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Understanding the squamous
cell carcinoma immune
microenvironment
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Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York
University Langone Medical Center, New York, NY, United States
Primary cutaneous squamous cell carcinoma (cSCC) is the second most common

human cancer with a rising incidence of about 1.8 million in the United States

annually. Primary cSCC is usually curable by surgery; however, in some cases,

cSCC eventuates in nodal metastasis and death from disease specific death. cSCC

results in up to 15,000 deaths each year in the United States. Until recently, non-

surgical options for treatment of locally advanced or metastatic cSCC were largely

ineffective. With the advent of checkpoint inhibitor immunotherapy, including

cemiplimab and pembrolizumab, response rates climbed to 50%, representing a

vast improvement over chemotherapeutic agents used previously. Herein, we

discuss the phenotype and function of SCC associated Langerhans cells, dendritic

cells, macrophages, myeloid derived suppressor cells and T cells as well as SCC-

associated lymphatics and blood vessels. Possible role(s) of SCC-associated

cytokines in progression and invasion are reviewed. We also discuss the SCC

immune microenvironment in the context of currently available and

pipeline therapeutics.
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1 Introduction

Cutaneous SCC (cSCC) is the second most frequent skin cancer in the United States (US)

with 1.8 million new cases each year, and its global incidence rate has been reported to

increase 3-7% annually (1, 2). cSCC lesions appear in regions that are most exposed to

ultraviolet (UV); the head and the neck are the most common sites followed by the trunk and

extremities (3).

UV radiation can alter the genome of epidermal cells and cause SCC development and

subsequent metastasis, usually to nearby lymph nodes. A complex network of genes (TP53,

CDKN2A, NOTCH1, NOTCH2, EGFR and TERT) and molecular pathways (RAS/RAF/

MEK/ERK and PI3K/AKT/mTOR) are associated with the pathogenesis of cSCC (4). Also,

recent findings identified EP300, PBRM1, USP28, and CHUK as four novel genes that are

mutated in greater than 10% of cSCCs (5). The top three recurrently altered genes in

metastatic cSCCs are TP53, CDKN2A, and NOTCH1/2 (6–8).
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In addition to UV exposure ionizing radiation, fair skin, chronic

immunosuppression, genetic conditions, the presence of chronic

wounds or scars, smoking, chemical carcinogens, and human

papillomavirus (HPV) infection are the other risk factors of cSCC

development (9). The vast majority of cSCC cases are treated

successfully by excision with clear margins (10, 11); however, these

tumors can be aggressive and responsible for most of the ~15,000

non-melanoma skin cancer deaths in the United States each year (1).

Patients with localized cSCC have a favorable prognosis with a 5-year

survival rate of 99% following Mohs micrographic surgery (12, 13).

Metastasis affects approximately 3.7%-5.2% of all SCC patients (14).

The expected 5-year and 10-year survival rates in these patients

decreases to 25-50% and 16%, respectively (11, 15–17).

Advanced cSCC is described as either a locally advanced disease

that is untreatable by surgery or radiation therapy (RT), a metastatic

disease with distant metastases, or large, multiple, and extracapsular

nodal disease with a high risk of recurrence despite lymphadenectomy

and radiation therapy (18). Cemiplimab, an immune checkpoint

inhibitor, is the first medication approved in the United States for

advanced cSCC (19). It is a human monoclonal antibody that inhibits

the PD-1 pathway by blocking T-cell inactivation, thus assisting the

immune system in fighting cancer cells (20) as illustrated in Figure 1.

Cemiplimab exhibits an overall response rate of 50%, which is a

significant improvement over conventional chemotherapy. It has

been shown that cemiplimab has a significant antitumor function

with long-lasting response, and acceptable safety profile in patients

(19). Pembrolizumab is another PD-1 inhibitor, with a similar

mechanism to cemiplimab, and has been recently approved in the

United States for recurrent or metastatic cSCC that is uncurable with

surgery or radiation therapy (21). A case of metastatic cSCC treated

with nivolumab, another PD-1 inhibitor, has been reported, and the

patient exhibited a complete response to this treatment (22). In

another case report, a patient with unresectable recurrent scalp
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cSCC with meningeal invasion was successfully treated with

nivolumab monotherapy (23).

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor

that is expressed on CD4+, CD8+, regulatory T (T-reg) cell, natural

killer cell, B cell, and other immune cells (24). LAG3 serves a negative

regulatory role in cancer immunology by interacting with its ligands.

Higher LAG3 expression has been reported in head and neck

squamous cell carcinoma compared to normal tissues. Therefore,

LAG3-targeting agents could represent another promising checkpoint

inhibitor immunotherapy for these malignancies (25). Combining

immunotherapy and radiotherapy is another cutting-edge method of

treating cSCC (26). The trials of radiation therapy and cemiplimab in

patients with skin cancer (NCT05574101) as well as radiotherapy in

combination with atezolizumab (PD-L1 inhibitor) in locally advanced

borderline resectable or unresectable cSCC (NCT05085496) are

ongoing. Another ongoing trial is testing cetuximab (EGFR

inhibitor) before surgery in the treatment of patients with

aggressive locally advanced skin cancer (NCT02324608).

The efficacy of talimogene laherparepvec (oncolytic viral

immunotherapy) and panitumumab (EGFR inhibitor) for the

treatment of locally advanced or metastatic cSCC is being

researched in another ongoing trial (NCT04163952).

The development and progression of non-melanoma skin cancer

(NMSC) are significantly influenced by immune system function (27).

An increased incidence of cSCC in immunocompromised solid organ

transplant recipients indicates the critical role of the immune

surveillance in host protection (28). The immune system recognizes

cancer cells as abnormal and can eliminate them in some cases (29);

however, tumor cells might evade immune surveillance through

immunoediting processes (30). Cancer cells utilize several

mechanisms to escape immune surveillance, including MHC loss

and expression of immunosuppressive factors, such as IL-6, IL-10,

TGF-b, prostaglandins, and Fas ligand (31, 32).
FIGURE 1

Cancer cells can evade immune surveillance by expressing PD-L1 protein that acts as a “stop sign” to inactivate T cells. PD-L1 attaches to PD-1 and B7.1 T cell
receptors, both of which inactivate T cells. Cemiplimab prevents T cell inactivation and subsequently increases anti-cancer activity through PD-L1 blockade.
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The tumor microenvironment is characterized as a combination

of tumoral and non-tumoral cells at the dynamic interface of

neoplasia (33). Although non-tumoral cells within the tumor

microenvironment may have protective functions in limiting tumor

progression, many studies show that they have also an important role

in tumor growth and metastasis (34). Therefore, it is crucial to

understand the features of the cSCC tumor-associated immune

microenvironment in detail to develop reliable prognostic markers

and new advanced treatments.

In this review, phenotype and functions of cSCC-associated

Langerhans cells, dendritic cells, macrophages, myeloid-derived

suppressor cells and T cells as well as cSCC-associated lymphatics

and blood vessels are discussed. Moreover, the potential roles of

cSCC-associated cytokines in progression and invasion of the tumor

are described.
2 Myeloid-derived suppressor cells in
SCC

Myeloid-derived suppressor cells (MDSCs) are pathologically

activated neutrophils and monocytes with immunosuppressive

activity. They participate in the regulation of immune responses in

many pathological conditions, such as cancer, chronic infection,

sepsis, and autoimmunity. Two major groups of MDSCs in humans

include granulocytic/polymorphonuclear MDSCs (PMN-MDSCs)

and monocytic MDSCs (M-MDSCs), which originate from the

granulocytic and monocytic myeloid cell lineages, respectively (35).

MDSCs are related to poor outcomes in cancer (36). It has been

shown that high levels of circulating MDSC in patients with solid

tumors, were related to poor overall survival (37).

In cancer patients, these cells express the common myeloid

marker CD33 but not mature myeloid and lymphoid cell markers

in cancer patients. In humans, MDSCs are identifiable as lineage

(CD3, CD14, CD19, CD56)–negative, HLA-DR–negative, and CD33-

positive or CD33+CD14- CD11b+ cells (38, 39).

The signals driving MDSCs development occur in two partially

overlapping phases. Expansion of immature myeloid cells occurs in

phase 1, and neutrophils and monocytes convert to pathologically

activated MDSCs in phase 2 (38).

MDSCs are one of the major factors responsible for immune

suppression in cancers that not only cause tumor progression but also

result in the failure of immunotherapy (39). Arginase, nitric oxide

(NO), and reactive oxygen species (ROS) have all been shown to play

a role in MDSC-mediated T-cell suppression (40). MDSCs are critical

producers of NO in SCC, which suppresses E-selectin expression on

tumor vessels. Subsequently, the entry of skin homing T-cells into

tumors are restricted, resulting in evasion of SCC from immune

detection (41).

Clearly, a successful cancer immunotherapy will be possible if the

immune suppressive factors can be eliminated from the body. As

MDSCs are one of the major immune suppressive factors in cancers,

the challenge of effectively and selectively targeting MDSCs remains

(39). Medications that diminish NO production e.g., iNOS inhibitors,

may be effective in the treatment of SCCs and their premalignant

precursor lesions actinic keratoses through improvement of anti-
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tumor immune responses (41). Based on earlier studies, all-trans

retinoic acid (ATRA) promotes the differentiation of M-MDSCs into

macrophages and DCs and apoptosis of PMN-MDSCs in both mice

and humans (42–44). Concurrent use of ATRA therapy with CTLA-4

blockade was tested in melanoma patients and resulted in decrease in

the number of circulating MDSCs. Therefore, targeting MDSCs in

combination with immunotherapies may improve response rates and

effectiveness in other skin cancers (45).
3 Tumor-associated macrophages

Macrophages are important tumor-infiltrating cells (46)

contributing to different carcinogenesis stages, including initiation,

growth, invasion, and metastasis (47, 48). More macrophages are

present in SCC compared with normal skin (49). Macrophages

surrounding and penetrating the tumor are termed tumor-

associated macrophages (TAMS) (46).

In response to tumors, macrophages display a polarized reaction

defined by two different states: classically activated macrophage (M1)

and alternatively activated macrophage (M2). M1 macrophages are

activated by interferon-g (IFN-g), bacterial lipopolysaccharide (LPS),
or tumor necrosis factor-a (TNF-a) and release interleukin 12 (IL-

12) to prevent tumor growth. In contrast, M2 macrophages are

activated by IL-4 and release IL-10, which contributes to tumor

progression (27, 50–52).

Tumor-associated macrophages have many similar characteristics

to alternatively activated macrophages (M2 macrophages) (46). Based

on recent studies, macrophage activation in SCC is heterogenous and

there are three types of TAMs: TAMs expressing M1 markers, TAMs

expressing M2 markers and TAMs simultaneously expressing M1 and

M2 (49) (Figure 2). It is believed that tumors can generate a dynamic

microenvironment that alters the TAMs into macrophages that help

tumor growth (53). Weaker classical macrophage activation in SCC

cause TAMs to produce more tumorigenic growth factors (49).

Increased TAM levels are associated with poor prognosis in various

human malignancies (47, 48, 54).

Heterogeneous activation of TAMs in SCC suggests potential

treatment strategies contributing to the induction of a more dominant

M1 activation state with anti-cancer phenotype (27).

TAMs in SCC may produce matrix metalloproteinases (MMPs)

that may aid tumor invasion. A positive correlation between MMP-9

(gelatinase B) and MMP-11 (stromelysin-3) proteins and increased

tumor aggressiveness has been revealed (55–58). TAMs also

contribute to lymphangiogenesis through vascular endothelial

growth factor-C (VEGF-C) expression (59). It has been reported

that enhanced lymph vessel density is related to increased risk of

metastasis in the oral cavity SCC and melanoma (60, 61).

TAM densities and functional immunophenotypes differ in

human cutaneous SCCs and BCCs, which can contribute to

behavioral differences between these two tumors. It has been shown

that SCCs express more TAM-associated markers (MMP-9, arginase-

1, CD127 and CD40) compared with BCCs, and TAMs in SCC have a

higher density and polarization state. Lactic acid levels are higher in

SCCs compared with BCCs, and tumor-derived lactic acid is an

important factor playing a role in TAM polarization in SCCs (62).
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In fact, TAMs in SCC, due to weaker classical macrophage

activation and higher production of tumorigenic growth factors, are

unable to prevent tumor genesis and in fact they can even facilitate

tumor growth; however, they contribute to tumor invasion and

metastasis through production of high levels of MMPs, more

dominant M2 activation and lymphangiogenic mediator (VEGF-C)

expression (27).

CD200 (a known immunosuppressive surface protein) is

overexpressed in stroma around cSCC, mainly by blood vessel

endothelia. CD200 is also expressed on cSCC tumor cells (63). In

addition, more CD200R+ cells are located in the cSCC

microenvironment than normal skin, and CD200R was detected on

macrophages and dendritic cells (28). Increased CD200 expression on

tumor cells is associated with tumor progression and decreased

patient survival (63, 64). Endothelial CD200 may inhibit aberrant

diapedesis of macrophages during inflammation partly through

downregulation of macrophage adhesion molecules. Hence, through

this mechanism, CD200 may play a role in suppression of

macrophage function (65). Moreover, binding of endothelial CD200

to CD200R on macrophages and dendritic cells inhibits
Frontiers in Immunology 04
proinflammatory activation (66–70) and suppresses classic

activation of macrophages; therefore, M2 cells become the

predominant macrophage polarized state (71).

Anti-CD200 antibody (through blocking the CD200-CD200R

interaction) has been shown to improve antitumor activity against

CD200-expressing human tumors in a mouse model (72, 73). Thus,

anti-CD200 therapies could represent effective treatments for

aggressive SCCs (28).
4 Dendritic cells and Langerhans cells

Dendritic cells (DC) are antigen-presenting cells (APCs) that play

an important role in linking the innate and adaptive immune systems

(74). The ability of DCs to induce tumor-specific T-cell responses

facilitate their vital role in cancer immune surveillance (75).

Three main subsets of cutaneous DCs in humans include

Langerhans cells (LCs), myeloid DCs (mDCs), and plasmacytoid

DCs (pDCs) (76). As Langerhans cells are found in the epidermis,

they are the first APCs to encounter SCC (77). LCs from human SCC
FIGURE 2

A subset of TAMs in cSCC displays both classical and alternative activation features simultaneously. IFN-g and IL-4 are secreted by Th1 and Th2 cells,
respectively, in the cSCC microenvironment. As a result of these cytokines, which activate M1 classic and M2 alternate phenotypes, poly-activated TAMs
are generated. STAT1 and STAT6 phosphorylation as well as MMP-9, MMP-11, and VEGF-C expression are characteristic features of TAMs.
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can stimulate CD8+- or NK-cell-mediated response more efficiently

than other DC subsets, resulting in a more robust proliferation of

naive CD8+ T cells (78).

In addition to the primary role of DCs in initiating the cellular

immunity, they are also involved in polarizing the naive CD4+ T cells

towards a Th2 immune response through releasing type II cytokines,

such as IL-4, IL-5, and IL-13 (79). Furthermore, it has been reported

that LCs from SCC were more powerful inducers of allogeneic CD4+

and CD8+ T-cell proliferation and IFN-g production compared to

those from normal skin and eventually more potent in activating type

1 T-cell responses (77).

Tumor-induced dendritic cells dysfunction (29) and tumor-

induced DC apoptosis (80–82) are two of major strategies used by

tumors to escape immune surveillance.

Several studies have revealed that the number of both LCs and

CD11c+ dermal DCs is markedly reduced in SCC lesions (83, 84) and

the ability of the dermal myeloid DCs to activate T cells and stimulate

the production of interferon (IFN)-g is diminished (83, 85).

Higher levels of immunosuppressive cytokines, such as TGF-b,
IL-10, IL-6 and VEGF-A, in the microenvironment of SCCs are
Frontiers in Immunology 05
believed to be possible causes of mDCs suppression (83). IL-10 has

the potential to inhibit the differentiation of monocytes to DC (86),

weaken APC function of DCs (87, 88), suppress DCs’ ability to

activate T cells, and cause induction of antigen-specific anergy (89).

Increased VEGF levels are related to decreased number of DCs in

tumor lesion and in the peripheral blood of patients with various

malignant tumors. This finding demonstrates the ability of VEGF to

inhibit DC differentiation (90–92).

The presence of large numbers of pDCs is another distinguishing

feature of the SCC tumor microenvironment (83). These cells

facilitate tumor eradication through production of large quantities

of IFN-a in response to foreign antigen. Moreover, pDCs can

recognize, process, and cross-present foreign antigen to CD8+ T

lymphocytes (93, 94). Despite lower antigen uptake by pDCs

compared to mDCs, pDCs may still be effective in anti-tumor

immune response (Figure 3) (95).

It can be concluded that DCs are desirable targets for tumor

immunotherapy due to their capacity to link the innate and adaptive

immune systems as well as their ability to initiate the immune

response (74). In addition, human LCs have been shown to be
FIGURE 3

cSCC microenvironment is associated with an increased number of IFN-a-secreting pDCs and LCs with enhanced ability to activate CD8+ T cells, which
potentially promote immunosurveillance. In contrast, an increased number of regulatory T cells; tumor-associated macrophages; and immune
suppressive cytokines, such as IL-10, TGF-b, and VEGF-A, are present in the tumor microenvironment. These factors contribute to tumor growth and
immune dysfunction through suppression of mDC and CD8+ T cell activity.
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more potent inducers of type 1 T-cell response in the cSCC

microenvironment. Hence, LCs can be used in DC-based cancer

immunotherapy as a promising novel strategy in the treatment of skin

malignancies (77).
5 T-lymphocytes

Numerous immune cells, including T-cells, are found in SCC

lesions (96–98). Despite T cell infiltration into cutaneous SCC

(cSCC), these cells are incapable of eradicating the tumor (99, 100).

It has been demonstrated that SCC and transplant-associated

SCC (TSCC) microenvironments have significantly greater

numbers of CD3+ and CD8+ T cells than normal skin. These

cells accumulate predominantly in the peritumoral region and

are less frequently noted within the tumoral region. The number

of FOXP3+ T reg cells is increased in both SCC and TSCC

compared to normal skin (101). Approximately more than 50%

of the T cells infiltrating cSCCs from both immunocompetent and

immunosuppressed patients are FOXP3+ T reg cells (97). These

cells are CD4+ and lack CLA, CCR4, and CCR6 (skin resident T reg

markers) (102). Moreover, these cells express markers of central

memory T cells, such as L-selectin and CCR7. Given that T reg cells

do not proliferate locally in tumors, recruitment from the blood

may be the main mechanism responsible for significant presence of

these cells in tumors (97).

Although FOXP3+ T reg cells contribute to immune tolerance

(103), which is important for preventing autoimmune diseases (104),

they may suppress antitumor immunity (105, 106) and play a role in
Frontiers in Immunology 06
immune evasion. Particularly, the immune response can be regulated

by T reg cells by suppressing the proliferation and cytokine

production of effector T cells (107, 108).

Based on several studies, the greater number of tumor infiltrating

T regs is related to poor prognosis and lower survival rates in breast

(109), ovarian (110, 111) and gastric carcinomas (105). T regs may

contribute to cSCC metastasis and thus have potential prognostic

significance (100). Some recent studies have identified CD8+ Tregs in

cSCC (112) and other tumors (113) that exhibit even stronger

regulatory activities compared to CD4+ Tregs (114). Given its

ability to decrease the number of FOXP3+ T reg cells and inhibit T

reg cell function, imiquimod could effectively inhibit the

immunological destruction of cSCC (97).

TSCC has a distinct immune microenvironment that promotes

tumor growth. There are fewer T cells, especially CD8+ T cells, in

TSCC lesions in comparison to SCC lesions (101), and a decreased

Tc/Treg ratio in TSCC has also been reported (112). Furthermore, an

increased number of IL-22 producing CD8+ T cells and decreased

number of CD4+ Th1 T cells have been revealed in TSCC lesions.

Higher T regs and lower CD8+ T cells, which result in decreased

immune surveillance, and increased exposure to IL-22, which

enhances tumor proliferation, represent two main factors that

contribute to the aggressive nature of TSCC (101) (Figure 4).

Compared to photodamaged skin, SCCs are associated with an

increased number of CD4+ T-cells. However, compared to

premalignant lesions, including intraepidermal carcinoma (IEC),

SCCs may also be associated with fewer numbers of CD8+ T-cells.

The ratio of CD4+ to CD8+ T-cells is significantly increased in SCC

compared to IEC (115).
FIGURE 4

The aggressive nature of TSCC is potentially explained by the presence of increased numbers of T regs along with reduced numbers of CD8+ and IFN-g-
producing T cells, resulting in reduced tumor surveillance as well as an increase in IL-22-producing T cells, which stimulate tumor cell proliferation.
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6 Lymphatic and blood vessels

The lymphatic vascular system is the main pathway for metastatic

spread in SCCs. Various cancers can cause lymphangiogenesis, which

is associated with increased expression of vascular endothelial growth

factors as well as increased relative lymphatic vessel area (LVA) or

lymphatic vessel density (LVD) (59, 116, 117) In this context,

overexpression of genes related to lymphangiogenesis and increased

LVD has been shown in cSCC compared to normal skin (118).

The risk of metastasis in SCCs is related to several variables,

including tumor thickness, horizontal tumor size, and desmoplastic

growth (11, 15–17). Tumor thickness has been shown to be the most

accurate predictive factor for metastasis in SCCs. Metastatic SCCs are

associated with increased lymphangiogenesis; however, the extent

depends on the thickness of the tumor. It has been shown that greater

tumor thickness in SCCs is accompanied by an increase in relative

lymphatic vessel area and lymphatic vessel density (118). Despite

clear excision margins in SCCs, increased dermal lymphangiogenesis

can facilitate metastatic spread (59).

VEGF-C is a key lymphangiogenesis mediator (119). Increased

VEGF-C levels in the tumor and the juxtatumoral dermis of cSCC

compared with normal skin have been reported, and it has been

suggested that tumor-associated macrophages may play an

important role in lymphangiogenesis through production of

VEGF-C (59).

Podoplanin is a distinctive immunohistochemical marker of

lymphatic endothelial cells. Overexpression of podoplanin in both

tumor cells and stroma of cSCC have been reported (120).

Additionally, a positive correlation is noted between the expression

of podoplanin in intratumoral and peritumoral regions of cSCC and

the Broder’s tumor differentiation grades (121–123) as well as the

depth of tumor invasion to the dermis based on the Clark’s scale

(124). According to several studies, increased podoplanin expression

is associated with a higher mean of LVD in the SCC

microenvironment (120, 124–126) and presence of LN metastasis in

SCC patients (120, 121, 127, 128). Therefore, podoplanin could be

used as a predictor of SCC prognosis given that increased podoplanin

expression is related to poor prognosis and decreased survival in

cSCC patients (120).

Most immune cells have their first contact with a tumor through

endothelial cells of the local blood vessels (28). Endothelial cell

integrity is believed to play an important role in tumors. Normal

endothelial cells promote homeostasis, but dysfunctional endothelial

cells can lead to cancer growth (129). Abnormal angiogenesis also

contributes to tumor growth and promotes metastatic spread. The

density of neovascularization in cSCC is positively correlated with

deeper invasions and poorer tumor differentiation. As a result, SCC

tumors with high angiogenic activity are classified as aggressive with

poor prognosis (130). Podoplanin represents a potential target for

antimetastatic therapy in cSCC. A cancer-specific monoclonal

antibody against human podoplanin has been demonstrated to be

an effective treatment strategy particularly in podoplanin-expressing

malignancies (131).
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7 Cytokines

Cytokines play an important role in tumor biology. It was

previously thought that IFN-g and other Th1 cytokines exhibit

antitumor activity, whereas IL-4 and other Th2 cytokines have

protumor function (132). However, based on recent studies, some

cytokines, such as IFN-g, have been shown to have pro-tumor or anti-

tumor functions depending on the tumor type and tumor

microenvironment (133).

High serum levels of proinflammatory cytokines, such as

interleukin (IL)-1, IL-6, IL-8, and TNF-a, are often related to

tumor growth and poor clinical prognosis in cancer patients (134–

137). It has been suggested that the balance between multiple

cytokines may contribute to the SCC pathogenesis (138). Several

cytokines, including IL-6, IFN-g, TGF-b and GM-CSF, play a role in

keratinocyte proliferation and SCC development (139–143).

Significantly elevated serum IFN-g levels have been reported in

SCC patients compared with normal subjects, and higher IFN-g levels
in SCC patients are corelated with more advanced cancer stages. The

combination of serum IFN-g and TGF-b levels is more reliable for

diagnosis of SCC, whereas measurement of serum IFN-g alone is

helpful in evaluating the SCC progression from early to middle

stages (138).

Elevated serum IL-6 levels are associated with increased

malignancy and poor prognosis in different types of tumors (144–

146). It has been demonstrated that IL-6 is important in transforming

benign tumors into malignant, invasive SCCs in the HaCaT cell

model of skin carcinogenesis. A complex, reciprocally regulated

cytokine network induced by IL-6 in the tumor cells, including

inflammatory cytokines (MCP-1, GM-CSF, and IL-8) and

angiogenic factor (VEGF), results in malignant and invasive tumor

growth in vivo and stimulates tumor cell proliferation and migrations.

These findings indicate that IL-6 could represent a great target for

effective cSCC treatment (147).

IL-24 overexpression has been noted in invasive cSCC. IL-24

facilitates cSCC invasion (132) by increasing focal MMP-7 expression,

and MMP-7 promotes cancer cell proliferation, migration, and

invasion (148).

According to several reports, constitutive expression of G-CSF

and GM-CSF together has been shown in SCCs (149–151). Through

induction of cell proliferation, migration, and angiogenesis in cSCCs,

G-CSF and GM-CSF contribute to tumor growth, invasion, and

metastasis (149, 150, 152).

Transforming growth factor-b (TGF-b) signaling is mediated by

several downstream proteins, such as Smad family proteins. This

signaling pathway has a paradoxical role by acting as a tumor-

suppressor or tumor-promoting factor in many types of cancers,

such as SCC. In the early stages of SCC, TGF-b1 and TGF-bRI act as
tumor suppressors. However, in later stages, these proteins promote

tumor growth. Smad2, TGF-bRII, and Smad4 are typically considered

tumor suppressors in SCC (153).

IL-22 is produced by CD4+ helper T lymphocytes (Th), such as

Th1, Th17, and Th22 as well as a subset of CD8+ cytotoxic T cells
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(Tc22) (154–157). Significantly increased IL-22 is noted in the

peritumoral regions of SCC and TSCC compared to normal skin.

In transplant patients, overexpression of IL-22 and IL-22R facilitate

tumor growth (101) and result in poorer prognosis (158). In addition

to the role of IL-22 in cell proliferation, it can reduce IFN-g
production by Th1 cells as well as increase the production of

immunosuppressive cytokines (159). It has been proposed that

treating highly aggressive forms of SCCs in transplant patients by

targeting the IL-22 pathway could represent an important, life-saving

strategy (101).
8 Discussion

Skin malignancies are the most prevalent human cancers, and the

immune system plays an important role in their development,

progression, and eradication (160). There are approximately 1

million memory T cells/cm2 in normal human skin, which is

approximately twofold the number of T cells that exist in the entire

circulation (161), indicating the importance of cutaneous immune

surveillance as part of the immune system.

The immune microenvironment surrounding the cSCC is

dynamic and contains contradictory forces that promote and

suppress tumor growth (72, 162–165).

To summarize, the cSCC microenvironment has more Tregs and

myeloid-derived suppressor cells that suppress immune responses and

fewer mDCs with poor antigen-presenting function. The macrophages

present in the cSCC microenvironment predominantly exhibit the M2

phenotype and promote tumor invasion and metastasis through

producing MMPs and lymphangiogenic mediators. The SCC

microenvironment is rich in IL-6, IFN-g, TGF-b, GM-CSF, and
Frontiers in Immunology 08
IL-24, which induce tumor growth and invasion. Moreover, increased

dermal lymphangiogenesis facilitates metastatic spread. Overexpression

of IL-22 and IL-22R accelerate tumor proliferation and subsequently

result in poorer prognosis in transplant patients with cSCCs.
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