk cluster were higher than in the low-risk

cluster. Results suggested that drug sensitivity was somewhat

associated with risk score (Figures 11H–N).
Constructed a nomogram to predict survival

To improve the applicability of this model in the clinic, a

nomogram containing clinical parameters (age, sex, and IDH1

mutation status) and risk score was developed (Figure 12A). Based

on the nomogram, the AUC values of 0.5-, 1.0-, and 1.5-year ROC

curves for the prediction of OS were 0.716, 0.727, and 0.763 in the

training set, respectively (Figure 12B), and were 0.741, 0.775, and

0.734 in the testing set, respectively (Figure 12C). Moreover,

calibration curves showed that the predicted results were very close

to the ideal results in the two sets (Figures 12D, E). Next, we detected

the predictive performance of IDH1 mutation status alone. Based on

IDH1 mutation status alone, the AUC values of 0.5-, 1.0-, and 1.5-

year ROC curves for the prediction of OS were 0.663, 0.609, and 0.607

in the training set, respectively (Figure 12F), and were 0.679, 0.693,

and 0.686 in the testing set, respectively (Figure 12G). Results

indicated that the nomogram has excellent predictive performance

and is better than IDH1 mutation status alone.
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Discussion

GBM is the most aggressive glioma, with a median survival of

merely 15 months (13). Clinical observation found that the biological

behavior and clinical prognosis of GBM are far from each other. Some

GBM patients have a relatively long survival time, while others show a

highly malignant outcome. WHO classification, the traditional

histopathological diagnosis method, cannot accurately reflect the

characteristics of GBM (14). It is of great clinical significance to

explore novel prognostic markers and selectively administer different

therapeutic strategies (15). With the popularization of genome

sequencing, massive biological data provide more prognostic

information, which complements the traditional WHO

classification criteria. In recent years, according to the gene

expression profiles obtained from the databases, many researchers

have constructed prognostic models in GBM through various

bioinformatic analysis methods. In particular, the expression

profiles of several newly reported programmed cell death (PCD)

types-related genes, including autophagy, pyroptosis, ferroptosis,

and cuproptosis.

Autophagy, type II programmed cell death, is the process of

phagocytosis of self-protein or organelles to form autophagic

lysosomes and degradation of their contents, which meets the need

for cell metabolism and the renewal of some organelles (16). Wang

et al. developed a GBM risk model according to four autophagy-

related genes, including STAM, MAPK8, LGALS8, and DIRAS3, and

its 1-year AUC value was 0.644 (17). Pyroptosis, also known as

inflammatory necrosis, is characterized by an intense inflammatory

reaction caused by the rupture of cell membranes (18). Liang et al.

constructed a risk score model in GBM patients according to four
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FIGURE 9

Clinical correlation analysis and stratification analysis of the prognostic risk score. (A) The correlation between the risk score and IDH1 mutation status.
(B, C) Univariate and multivariate analyses showed the prognostic value of the risk score and IDH1 mutation. (D, E) Stratification analysis of the risk score
in GBM. Age (age ≤ 60 and age > 60 years old). (F, G) Gender (female and male). (H, I) IDH1 mutation status (mutant type and wild type).
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pyroptosis-related genes, including FOXP3, IRF3, CD274, and TP63,

and its 1-year AUC value was 0.726 (19). Ferroptosis, iron-dependent

programmed cell death, is featured lipid peroxidation of unsaturated

fatty acids via Fe2+, ultimately leading to cell death (20). Xiao et al.

constructed a prognostic model in GBM based on the expression

profiles of five ferroptosis-related genes, including DUOX1,

CDKN1A, GSS, ALOX5, and SQSTM1, and its 1-year AUC value

was 0.680 (21). Similarly, Dong et al. constructed a risk model in

GBM in light of five ferroptosis-related genes, including TFRC,

STEAP3, NCOA4, AKR1C1, and AKR1C3, and its 3-year AUC
Frontiers in Immunology 12
value was 0.706 (22). With the gradual progress of research,

currently, researchers focus on cuproptosis.

In March 2022, Tsvetkov et al. proposed for the first time a copper

ion-dependent and novel programmed cell death type, namely

cuproptosis. Research indicated that Cu2+ combines with the

lipoylated components of the tricarboxylic acid cycle in the

mitochondrial respiratory chain, resulting in the aggregation of

lipoylated protein and down-regulation of iron-sulfur cluster

protein, followed by proteotoxic stress as well as cell death (3).

Moreover, research initially identified 12 CRGs, including
A
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FIGURE 10

Evaluation of the TME and checkpoints between the two risk score groups. (A) Correlation analyses between risk scores and the contents of immune
cells. (B) Correlation heatmap of Spearman correlation analyses between 5 model-related genes and the contents of immune cells. (C) The violin
diagram shows the three kinds of TME scores in the high-risk group and low-risk group. (D) Differentially expressed analyses of immune checkpoints
between the high-risk group and low-risk group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, –p ≥ 0.05 vs. low-risk group.
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CDKN2A, PDHB, GLS, LIPT1, FDX1, DLD, MTF1, ATP7B, LIAS,

DLAT, PDHA1, and SLC31A1. Inspired by the above research,

prognostic models based on the expression profiles of CRGs have

been reported in many kinds of tumors. In renal carcinoma, Bian et al.

established a risk model according to the expression profiles of three
Frontiers in Immunology 13
CRGs, including FDX1, DLAT, and CDKN2A, and its 1-year AUC

value was 0.652 (7). In hepatocellular carcinoma, Zhang et al.

constructed a cuproptosis-related prognostic model based on the

expression profiles of four genes, including CAT, SLC27A5,

EHHADH, and ALDH5A1, and its 1-year AUC value was 0.72
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FIGURE 12

Constructed a nomogram in the training set. (A) Nomogram for predicting the 0.5-, 1.0-, and 1.5-year OS of GBM patients in the training set. (B) ROC curves
based on the nomogram to predict OS at 0.5-, 1.0-, and 1.5-year in the training set. (C) ROC curves based on the nomogram to predict OS at 0.5-, 1.0-, and
1.5-year in the testing set. (D) Calibration curve of the nomogram to predict 0.5-, 1.0-, and 1.5-year OS in the training set. (E) Calibration curve of the
nomogram to predict 0.5-, 1.0-, and 1.5-year OS in the testing set. (F) ROC curves based on IDH1 mutation status to predict OS at 0.5-, 1.0-, and 1.5-year in
the training set. (G) ROC curves based on IDH1 mutation status to predict OS at 0.5-, 1.0-, and 1.5-year in the testing set. OS, overall survival; ROC, receiver
operating characteristic.
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FIGURE 11

Association of risk score with CSC index, TMB, and drug sensitivity. (A) Correlation analysis between CSC indices and risk scores. (B) Differential analysis
of TMB between the two risk groups. (C–E) Spearman correlation analysis between TMB and risk scores. (F, G) The waterfall plots of somatic mutation
feature established with high- and low-risk scores. Each column represented an individual patient. The upper barplot showed TMB, and the number on
the right indicated the mutation frequency in each gene. The right barplot showed the proportion of each variant type. (H–N) Differential analyses of
IC50 values of common drugs or compounds. CSC, cancer stem cell; TMB, tumor mutation burden.
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(23). In glioma, Wang et al. developed a cuproptosis-related-model in

light of six genes, including H19, CHI3L1, CYTOR, IGFBP2, and

C5orf38, and its 1-year AUC value was 0.898 (24). Similar research

has been reported in low-grade glioma (25) and WHO 2/3 glioma

(10). However, no cuproptosis-related prognostic model has been

reported in GBM.

To establish a GBM prognostic model in light of CRGs, this study

first performed a differentially expressed analysis of 12 CRGs between

normal and GBM specimens and analyzed their prognostic

significance. Based on the expression profiles of five prognostic

CRGs, the cuproptosis subtypes (CRGcluster A and CRGcluster B)

were identified on GBM samples. Second, we conducted a

differentially expressed genes (DEGs) analysis of the two subtypes,

followed by a prognosis analysis of the DEGs, and obtained 79

prognostic DEGs. According to the expression profiles of

prognostic DEGs, gene subtypes were identified, and two subtypes,

geneCluster A and geneCluster B were obtained. Then, through

LASSO regression analysis in the training set, we established a risk

score model containing five genes, and its AUC value of 1.0-year was

0.709. Validation was performed in the testing set, GSE83300 cohort,

and GSE74187 cohort, and the AUC values of 1.0-year were 0.671,

0.731, and 0.731, respectively. Moreover, to improve the performance

of our model, a nomogram was established, and its 1-year AUC values

were 0.727 in the training set and 0.775 in the testing set. Compared

with other PCD-related prognostic models, the prognostic prediction

performance of our model may not be the most excellent. However, it

is still superior to most reported PCD-related prognostic models of

GBM, such as 0.644 for the autophagy-related model (17) and 0.680

(21) or 0.706 (22) for ferroptosis-related models.

The model constructed in this study included the following five

genes: PDIA4, PILRB, DUSP6, PTPRN, and CBLN1. PDIA4, a

member of the protein disulfide isomerase family, is mainly

localized in the ER (26). Studies have reported that PDIA4 is

related to mitochondrial apoptosis, aerobic glycolysis, and glucose

metabolism (27, 28). In our research, PDIA4 is a high-risk gene.

Consistently, Wang et al. reported that PDIA4 inhibits apoptosis and

promotes the proliferation of glioblastoma via the PI3K/AKT/mTOR

signaling pathway (29). DUSP6, dual-specificity phosphatase 6, is a

member of a protein tyrosine phosphatases subfamily and modulates

cell proliferation, differentiation, and apoptosis via the regulation of

ERK signaling (30). In our risk score model, DUSP6 is a high-risk

gene with a risk coefficient of 0.2448. Consistently, researchers have

reported that the upregulation of DUSP6 plays a tumor-promoting

role in GBM (31), and DUSP6 inhibition increases the radiosensitivity

of GBM by regulating DNA damage repair (32). PTPRN, protein

tyrosine phosphatase receptor type N, is located on band 2q35 and

encodes a type I transmembrane protein. It mainly expresses in

various endocrine cells and participates in neuroendocrine

processes (33). In our study, PTPRN is a high-risk gene in GBM,

whose risk coefficient is 0.3055. A study by Wang et al. consistently

showed that PTPRN interacts with HSP90AA1 to activate PI3K/AKT

signaling pathway and promote the proliferation and metastasis of

high-grade gliomas (34). CBLN1, a member of the C1q family, is a

synaptic organizer released by cerebellar granule cells and affects

synapse formation and maintenance (35). Here, it’s a low-risk gene
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with a risk coefficient of -0.2095. In contrast, relatively few studies

have been conducted on PILRB and CBLN1, and their relationship

with tumors is poorly understood. The biological functions of most

genes in this model are consistent with that reported previously,

reflecting our results’ reliability.

TME has a significant effect on the development of tumors, and

one of the most critical components of TME is tumor-infiltrating

lymphocytes, including T cells and NK cells (36). Regulatory T cells

are a unique T cells subset known as Foxp3+CD25highCD4+CD127low

Treg cells. Tregs weaken immune responses by inhibiting the

proliferation of other T cells in TME (37). The poorer prognosis of

GBM is always associated with higher Treg infiltration (38).

Consistently, our research indicated that the risk score was

positively correlated with the relative content of Tregs in GBM

samples. As for NK cells, they are composed of cytotoxic effector

lymphocytes and affect the anti-tumor innate immune response. NK

cell infiltration into tumors is associated with better antitumor

efficacy and patient prognosis (39). Consistently, results indicated

that the risk score of GBM samples was negatively correlated with the

content of activated NK cells while positively correlated with the

content of resting NK cells. Macrophages are categorized into two

main phenotypes. M1 macrophages are historically regarded as anti-

tumor, while M2 macrophages contribute to many pro-tumorigenic

outcomes in cancer through angiogenic regulation, immune

suppression, tumor cell proliferation, and metastasis (40). However,

in this study, M2 macrophages were lower in the high-risk score

group than in the low-risk group. The effect of the tumor

microenvironment on tumor biological behavior is the

comprehensive effect of multiple immune cells, not a single

immune cell. Although there were apparent differences in some

kinds of immune cells between the two risk score groups, the

immune score did not show a difference, and other regulatory

mechanisms may be involved. Further studies on the effect of

cuproptosis on the TME of GBM are needed to uncover the

regulatory mechanisms of cuproptosis in GBM.

Activating immune checkpoints by malignant tumors can

generate immunosuppressive microenvironments, and PD-1 and

PD-L1 are the most studied immune checkpoints (41). Immune

checkpoints, especially PD-1 and PD-L1, inhibit the T-cell activity

or induce T-cell exhaustion and evade immune surveillance, which

leads to a poor prognosis (42). Multiple clinical trials, including two

phase III trials (NCT02667587 and NCT02617589), are ongoing to

assess the potential of PD-1/PD-L1 checkpoint inhibitors, such as

pembrolizumab and nivolumab, as monotherapy and combination

therapy for glioblastoma (43). Consistent with previous published, in

our study, the expression levels of many immune checkpoints in the

high-risk group were higher than that in the low-risk group, including

CD274 (PD-L1), PDCD1 (PD-1), CD276, NRP1, TNFSF14,

TNFRSF18, etc.

In this research, there are two limitations. First, data were

downloaded from public databases, and some clinical parameters,

such as specific information on surgery and chemoradiotherapy,

needed to be included. Second, all samples collected from our

hospital were retrospective. In the future, prospective clinical research

and experimental research will be required for further validation.
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Conclusion

In this research, by analyzing the expression profiles and clinical

data of GBM downloaded from databases, a risk score model was

constructed and verified based on CRGs. A nomogram was further

developed to improve the applicability. We also studied the

relationship between classification and TME and its guiding

significance in immunotherapy or chemotherapy. This study

provides a new idea for prognostic prediction and guidance of

precise treatment of GBM.
Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material. Further inquiries can be directed

to the corresponding authors.
Ethics statement

The studies involving human participants were reviewed and

approved by the ethics committee of Sun Yat-Sen Memorial Hospital.

The patients/participants provided their written informed consent to

participate in this study.
Author contributions

MH and AL conceived the project. BZ and LX collected and

analyzed the data. JL conducted experimental research. BZ wrote the

manuscript, and MH revised it. All authors contributed to the article

and approved the submitted version
Frontiers in Immunology 15
Funding

This work was supported by the National Natural Science

Foundation of China (no. 81672507).
Acknowledgments

Thanks to the R software development team and the databases for

providing many biological information data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1082974/

full#supplementary-material
References
1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The
2021 WHO classification of tumors of the central nervous system: A summary. Neuro
Oncol (2021) 23(8):1231–51. doi: 10.1093/neuonc/noab106

2. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS statistical
report: Primary brain and central nervous system tumors diagnosed in the united states in
2008-2012. Neuro Oncol (2015) 17 Suppl 4(Suppl 4):iv1–iv62. doi: 10.1093/neuonc/nov189

3. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (2022) 375
(6586):1254–61. doi: 10.1126/science.abf0529

4. Yang L, Yu J, Tao L, Huang H, Gao Y, Yao J, et al. Cuproptosis-related lncRNAs are
biomarkers of prognosis and immune microenvironment in head and neck squamous cell
carcinoma. Front Genet (2022) 13:947551(947551). doi: 10.3389/fgene.2022.947551

5. Sha S, Si L, Wu X, Chen Y, Xiong H, Xu Y, et al. Prognostic analysis of cuproptosis-
related gene in triple-negative breast cancer. Front Immunol (2022) 13:922780.
doi: 10.3389/fimmu.2022.922780

6. Mo X, Hu D, Yang P, Li Y, Bashir S, Nai A, et al. A novel cuproptosis-related
prognostic lncRNA signature and lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory
axis in lung adenocarcinoma. Front Oncol (2022) 12:927706. doi: 10.3389/fonc.2022.927706

7. Bian Z, Fan R, Xie L. A novel cuproptosis-related prognostic gene signature and
validation of differential expression in clear cell renal cell carcinoma. Genes (Basel) (2022)
13(5). doi: 10.3390/genes13050851

8. Lv H, Liu X, Zeng X, Liu Y, Zhang C, Zhang Q, et al. Comprehensive analysis of
cuproptosis-related genes in immune infiltration and prognosis in melanoma. Front
Pharmacol (2022) 13:930041. doi: 10.3389/fphar.2022.930041
9. Zhang G, Sun J, Zhang X. A novel cuproptosis-related LncRNA signature to predict prognosis
in hepatocellular carcinoma. Sci Rep (2022) 12(1):11325. doi: 10.1038/s41598-022-15251-1

10. Ye Z, Zhang S, Cai J, Ye L, Gao L, Wang Y, et al. Development and validation of
cuproptosis-associated prognostic signatures in WHO 2/3 glioma. Front Oncol (2022)
12:967159. doi: 10.3389/fonc.2022.967159

11. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al.
Machine learning identifies stemness features associated with oncogenic dedifferentiation.
Cell (2018) 173(2):338–354.e315. doi: 10.1016/j.cell.2018.03.034

12. Geeleher P, Cox N, Huang RS. pRRophetic: An r package for prediction of clinical
chemotherapeutic response from tumor gene expression levels. PloS One (2014) 9(9):
e107468. doi: 10.1371/journal.pone.0107468

13. Davis ME. Epidemiology and overview of gliomas. Semin Oncol Nurs (2018) 34
(5):420–9. doi: 10.1016/j.soncn.2018.10.001
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