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Background: Previous studies from our group and other investigators have

shown that lung involvement is one of the independent predictors for

treatment resistance in patients with myeloperoxidase (MPO)–anti-neutrophil

cytoplasmic antibody (ANCA)-associated vasculitis (MPO-AAV). However, it is

unclear which image features of lung involvement can predict the therapeutic

response in MPO-AAV patients, which is vital in decision-making for these

patients. Our aim was to develop and validate a radiomics nomogram to

predict treatment resistance of Chinese MPO-AAV patients based on low-dose

multiple slices computed tomography (MSCT) of the involved lung with cohorts

from two centers.

Methods: A total of 151 MPO-AAV patients with lung involvement (MPO-AAV-LI)

from two centers were enrolled. Two different models (Model 1: radiomics

signature; Model 2: radiomics nomogram) were built based on the clinical and

MSCT data to predict the treatment resistance of MPO-AAV with lung

involvement in training and test cohorts. The performance of the models was

assessed using the area under the curve (AUC). The better model was further

validated. A nomogram was constructed and evaluated by DCA and calibration

curves, which further tested in all enrolled data and compared with the other

model.

Results: Model 2 had a higher predicting ability than Model 1 both in training

(AUC: 0.948 vs. 0.824; p = 0.039) and test cohorts (AUC: 0.913 vs. 0.898; p =

0.043). As a better model, Model 2 obtained an excellent predictive performance

(AUC: 0.929; 95% CI: 0.827–1.000) in the validation cohort. The DCA curve
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demonstrated that Model 2 was clinically feasible. The calibration curves of

Model 2 closely aligned with the true treatment resistance rate in the training (p =

0.28) and test sets (p = 0.70). In addition, the predictive performance of Model 2

(AUC: 0.929; 95% CI: 0.875–0.964) was superior to Model 1 (AUC: 0.862; 95% CI:

0.796–0.913) and serum creatinine (AUC: 0.867; 95% CI: 0.802–0.917) in all

patients (all p< 0.05).

Conclusion: The radiomics nomogram (Model 2) is a useful, non-invasive tool for

predicting the treatment resistance of MPO-AAV patients with lung involvement,

which might aid in individualizing treatment decisions.
KEYWORDS

ANCA-associated vasculitis, myeloperoxidase, lung involvement, treatment resistance,
radiomics nomogram
Introduction

Antineutrophil cytoplasmic antibody (ANCA)-associated

vasculitis (AAV) is a serious autoimmune disease with

multisystem involvement (1), which has a preference for affecting

the kidney and lung (2) and is life threatening without treatment

(3). AAV is commonly associated with the presence of ANCA

against proteinase 3 (PR3) and myeloperoxidase (MPO) (1). MPO-

AAV is the dominant form of AAV in China (4) with more than

90% MPO-AAV patients exhibiting kidney involvement and over

60% with pulmonary involvement. Initial renal function and

pulmonary involvement are independent predictors of all-cause

mortality in AAV (5, 6).

Currently, the outcome of AAV patients has dramatically

improved with the introduction of steroids together with

cyclophosphamide (CTX) or rituximab for induction therapy.

However, 10%–30% of AAV patients remain resistant to this

treatment (7). An increase in glucocorticoid dose and switching

from cyclophosphamide to rituximab could be considered in AAV

patients with treatment resistance (2). However, 96.9% of patients

who were resistant to therapy progressed to end-stage renal disease

(ESRD), and 50% of them died (8). Thus, the prediction of

treatment resistance is crucial to personalize therapy for those

AAV patients before therapy commencement, especially for

MPO-AAV patients in China.

At present, there are some studies to forecast treatment

resistance. Previous studies suggested that being female, black

ethnicity, older age, and having elevated serum creatinine levels

may be independent predictors of treatment resistance in patients

with AAV (7–9). In addition, our previous study has shown that

lung involvement is one of the independent predictors of treatment

resistance in Chinese patients with MPO-AAV (8). Lung

involvement in MPO-AAV was considered likely in the presence

of hemoptysis, pulmonary hemorrhage, respiratory failure, and

radiographic proof of infiltrates, nodules, or cavities without

evidence of infection (10). However, it remains unclear which

specific image features of lung involvement can predict a response
02
to treatment in MPO-AAV patients, which is vital in decision-

making for these patients.

Radiomics is a newly emerging form of imaging analysis that

automatically extracts potentially unrecognizable information from

medical images (11). Some reports suggest that radiomics could

predict the therapeutic response and prognosis of interstitial lung

disease (12, 13). Feng et al. (12) found that radiomics had a good

predictive performance for interstitial lung disease treated by

glucocorticoids. Yang et al. (13) proposed that radiomics could

predict the response of antifibrotic treatment to idiopathic

pulmonary fibrosis. These studies suggest that radiomics might be

an effective tool to potentially predict the treatment resistance for

MPO-AAV patients.

However, to the best of our knowledge, the use of radiomics

analysis to forecast the treatment resistance for MPO-AAV patients

with lung involvement has not been reported. Therefore, in this

retrospective study, our aim is to develop a radiomics nomogram to

predict the treatment resistance of MPO-AAV patients with lung

involvement in a two-center study of Chinese patients.
Methods

Patient enrollments

This retrospective study was conducted by the Hunan Vasculitis

Study Group (HuVas) in China. The study protocol followed the

provisions of the Declaration of Helsinki and was approved by the

Ethics Committee of each participating institution. Informed

consent was obtained from all individual participants or their

legally acceptable representatives.

We searched the database of two institutions to retrieve the

radiological and clinical data of patients with confirmedMPO-AAV

between August 2011 and September 2021. Consecutive patients

with confirmed MPO-AAV were identified and enrolled as the

following inclusion criteria: (1) a positive test for MPO-ANCA with

the criteria of Chapel Hill Consensus Conferences Nomenclature of
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Vasculitis proposed in 2012 (14); (2) detailed clinical data; (3)

multiple slices computed tomography (MSCT) imaging performed

within 1 month before treatment; (4) sufficient image quality to

allow accurate interpretation of radiological features; and (5) lung

involvement on MSCT. Exclusion criteria were as follows: (1)

eosinophilic granulomatosis with polyangiitis (EGPA), secondary

vasculitis, or any other systemic autoimmune disease; (2) patients

who died within 4 weeks after the beginning of induction therapy;

(3) patients without a low-dose MSCT scan before treatment; (4)

suboptimal image quality making the evaluation of imaging

characteristics difficult; and (5) CT changes caused by other

reason [such as pulmonary infection [clinical signs including

fever, cough, and purulent secretions, with the presence of

interstitial infiltrates, masses, cavitations, and abscesses in CT

(15)], heart failure [cardiomegaly, ground glass opacification,

different stages of pulmonary edema, pleural effusion, and

increased peripheral vascular diameter in CT (16)], and

connective tissue disease associated interstitial pneumonia (CTD-

ILD)]. A total of 151 patients out of the 563 subjects were enrolled.

The development cohort consisted of 124 patients who were

diagnosed at institution 1 (The Xiangya Hospital of Central South

University, Changsha, China). The validation cohort consisted of 27

patients who were diagnosed and treated at institution 2 (The Third

Xiangya Hospital of Central South University, Changsha, China).

Patient enrollment details are listed in Figure 1.
MPO-AAV and therapy resistance

Birmingham Vasculitis Activity Score (BVAS) was used to

measure disease activity (17). Organ system involvement was
Frontiers in Immunology 03
considered only if the manifestations were due to AAV (17).

Particularly, lung involvement was considered likely in the

presence of hemoptysis, pulmonary hemorrhage, respiratory

failure, or radiographic proof of infiltrates, nodules, or cavities

without evidence of infection (9, 18, 19). The estimated

glomerular filtration rate (eGFR) was determined as described

previously (20).

Serum ANCA was detected by both antigen-specific ELISA (Inova

Diagnostics, San Diego, USA) and indirect immunofluorescence (IIF)

(Euroimmun, Lübeck, Germany).

Treatment resistance was defined as unchanged or increased

disease activity in patients with acute AAV after 4 weeks of

treatment with standard therapy or a reduction of <50% in the

disease activity score after 6 weeks of treatment or chronic, persistent

disease defined as the presence of at least one major item or three

minor items on the BVAS list after 12 weeks of treatment (21).
Treatment process and therapy resistance

MPO-AAV patients received therapy, as previously described

(22). In brief, oral glucocorticoids (prednisolone, starting at a

dosage of 1 mg/kg daily for 4–6 weeks, tapered over 3–6 months

to 12.5–15 mg/day) and cyclophosphamide (CTX) were

administered intravenously at 0.5–0.75 g/m2 every month. For

those over 65 years old or those with severe renal insufficiency,

a 25% dose reduction of CTX was used, and CTX was

temporarily stopped for those who developed leukocytopenia or

thrombocytopenia. Some patients with rapidly progressive

glomerulonephritis or pulmonary hemorrhage received an

intravenous methylprednisolone pulse before the standard
FIGURE 1

Workflow of patient enrollment.
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induction therapy and/or plasma exchange. Patients were followed

up via phone and medical records to determine their status.
The collection of clinical data

All patient demographic data and laboratory parameters were

collected retrospectively from the electronic medical record system,

including age (years), gender, white blood cells (109/L), hemoglobin

(g/L), platelet (109/L), serum albumin (g/L), serum globulin (g/L),

serum creatinine (mmol/L), erythrocyte sedimentation rate (ESR)

(mm/h), C-reactive protein (CRP) (mg/L), C3 (mg/L), C4 (mg/L),

IgA (mg/L), IgG (g/L), IgM (mg/L), alanine aminotransferase

(ALT) (U/L), aspartate aminotransferase (AST) (U/L), total

bilirubin (TBIL) (mmol/L), direct bilirubin (DBIL) (mmol/L),

blood urea nitrogen (BUN) (mmol/L), neutrophil (109/L),
Frontiers in Immunology 04
lymphocyte (109/L), and eosinophil (109/L) (Table 1). These

laboratory data were obtained within 4 weeks before treatment.
Evaluation of lung involvement on MSCT

The MSCT images with lung involvement were collected for

those MPO-AAV patients from the picture archiving and

communication system (PACS). The image acquisition parameters

are shown in detail in Appendix E1 and Supplementary Table S1.

Two radiologists, reader 1 and reader 2, with 5 and 15 years of

thoracic radiology experience, respectively, reviewed all MSCT

images and assigned the following qualitative features for each

patient: (a) alveolar hemorrhage (AH), the appearance of diffuse

pulmonary infiltrates with bilateral opacities, ground-glass, and

crazy-paving pattern (2) (Figure 2A); (b) interstitial lung diseases
TABLE 1 The clinical characteristics between treatment-resistant and treatment-responsive group.

Treatment-resistant (n=55) Treatment-responsive (n=96) p

Age (years) 61 ± 12 61 ± 11 0.771

White blood cells (109/L) 9.02 ± 4.30 10.26 ± 4.16 0.083

Hemoglobin (g/L) 77.36 ± 18.30 86.60 ± 19.81 0.005

Platelet (109/L) 238.42 ± 101.08 298.19 ± 109.50 0.001

Serum albumin (g/L) 32.10(28.30–37.30) 31.45(26.75–36.33) 0.574

Serum globulin (g/L) 30.67 ± 7.77 33.07 ± 8.13 0.078

Serum creatinine (mmol/L) 643.28 ± 295.19 258.71 ± 242.61 <0.001

ESR (mm/h) 66.73 ± 36.59 71.36 ± 40.30 0.484

CRP (mg/L) 18.40(7.25–68.20) 38.14(5.77–95.85) 0.188

C3 (mg/L) 693.40 ± 261.76 802.48 ± 342.59 0.030

C4 (mg/L) 214.33 ± 105.50 218.97 ± 105.86 0.796

IgA (mg/L) 2413.93 ± 1435.34 2635.28 ± 1572.43 0.392

IgG (g/L) 14.04 ± 5.96 15.61 ± 5.54 0.104

IgM (mg/L) 860.00 ± 456.19 1054.42 ± 630.60 0.047

ALT (U/L) 9.90(5.40–14.30) 14.90(8.90–24.13) 0.001

AST (U/L) 16.00(12.60–25.90) 18.60(14.90–31.88) 0.046

TBIL (mmol/L) 5.30(4.20–7.00) 6.60(4.70–8.70) 0.024

DBIL (mmol/L) 2.50(1.90–3.80) 2.90(1.90–4.08) 0.393

BUN (mmol/L) 21.04 ± 10.54 11.62 ± 8.53 0.001

Neutrophil (109/L) 7.10 ± 3.92 8.10 ± 4.85 0.197

Lymphocyte (109/L) 1.00(0.60–1.40) 1.10(0.70–1.60) 0.519

Eosinophil (109/L) 0.12(0.03–0.20) 0.10(0.00–0.30) 0.451

Total Prednisolone, g Median(Q1,Q3) 4.69(3.60,5.00) 4.96(4.95,6.30) <0.001

Total CTX, g Median(Q1,Q3) 2.40(1.80,3.60) 4.80(3.60,4.80) <0.001

MP, n (%) 14 (25.5%) 12 (12.5%) 0.043

PE, n (%) 25 (45.5%) 22 (22.9%) 0.004
frontie
ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, direct bilirubin; BUN, blood urea
nitrogen; CTX, cyclophosphamide; MP, methylprednisone pulse; PE, plasma exchange.
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(ILD) including ground glass (Figure 2B), reticular opacities

(Figure 2C), interlobular septal thickening (Figure 2D),

parenchymal consolidations (Figure 2E) and honeycombing

(Figure 2F) (23); (c) pulmonary granuloma, manifested as a

nodule, mass, or cavity and ranged from a few millimeters to more

than 10 cm in diameter (24) (Figure 2G); and (d) pleural effusion

(Figure 2H). The two radiologists were blinded to the clinical and

pathological information for evaluating lung involvement of MPO-

AAV patients. Any disagreement was resolved through consultation.
Independent predictors acquisition

Univariate analysis was used to compare the differences in

clinical factors and qualitative MSCT features between treatment-

resistant and treatment-responsive groups. A p-value< 0.05

indicates a significant difference. The significant factors were
Frontiers in Immunology 05
entered into a multivariate analysis to select the independent

predictors. Odds ratio (OR) and 95% confidence intervals (CIs)

for each independent predictor were computed.
Building of Model 1 (radiomics signature)

Region of interest segmentation
3D segmentation of the primary lung lesions was performed by

two readers (reader 1 and reader 2, with 5 and 15 years of

experience in thoracic imaging, respectively) for the regions of

interest (ROIs) that were manually or semi-automatically

delineated on the MSCT images based on the threshold method

and edge-based method by using 3D-slicer software (version 4.8.1;

http://www.slicer.org) (2).

For those lesions with unclear borders, such as alveolar

hemorrhage and interstitial lung disease, the threshold method
FIGURE 2

The various imaging features of MPO-AAV patients with lung involvement in MSCT. Alveolar hemorrhage was the appearance of diffuse pulmonary
infiltrates with bilateral opacities, ground-glass, and crazy-paving pattern (A); interstitial lung disease including the five imaging features (B–F);
pulmonary granuloma surrounded with halo sign, manifested as a nodule, mass, or cavity and ranged from a few millimeters to more than 10 cm in
diameter (G); bilateral pleural effusion (H).
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was applied to sketch them with the Hounsfield unit (HU) values

(−700 to −150 HU). Manual corrections were carried out when the

automatically registered borders did not correspond to the actual

lesion’s margin (25, 26). The criteria of manual modification were as

follows: 1) for those lesions that were not covered completely in

ROI, including patch and nodules, manual delineation was applied;

2) for those lung lesions that were not included in the ROI

automatically, manual delineation was applied; 3) the main and

leaf bronchi were not contained in the ROI, such as when the

segmental and inferior bronchi were connected to pixels that were

distinguishable by the naked eye, meaning that they would not be

sketched into the ROI. The small scattered bronchus of the lungs

was contained in the ROI; 4) the hilar vessels were carefully

excluded (27).

For the distinct boundary-pulmonary granuloma, ROI was

manually contoured along the boundary of the lesion in every slice

(28). The vascular or bronchial structure were included within the

segmentation when they were surrounded by the lesion and excluded

when theywere close to the lesion’s edge (29). The lesion in the last slices

was not included to avoid volume averaging with adjacent structures.

Initially, both readers independently segmented 30 randomly selected

patients (including 18 treatment-resistant and 12 treatment-responsive

subjects). After that, a reader (*BLINDED*) repeated the same

segmentation a week later to obtain intra- and inter-rater intra-class

correlation coefficients (ICC) as described by (30). Texture features with

ICC > 0.75 were considered to have a good agreement. Reader 1

continued with the remaining image segmentation.

Radiomic feature extraction
The ROIs and original images were transferred into the

radiomics platform AK software 3.3.0 (Analysis kit, GE

Healthcare, China) for image preprocessing. All MSCT images

and segmented ROIs were resampled to 1.0×1.0×1.0 mm3 voxel

size to standardize the voxel spacing. A Gaussian filter of 0.5 mm

bandwidth was used to filter noise from the images. Radiomics

features including shape (n=14), first-order (n=18), second-order

[glcm(n=24), glrlm (n=16), glszm (n=16), ngtdm (n=5), gldm

(n=14)] and higher-order (wavelet transform) (n=744) features,

which were confirmed to reflect heterogeneity of lesions and

potentially reflected changes in image structure, were extracted

from MSCT images (31). Wavelet transform (sigma = 2.0, 3.0)

filters (n=8) were selected to transform features. A total of 851

features were extracted for each patient (Supplementary Table S2).

To select robust radiomics features, the features with outliers

(under the first quartile or above the third quartile of the feature

distribution) and missing values were replaced by the feature’s

median value in the dataset. Finally, all features were standardized

using zero-mean normalization to remove pixels that fall outside a

specified range of gray levels.
Construction of Model 1

The development cohort (patients from institution 1) was

randomly split into training and test cohorts at a ratio of 7:3.
Frontiers in Immunology 06
First, the radiomics features with ICC > 0.75 from the MSCT images

in the training cohort were selected to train the predictive model.

Subsequently, the variance threshold method was used to remove

variance with a value<0.8. Thereafter, the features were entered into

the multivariate logistic regression to select the robust features. The

radiomics score (Rad-score) for each patient was calculated based

on the robust features with a calculation formula (Appendix E2).

Model 1 (radiomics signature) was thus built based on Rad-score

and further tested in the test cohort. Odds ratio (OR) and 95%

confidence intervals (CIs) for the Rad-score were evaluated.
Construction of Model 2

A combined radiomics model (Model 2) was built by the

independent clinical predictors combined with the Rad-score,

whose predictive performance was analyzed in the training and

test cohorts (institution 1). A better model was chosen with the

maximum area under the curve (AUC) between Model 1 and Model

2. The workflow of model construction is shown in Figure 3.
The clinical utility of the better model

The better model was further validated in the validation cohort

(institution 2). A decision curve analysis (DCA) was used to

estimate the clinical utility of the better models by calculating the

net benefits for a range of threshold probabilities (percentage risk

threshold of detecting the subtype). For each decision curve, the net

clinical benefit was computed using the formula (32):

Net benefit =  
True   positives

N
−
False   positives

N
� pt

1 − pt

where pt is the threshold probability for detecting a

positive patient.

The decision curve plots net clinical benefit (y-axis) against

threshold probability (x-axis). The clinical utility of the curve is

indicated by the highest net clinical benefit at the lowest

threshold probability.

A nomogram for the better clinically applicable model was also

constructed based on the AUC performance and clinical utility at

the lower threshold probability. The process of graphical

presentation of the nomogram is described in Appendix E3.

The predictive performance of the better model was also

compared with the other model and the previous independent

predictors in all enrolled patients (institutions 1 and 2), respectively.
Statistical analysis

All data were analyzed using the statistical software SPSS

(version 22, IBM SPSS Inc., Chicago) and R statistical software

(Version 3.4.1, http://www.Rproject.org). Baseline characteristics

were presented as means and standard deviations (SDs) or

median with interquartile range for continuous variables and
frontiersin.org
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percentages for categorical variables. It was considered statistically

significant when the p-value was < 0.05. Univariate analyses were

used to compare differences between the treatment-resistant and

treatment-responsive groups regarding clinical–radiological

characteristics using chi-squared or Fisher’s exact tests for

categorical variables and Mann–Whitney U test for continuous

variables. The diagnostic performance of the models in

differentiating treatment-resistant patients from treatment-

responsive patients was assessed by the AUC (with 95% CI),

accuracy (ACC), sensitivity (SEN), and specificity (SPE), in

training, test, and validation cohorts. A model is considered to

have excellent, good, or poor performance when it has an AUC of

0.85–1.0, 0.7–0.85, or<0.7, respectively (33). The curves of the

models were compared using the Delong test. Decision curve

analysis (DCA) compared the net benefits under different

threshold probabilities given by the better model. Calibration

curves of the better model were drawn to evaluate the consistency

between the predicted results and the real results.
Results

Basic clinical–radiological characteristics

A total of 151 patients (mean age 60 ± 11 years; 70 men and 81

women) were enrolled, including 55 patients (mean age 60 ± 12 years;

26 men and 29 women) with treatment resistance and 96 subjects

(mean age 61 ± 11 years; 44 men and 52 women) showing a response
Frontiers in Immunology 07
to treatment. They were divided into a training cohort (86 patients of

mean age 60 ± 13 years; 38 men and 48 women; 33 patients with

treatment resistance and 53 subjects with treatment response), a test

cohort (38 patients of mean age 61 ± 14 years; 21 men and 17 women;

15 patients with treatment resistance and 23 patients with treatment

response), and validation cohort (27 patients of median age, 63 ± 8

years; 16 men and 11 women; 7 treatment-resistant and 20 treatment-

responsive), respectively (Figure 1). For clinical data, the levels of

serum platelets, creatinine, C3, IgM, ALT, AST, TBIL, and BUN were

higher in the treatment resistance group than in the treatment

response cohort (p<0.05) (Table 1). For example, the value of

serum creatinine in the treatment resistance cohort was much

higher compared to the treatment response group (p< 0.001). The

total CTX dose was 2.40 g (1.80,3.60) in treatment-resistant group

and 4.80 g (3.60,4.80) in treatment-responsive group. The cumulative

dose of CTX were significant lower in treatment-resistant group than

in treatment-responsive group (p<0.001) (Table 1). Since 21 of the 55

patients in the treatment-resistant group were on dialysis at onset and

remain dialysis-dependent after 3 months of induction therapy.

According to KDIGO Guideline (34, 35), the immunosuppressive

medication therapy was discontinued in these dialysis-dependent

patients. For radiological features, interlobular septal thickening,

honeycombing, and pleural effusion were significantly different in

the treatment-resistant group compared with the treatment-

responsive set (p<0.05) (Table 2). Finally, the serum creatinine

(OR: 1.004; 95% CI: 1.002–1.006, p < 0.001) remained as an

independent predictor of treatment resistance with multivariate

analysis (Table 3).
FIGURE 3

Workflow of the radiomics signature building and model construction.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1084299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1084299
Performance of Model 1
(radiomics signature)

A total of 355 features with ICC > 0.75 were selected from 851

texture features. Features with variance > 0.8 were screened for

further analysis. After multivariate logistic analysis, nine optimal

features (original_shapeSurfaceVolumeRatio, wavelet-

LLH_firstorder_Energy, wavelet-HLH_firstorder_Range, wavelet-

HHH_firstorder_Median, wavelet-HLH_firstorder_Skewness,

wavelet-HHL _glszm_GrayLevelNonUniformity, wavelet-

LHL_glcm_Idmn, wavelet-LLL_glszm_GrayLevelNonUniformity,

and wavelet-HLL_glcm_Idmn) were shown to be distinctly

associated with the treatment-resistant cohort (Supplementary

Table S3). Rad-scores based on the above nine features are

presented in (Appendix E4, Supplementary Figure S1) and used
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to build Model 1. Model 1 presented an excellent predictive

performance in the training cohort (AUC: 0.824; 95% CI: 0.757–

0.883; ACC: 0.717; SEN: 0.585; SPE: 0.849) and test cohort (AUC:

0.898; 95% CI: 0.816-0.962; ACC: 0.804; SEN: 0.826; SPE: 0.783)

(Table 4, Figure 4). The OR value was 2.995, and 95% CI was 1.877–

4.780 for the Rad-score with multivariate analysis (p < 0.01).
Performance of Model 2
(radiomics nomogram)

Model 2 showed an excellent predictive performance in the

training (AUC: 0.948; 95% CI: 0.908–0.979; ACC: 0.849; SEN:

0.939; SPE: 0.792) and test cohort (AUC: 0.913; 95% CI: 0.835–

0.975; ACC: 0.816; SEN: 0.867; SPE: 0.783), which was better than
TABLE 2 The imaging features of patients between treatment-resistant and treatment-responsive group.

Treatment-resistant (n=55) n (%) Treatment-responsive (n=96) n (%) p-value

Alveolar hemorrhage 0.098

Y 14(25.5) 14(14.6)

N 41(74.5) 82(85.4)

Interstitial pneumonia 0.001

Y 7(12.7) 37(38.5)

N 48(87.3) 59(61.5)

Ground-glass 0.077

Y 34(61.8) 45(46.9)

N 21(38.2) 51(53.1)

Reticular opacities 0.050

Y 2(3.6) 13(13.5)

N 53(96.4) 83(86.5)

Interlobular septal thickening 0.034

Y 14(25.5) 41(42.7)

N 41(74.5) 55(57.3)

Parenchymal consolidations 0.176

Y 10(18.2) 10(10.4)

N 45(81.8) 86(89.6)

Honeycombing 0.012

Y 5(9.1) 25(26.0)

N 50(90.9) 71(74.0)

Pulmonary granuloma 0.120

Y 3(5.5) 13(13.5)

N 52(94.5) 83(86.5)

Pleural effusion 0.002

Y 19(34.5) 13(13.5)

N 36(65.5) 83(86.5)
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Model 1 in the training (p = 0.039) and validation set (p = 0.043),

respectively (Table 4, Figure 5). Furthermore, Model 2 (better

model) also obtained an outstanding predictive efficiency (AUC:

0.929; 95% CI: 0.827–1.000; ACC: 0.889; SEN: 0.714, SPE: 0.950) in

the validation cohort (Table 4, Figure 5). The DCA curve of Model 2

showed that if the threshold probability of a patient was >5%, using

Model 2 to predict treatment resistance of MPO-ANCA patients

with lung involvement added more benefit than either the treat-

none scheme or the treat-all-patients scheme in the three cohorts

(Figure 5). A nomogram was constructed for Model 2, as it was

easier to implement in routine clinical practice (Figure 6A). Its

predicted probabilities closely aligned with the true treatment

resistance rates in both training (p = 0.28) and test (p = 0.70)

cohorts (Figures 6B, C).

In all patients, the predictive efficiency of Model 2 (AUC: 0.929;

95% CI: 0.875–0.964) was superior to that of Model 1 (AUC: 0.862;

95% CI: 0.796–0.913) (p<0.01) and serum creatinine (AUC: 0.867;

95%CI: 0.802–0.917) (p = 0.02), respectively (Figure 7).
Discussion

At present, 10%–30% of AVV patients suffer from treatment

resistance after 4 weeks of standard therapy (7, 36). Predicting
Frontiers in Immunology 09
treatment resistance is significant to monitor strategies and weigh up

the relative benefits of different treatment strategies for MPO-AAV

patients with lung involvement. Thus, we developed and validated

various predictive models based on MSCT and clinical data to predict

the treatment resistance forMPO-AAV patients with lung involvement

before therapy.

In our study, the elevated serum creatinine level was the

independent predictor of treatment resistance for MPO-AAV

patients with lung involvement, which was in keeping with the

findings of previous studies (7, 37). Li et al. (7) proposed that the

poor response to treatment was associated with reduced renal function.

The worse the renal function, the higher the level of serum creatinine,

which causes a greater incidence of treatment resistance. Patients with a

high level of serum creatinine had already sustained chronic,

irreversible renal damage and interstitial scarring, which results in

resistance to immunosuppressive therapy (9). Our results indicated

that serum creatinine level can be a biomarker for predicting the

treatment resistance of MPO-AAV patients with lung involvement.

In our study, we observed that interstitial lung disease

(interlobular septal thickening, honeycombing) and pleural effusion

performed a significant difference between the treatment-resistant

group and the treatment-responsive set. The emergence of interstitial

lung disease is a favorable factor for treatment response in our study.

It is plausible that certain agents, such as rituximab, may have a

beneficial effect as seen in CTD-ILD (38). It was observed that pleural

effusion was more frequent in treatment-resistant patients, which

might relate to MPO-ANCA activity (39). However, qualitative

radiological features were not an independent predictor of

treatment resistance for MPO-AAV patients with lung involvement,

which was different to the findings that lung involvement is an

independent predictor of treatment resistance in MPO-AAV

patients (8). The most plausible explanation for this discrepancy
TABLE 4 ROC curve analysis of Models 1 and 2.

Training cohort Test cohort Validation cohort

AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

Model 1 0.824 (0.757–0.883) 0.585 0.859 0.717 0.898 (0.816–0.962) 0.826 0.783 0.804 – – – –

Model 2 0.948 (0.908–0.979) 0.939 0.792 0.849 0.913 (0.835–0.975) 0.867 0.783 0.816 0.929 (0.827–1.000) 0.714 0.950 0.889
frontier
ROC, receiver operating characteristic; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy.
TABLE 3 Multivariable predictors of treatment resistance.

Predictors p OR (95%CI)

Serum creatinine 0.000 1.004(1.002–1.006)

Rad-score 0.000 2.995(1.877–4.780)
OR, odds ratio; CI, confidence interval.
A B

FIGURE 4

The predicting efficiency of Model 1 in the training cohort (A) and test cohort (B).
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might be that lung involvement includes various radiological features,

including alveolar hemorrhage and interstitial lung disease. The lung

involvement can be an independent factor of MPO-AAV patients, but

their specific imaging features might not be. In addition, the

enrollment of patients included some MPO-AAV patients without

lung involvement in our previous report (8), which was different from

the present study and led to selection bias.
Frontiers in Immunology 10
Nine vital radiomics features (original_shapeSurfaceVolumeRatio,

wavelet-LLH_firstorder_Energy, wavelet-HLH_firstorder_Range,

wavelet-HHH_firstorder_Median, wavelet-HLH_firstorder_Skewness,

wavelet-HHL _glszm_GrayLevelNonUniformity, wavelet-

LHL_glcm_Idmn, wavelet-LLL_glszm_GrayLevelNonUniformity,

and wavelet-HLL_glcm_Idmn) were associated with treatment

resistance for those MPO-AAV patients with lung involvement,
A B C

FIGURE 5

ROC curves of radiomics nomogram and decision curve analysis to detect the presence of treatment resistance in the training (A), test (B), and
validation (C) cohorts, respectively.
A

B C

FIGURE 6

Radiomics nomogram and calibration curves. (A) The radiomics nomogram was developed in the training cohort with the Rad-score and serum
creatinine. The calibration curve of the radiomics nomogram for treatment resistance in the training cohort (B) and test cohort (C), respectively.
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including one shape feature (shapeSurfaceVolumeRatio) (SVR), eight

wavelet features {four features from first-order features (Energy, Range,

Median, Skewness) and four features from textural features [Gray-Level

Size Zone Matrix (GLSZM), Gray-Level Co-occurrence Matrix

(GLCM)]}. A greater SVR indicates more spiculated and irregular

lesions (40), which indicated a poor response to treatment. Energy

refers to the magnitude of voxel values in the image, which could

predict the earlier treatment response (41). In our study, it relates to the

treatment resistance of patients with 12 weeks standard treatment.

Lesion volume and maximum diameter had the highest predictive

performance in response to treatment with Gefitinib for non-small-cell

lung carcinoma patients (41), which indicated that the range and

median of the lesion can predict treatment resistance for those MPO-

AAV patients with lung involvement. Higher skewness occurs when a

lesion contains regions of different intensities, implying greater lesion

heterogeneity in the treatment-resistant group. Hötker et al. (42) found

that the skewness could identify nephroblastoma patients at risk of

poor response to treatment early. Our results implied that skewness

could forecast the treatment resistance for theMPO-AAV patients with

lung involvement early.

GLCM analyzed the spatial distribution of image texture features

through different spatial positions and angles with 0°, 45°, 90°, and 135°

as the angles generally used (43). The GLCM features can clearly

predict the degree of lung injury (none/mild/severe) after stereotactic

body radiotherapy at three various time points (3, 6, and 9 months)

(44), which is in accordance with the finding that it can forecast the

treatment resistance in our study. GLSZM quantifies gray-level zones

in an image, and GLN (GrayLevelNonUniformity) from GLSZM

measures the variability of gray-level intensity values in the image

(45), which indicates the heterogeneity in the lung involvement lesion

and reflects the resistance to treatment for those MPO-AAV

patients.Model 2 has a higher predictive performance than Model 1

in both training and test cohorts. It is in keeping with several previous

studies. Ligero et al. (46) reported that the radiomics clinical model

improved the predictive performance to immune checkpoint inhibitors

in advanced solid tumors compared with only radiomics model (AUC:
Frontiers in Immunology 11
0.74 vs. 0.70; p< 0.001]. Another study found that the radiomics

nomogram established by integrating the radiomics signature with

clinical data outperformed the clinical nomogram alone in predicting

induction chemotherapy response of nasopharyngeal carcinoma

patients. (C-index in validation cohort: 0.863 vs. 0.549; p< 0.01) (47).

This study has demonstrated the combined model (Model 2) benefit

MPO-AAV patients with lung involvement by adding a prediction of

treatment resistance.

As a better model, Model 2 was beneficial in detecting treatment

resistance at a lower threshold probability of 5%, which is a lower

threshold than the reported prevalence in predicting therapeutic effect

according to the clinical utility analysis (48). This indicates its value in

assisting clinicians in improving pretherapeutic decision-making. In

addition, the predictive performance of Model 2 is superior to Model 1

and serum creatinine in all patients, respectively. This has further

confirmed that the radiomics nomogram is a reliable and feasible

model for predicting the treatment resistance of MPO-AAV patients

with lung involvement, which is suitable to use in routine clinical

practice and provides an important quantitative indicator and reference

for the management of MPO-AAV patients.

This study has several limitations. First, the texture features were

extracted from eachMPO-AAV patient with lung involvement but not

from four different kinds of lesions (alveolar hemorrhage, interstitial

lung disease, pulmonary granuloma, and pleural effusion) due to them

being difficult to distinguish from the sum of various lesions in fused

lesions. Second, the lung involvement may be caused by other diseases

rather than MPO-AAV because they were not confirmed by the

percutaneous pulmonary biopsy, although patients with other lung

disease such as tuberculosis and connective tissue disease-associated

interstitial pneumonia were excluded. Finally, the included population

was relatively small despite there being 563 MPO-AAV patients in our

study. A larger sample size is necessary to further investigate the

potential radiomics features to predict the treatment response of MPO-

AAV patients.

In conclusion, our results indicate the feasibility of radiomics

analysis in predicting treatment resistance in MPO-AAV patients
FIGURE 7

ROC curves for nomogram, the radiomics signature, and serum creatinine for predicting treatment resistance in all 151 patients.
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with lung involvement. The radiomics nomogram constructed from

a Rad-score combined with serum creatinine level is a useful, non-

invasive tool for predicting the treatment resistance of MPO-AAV

patients with lung involvement, which is helpful for clinicians in

pretherapeutic decision-making for these MPO-AAV patients.
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of COVID-19-related ground-glass opacities and consolidation: is it valuable in a
differential diagnosis with other atypical pneumonias? PLoS One (2021) 16(3):
e0246582. doi: 10.1371/journal.pone.0246582

30. Nie P, Yang G, Guo J, Chen J, Li X, Ji Q, et al. A CT-based radiomics nomogram
for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the
non-cirrhotic liver. Cancer Imaging (2020) 20(1):20. doi: 10.1186/s40644-020-00297-z

31. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al.
Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer
(2018) 115:34–41. doi: 10.1016/j.lungcan.2017.10.015

32. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the
evaluation of prediction models, molecular markers, and diagnostic tests. BMJ (2016)
352:i6. doi: 10.1136/bmj.i6

33. Mandrekar JN. Receiver operating characteristic curve in diagnostic test
assessment. J Thorac Oncol (2010) 5(9):1315–6. doi: 10.1097/JTO.0b013e3181ec173d

34. Chapter 13: pauci-immune focal and segmental necrotizing glomerulonephritis.
Kidney Int Suppl (2011) (2012) 2(2):233–9. doi: 10.1038/kisup.2012.26

35. KDIGO 2021 clinical practice guideline for the management of glomerular
diseases. Kidney Int (2021) 100(4s):S1–s276. doi: 10.1016/j.kint.2021.05.021

36. Pagnoux C, Hogan SL, Chin H, Jennette JC, Falk RJ, Guillevin L, et al. Predictors
of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated
small-vessel vasculitis: comparison of two independent cohorts. Arthritis Rheum (2008)
58(9):2908–18. doi: 10.1002/art.23800

37. Cao Y, Tian Z, Li W, Ma L, Yu Y, Ren W. Predictors of treatment resistance and
relapse in Chinese patients with antineutrophil cytoplasmic antibody-associated
disease. J Rheumatol (2014) 41(5):916–22. doi: 10.3899/jrheum.130758

38. Sharp C, McCabe M, Dodds N, Edey A, Mayers L, Adamali H, et al. Rituximab
in autoimmune connective tissue disease-associated interstitial lung disease. Rheumatol
(Oxford) (2016) 55(7):1318–24. doi: 10.1093/rheumatology/kew195

39. Chinese Society of nephrology, Chinese guidelines for the diagnosis and
treatment of anti-neutrophil cytoplasmic antibody-associated glomerulonephritis. Chin
J Nephrol (2021) 37(07):603–20. doi: 10.3760/cma.j.cn441217-20210107-00092

40. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, et al. Radiomics
and its emerging role in lung cancer research, imaging biomarkers and clinical
management: state of the art. Eur J Radiol (2017) 86:297–307. doi: 10.1016/
j.ejrad.2016.09.005

41. Aerts HJ, Grossmann P, Tan Y, Oxnard GR, Rizvi N, Schwartz LH, et al.
Defining a radiomic response phenotype: a pilot study using targeted therapy in
NSCLC. Sci Rep (2016) 6:33860. doi: 10.1038/srep33860

42. Hötker AM, Mazaheri Y, Lollert A, Schenk JP, Zheng J, Capanu M, et al.
Diffusion-weighted MRI and histogram analysis: assessment of response to
neoadjuvant chemotherapy in nephroblastoma. Abdom Radiol (NY) (2021) 46
(7):3317–25. doi: 10.1007/s00261-021-03032-9

43. Zhao Q, Shi CZ, Luo LP. Role of the texture features of images in the diagnosis of
solitary pulmonary nodules in different sizes. Chin J Cancer Res (2014) 26(4):451–8.
doi: 10.3978/j.issn.1000-9604.2014.08.07

44. Moran A, Daly ME, Yip SSF, Yamamoto T. Radiomics-based assessment of
radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer
(2017) 18(6):e425–31. doi: 10.1016/j.cllc.2017.05.014

45. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype. Cancer
Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-17-0339

46. Ligero M, Garcia-Ruiz A, Viaplana C, Villacampa G, Raciti MV, Landa J, et al. A
CT-based radiomics signature is associated with response to immune checkpoint
inhibitors in advanced solid tumors. Radiology (2021) 299(1):109–19. doi: 10.1148/
radiol.2021200928

47. Zhao L, Gong J, Xi Y, Xu M, Li C, Kang X, et al. MRI-Based radiomics
nomogram may predict the response to induction chemotherapy and survival in locally
advanced nasopharyngeal carcinoma. Eur Radiol (2020) 30(1):537–46. doi: 10.1007/
s00330-019-06211-x

48. Kong C, Zhao Z, ChenW, Lv X, Shu G, Ye M, et al. Prediction of tumor response
via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE. Eur
Radiol (2021) 31(10):7500–11. doi: 10.1007/s00330-021-07910-0
frontiersin.org

https://doi.org/10.1136/annrheumdis-2021-221795
https://doi.org/10.3390/ijms18040805
https://doi.org/10.2147/TCRM.S181043
https://doi.org/10.3390/diagnostics12041002
https://doi.org/10.3390/diagnostics12041002
https://doi.org/10.1002/art.37715
https://doi.org/10.2165/00003495-200060060-00004
https://doi.org/10.2165/00003495-200060060-00004
https://doi.org/10.1378/chest.14-1403
https://doi.org/10.1136/ard.2008.101279
https://doi.org/10.1681/ASN.V7123
https://doi.org/10.1681/ASN.V7133
https://doi.org/10.1681/ASN.2006040368
https://doi.org/10.1136/ard.2006.062711
https://doi.org/10.1016/j.intimp.2019.105883
https://doi.org/10.1016/j.lpm.2020.104039
https://doi.org/10.1016/j.lpm.2020.104039
https://doi.org/10.1259/bjr.20150992
https://doi.org/10.1148/rg.2015140232
https://doi.org/10.1155/2019/2045432
https://doi.org/10.1038/s41598-019-50886-7
https://doi.org/10.1259/bjr.20200634
https://doi.org/10.1371/journal.pone.0246582
https://doi.org/10.1186/s40644-020-00297-z
https://doi.org/10.1016/j.lungcan.2017.10.015
https://doi.org/10.1136/bmj.i6
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1038/kisup.2012.26
https://doi.org/10.1016/j.kint.2021.05.021
https://doi.org/10.1002/art.23800
https://doi.org/10.3899/jrheum.130758
https://doi.org/10.1093/rheumatology/kew195
https://doi.org/10.3760/cma.j.cn441217-20210107-00092
https://doi.org/10.1016/j.ejrad.2016.09.005
https://doi.org/10.1016/j.ejrad.2016.09.005
https://doi.org/10.1038/srep33860
https://doi.org/10.1007/s00261-021-03032-9
https://doi.org/10.3978/j.issn.1000-9604.2014.08.07
https://doi.org/10.1016/j.cllc.2017.05.014
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.2021200928
https://doi.org/10.1148/radiol.2021200928
https://doi.org/10.1007/s00330-019-06211-x
https://doi.org/10.1007/s00330-019-06211-x
https://doi.org/10.1007/s00330-021-07910-0
https://doi.org/10.3389/fimmu.2023.1084299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Development of a radiomics nomogram to predict the treatment resistance of Chinese MPO-AAV patients with lung involvement: a two-center study
	Introduction
	Methods
	Patient enrollments
	MPO-AAV and therapy resistance
	Treatment process and therapy resistance
	The collection of clinical data
	Evaluation of lung involvement on MSCT
	Independent predictors acquisition
	Building of Model 1 (radiomics signature)
	Region of interest segmentation
	Radiomic feature extraction

	Construction of Model 1
	Construction of Model 2
	The clinical utility of the better model
	Statistical analysis

	Results
	Basic clinical–radiological characteristics
	Performance of Model 1 (radiomics signature)
	Performance of Model 2 (radiomics nomogram)

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


