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Université de Paris, Equipe Inflammation, Paris, France
Background: The immune cell topography of solid tumors has been increasingly

recognized as an important predictive factor for progression of disease and

response to immunotherapy. The distribution pattern of immune cells in solid

tumors is commonly classified into three categories - namely, “Immune

inflamed”, “Immune desert” and “Immune excluded” - which, to some degree,

connect immune cell presence and positioning within the tumor

microenvironment to anti-tumor activity.

Materials and methods: In this review, we look at the ways immune exclusion

has been defined in published literature and identify opportunities to develop

consistent, quantifiable definitions, which in turn, will allow better determination

of the underlying mechanisms that span cancer types and, ultimately, aid in the

development of treatments to target these mechanisms.

Results: The definitions of tumor immune phenotypes, especially immune

exclusion, have largely been conceptual. The existing literature lacks in

consistency when it comes to practically defining immune exclusion, and

there is no consensus on a definition. Majority of the definitions use somewhat

arbitrary cut-offs in an attempt to place each tumor into a distinct phenotypic

category. Tumor heterogeneity is often not accounted for, which limits the

practical application of a definition.

Conclusions: We have identified two key issues in existing definitions of immune

exclusion, establishing clinically relevant cut-offs within the spectrumof immune cell

infiltration as well as tumor heterogeneity. We propose an approach to overcome

these limitations, by reporting the degree of immune cell infiltration, tying cut-offs to

clinically meaningful outcome measures, maximizing the number of regions of a

tumor that are analyzed and reporting the degree of heterogeneity. This will allow for

a consensus practical definition for operationalizing this categorization into clinical

trial and signal-seeking endpoints.
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Introduction

Since ipilimumab, the first approved checkpoint inhibitor, was

FDA approved 2010 (1), cancer immunotherapy has evolved into a

major therapeutic option that has revolutionized the treatment of

multiple solid and hematological malignancies. The mechanism of

action of checkpoint inhibitors relies largely on augmenting pre-

existing anti-tumor T-cell responses (2–4). Ipilimumab, for

example, promotes anti-tumor immunity by blocking the immune

checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA-4), which is a

down-regulator of T-cell activation (5). Programmed cell death

protein 1 (PD-1), another target for cancer immunotherapy, is also

an inhibitory receptor on T-cells and expression of its ligand, PD-

L1, by neoplastic cells, as well as by myeloid cells in the tumor

microenvironment (2), is thought to be a major mechanism by

which tumors evade killing by the immune system (6, 7). Anti-PD-1

drugs, such as pembrolizumab (8, 9) and nivolumab (10, 11), and

anti-PDL1 antibodies such as atezolizumab (2) and durvalumab

(12), act by preventing T-cell PD1/PD-L1 interaction, leading to

restoration of T-cell mediated anti-tumor immunity (13).

Not all patients see clinical benefit from immunotherapy. The

response rates to checkpoint inhibitors range from 10-60% to initial

treatment, and many who initially respond will eventually develop

secondary resistance (14, 15). Overcoming this resistance by

understanding and addressing its mechanisms is key to

improving the success of immunotherapy. One of the proposed

mechanisms for primary resistance to immunotherapy for some

patients is the inability of effector immune cells at the site of the

tumor to infiltrate into the tumor parenchyma to interact with

cancer cells, a phenomenon known as immune exclusion (4). This

paper will discuss the concept of immune exclusion, review the ways

it has been defined in the published literature, and discuss

opportunities to develop a consensus definition.
Concept of immune exclusion

In solid tumors, immune cell topography, which refers to the

spatial distribution of immune cells in the tumor microenvironment

(TME), has emerged as an important predictor of outcome as well as

responsiveness to therapy (16–18). The most frequently used method

for defining tumor topography is immunohistochemistry (IHC),

which allows quantification of the type, density, and localization of

the immune cells in relation to other cell types (19). In that regard, it

is important to outline certain basic concepts of solid tumor

histopathology. Broadly, solid tumors consist of the tumor

parenchyma, containing nests of tumor cells, and the tumor stroma,

in which the tumor cells are dispersed, containing the connective

tissue, blood vessels, and often inflammatory cells (20). The “invasive

margin” is typically defined as a 1-mm region centered on the border

separating the malignant cell nests from the host tissue. The “central

tumor” represents the remaining tumor area (21). Based on IHC

analyses over the years, distinct patterns of immune cell infiltration

have been identified according to the presence and type of immune

cells as well as their proximity to tumor cells. As a result, the TME can

be histopathologically classified into three basic descriptive immune
Frontiers in Immunology 02
profiles (2, 4, 22). The “Immune-active” or “Immune-inflamed” or

“hot” phenotype is characterized by lymphocytic infiltration in the

tumor parenchyma, with the immune cells positioned in proximity to

the tumor cells (2, 22–24). The “Immune-desert” or “cold” phenotype

is typically characterized by a lack of lymphocytes in either the tumor

parenchyma or the periphery of the tumor, although in many cases it

has been used to describe tumors that lack lymphocytes in the center

of the tumor without regards for the periphery (2, 22–24). The

“Immune-excluded” phenotype is a more recent distinction that is

characterized by an abundance of immune cells in the TME; however,

they are confined to the stroma of the tumor and do not penetrate the

parenchyma of the tumors (Figure 1). Chen and Mellman first

identified immune exclusion as a separate TME phenotype

category (4) but the concept and the association with resistance to

checkpoint inhibitor therapy was previously described by others (2,

22, 25).

These tumor immune phenotypes can also be defined

immunologically, based on the likely rate-limiting step in the cancer-

immunity cycle.(4) In this regard, the “Immune-desert” phenotype

implies a lack of pre-existing anti-tumor immunity reflecting that the

generation of tumor-specific immune cells is the rate limiting step. The

“Immune-excluded” phenotype implies a successful generation of

tumor-specific immune cells, with penetration of the tumor as the

possible rate limiting step. The “Immune-inflamed” phenotype suggests

successful generation and infiltration of immune cells, with functional

suppression of the immune response in the tumor bed. Thus, the

functional phenotype(s) of the immune cells that are present in

infiltrated/excluded tumors is also of major significance when

considering the anti-tumor immune response. It is especially relevant

in the “Immune-inflamed” tumors, where the immune cells despite

being in proximity to cancer cells are unsuccessful in clearing them,

often expressing an “exhausted” or dysfunctional phenotype (26). This,

however, represents a distinct mechanism of immune escape by tumors

and so purely in terms of defining the immune cell topography, the

phenotype(s) of the immune cells is not a focus of this review.

The biology that underlies immune exclusion is an area of active

investigation, with several hypotheses proposed for potential non-

mutually exclusive mechanisms. Pai et al. in 2020 (27) categorized

the barriers to the immune cells as mechanical, functional, or

dynamic. Mechanical barriers act as a physical impediment to a

direct contact between immune cells and cancer cells. These include

stromal fibrosis in the tumor periphery, with TGFb mediated

fibrotic responses and epithelial to mesenchymal transition

playing a critical role (28, 29). Disordered vascularization of the

tumor also likely contributes to the physical exclusion of immune

cells, with endothelial receptors involved in translocation (30, 31) as

well as VEGF (32) playing prominent facilitator or inhibitor roles in

mediating access of immune cells into tumors. Functional barriers

form an immunosuppressive milieu instigated by the tumor’s

metabolic activity and interaction with stromal cells which limit

migration, function, and/or survival of T-cells. These involve

metabolic alterations such as the Warburg or reverse Warburg

effect (33, 34), with the resultant acidic TME as well as hypoxia

leading to depressed T cell function (35–37). Factors like TGFb and

VEGF, in addition to inducing physical barriers, are also involved in

suppression of immune cell function. (29, 38). Another hypothesis
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for immune exclusion is an abruptly decreasing gradient at the

periphery of chemokines such as CXCR-3 and CCR-5, that are

implicated in the recruitment of T-cells (39). One phenomenon that

is also postulated to contribute to functional barriers is a dampening

of the inflammatory response to cellular stress and death. This

involves mechanisms such as adenosine signaling, TAM receptor

kinases and CD47/SIPR-a interactions (40–43). A final category of

potential functional mechanisms of immune exclusion is tumor

cell-intrinsic signaling that modulates chemo-attraction and

immune modulatory responses. The major pathways in this

category are the STAT3 (44, 45), PI3K (46), MAPK (47) and b-
catenin pathways (48–50). Dynamic barriers are induced after

cancer cells interact with T-cells, resulting in limited T-cell

function. These include, but are not limited to, checkpoint

receptor/ligand interactions occurring at the tumor periphery

such as the inducible activation of PDL-1 in response to IFN-g
production by stimulated T-cells (51).

The tumor immune phenotypes have been shown to be linked with

prognosis. Though the data is understandably varied, with tumor type

and treatment among other factors that would need to be considered,

the immune inflamed (or equivalent) phenotype is consistently

associated with better outcomes. In majority of the studies, the

immune excluded phenotype corresponds to intermediate prognosis

and the immune desert phenotype has worst outcomes (19, 52, 53).

Some studies, however, show the excluded phenotype to have even
Frontiers in Immunology 03
worse outcomes than the immune desert tumors (54, 55). Studies have

also linked immune phenotype with response to immunotherapy, with

most of them showing lack of response in the non-inflamed (excluded

and desert) phenotypes (2, 14, 22, 53, 56). Thus, patients with immune

excluded tumors represent a group in need of novel therapies.

Targeting the unique mechanisms behind immune exclusion may

serve to improve cancer outcomes across a range of cancer types,

including by potentiating therapeutic benefit of existing

immunotherapies in patients who would not otherwise respond. To

date, there is no accepted or consensus definition for immune

exclusion. In order to better study and treat these patients, it will be

helpful to have an agreed upon, consensus definition of the immune

excluded phenotype, an ill-defined tumor category that is often

described qualitatively (4). This could allow for a more uniform

approach to the identification of immune exclusion in different

clinical contexts and help identify points of therapeutic intervention.
Previously applied definitions of
immune exclusion

To better understand immune exclusion, as well as to correlate

tumor immune phenotype with response to immunotherapy and

overall outcomes, multiple studies have categorized the tumor

microenvironment using a variety of different methods to arrive
A B
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FIGURE 1

Examples of immune spatial phenotypes in ovarian cancer samples evaluated by multiplexed immunohistochemistry. Samples are stained with CK
(green), CD8 (brown), and CD20 (purple). (A) Immune inflamed, (B) Immune desert, (C) Immune excluded with CD8 lymphocytes peripheral to the
tumor bed, (D) Immune excluded with CD8 lymphocytes in the tumor bed but confined to the stroma.
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at objective and practical definitions of cancer immune phenotypes.

Most studies have relied on IHC, which has been the conventional

method to analyze immune cell distribution. Almost all studies

utilize surgically resected tissue. Although theoretically, core needle

biopsies can be analyzed similarly, they provide only a small sample

of the entire tumor and may not capture the relevant tumor

compartments or interface. They will provide less information on

tumor heterogeneity, as addressed later. In terms of the subsets of

immune cells, a majority of the studies have looked at CD8+ T-

lymphocytes, widely considered to play the dominant role in the

effector immune response, as the primary classifier. Some of the

studies have also analyzed additional cells including, but not limited

to, CD4+ T cells, FoxP3+ T cells and CD163+ macrophages

(Supplementary Table).
Immunohistochemistry-based definitions

Galon et al. (16) analyzed immune infiltrates in large cohorts of

colorectal cancer by performing IHC for CD3+, CD8+, CD45RO+

and GZMB+ cells. They determined median cutoff values of cell

densities for each cell type in the center of the tumor (CT) and in

the invasive margin (IM), and designated each tumor region (CT

and IM) as high (Hi) or low (Lo) according to the cutoff. Hence,

they were able to classify the tumors based on CT/IM cell densities

as Hi/Hi, Lo/Lo, Hi/Lo or Lo/Hi. Among other results, their study

showed the best disease-free survival in the CD3 Hi/Hi group, worst

prognosis for the CD3 Lo/Lo group and intermediate outcomes in

the CD3 Hi/Lo and CD3 Lo/Hi groups. Though the concept of

tumor immune phenotypes was not prevalent at the time, their

work laid the foundation for subsequent studies analyzing tumor

immune infiltrates including the concept of the Immunoscore(57).

The Immunoscore (I) is based on the numeration of two

lymphocyte populations (CD3/CD45RO, or CD3/CD8 or CD8/

CD45RO) quantified within the CT and IM. These parameters

provide a scoring system ranging from Immunoscore 0 (I0), which

has low densities of both cell types in both regions; to Immunoscore

4 (I4), having high densities of both cell populations in both

regions.(58, 59). Pages et al. in 2018(60) validated the prognostic

value of the consensus Immunoscore, which summarizes the

density of CD3+ and CD8+ effector T-cells within the tumor and

its invasive margin by converting the CD3+ and CD8+ cell densities

in these regions to percentiles. The mean of four percentiles (two

markers, two regions) was calculated and the tumors classified as

low Immunoscore (0-25%), intermediate Immunoscore (25-70%)

or high Immunoscore (70-100%). Their study found patients with a

high Immunoscore had the lowest risk of recurrence, with

significant differences in 5-year disease-free survival between the

different Immunoscore groups (HR for high vs low 0·31;

intermediate vs low 0·57; high vs intermediate 0·56; p<0·0001).

Though the Immunoscore does not specifically characterize

immune exclusion, and looking at the invasive margin relative to

the tumor core may not be the same as looking the tumor stroma

relative to the tumor parenchyma, their work highlights the utility

in classifying tumors based on immune contexture, i.e., type,

density, and location of immune cells.
Frontiers in Immunology 04
Kather et al. (19) studied immune topographies of multiple

types of cancers by performing IHC analysis of 965 histological

tissue slides from a pan-cancer cohort. They defined three spatial

compartments within the tissue specimens: outer invasive margin

(0–500 mm outside the tumor invasion front), inner invasive margin

(0–500 mm inside the tumor invasion front), and the tumor core

(>500 mm inside the invasion front). The authors measured the cell

density (number of cells per mm2) of a variety of immune cells in

each compartment utilizing markers for CD3, CD8, PD1, FOXP3,

CD68 and CD163. Their preliminary analysis showed strong

correlation between immune cell infiltration into the tumor core

and inner invasive margin, and so these two compartments were

combined. They then proceeded to define a cutoff value for high

versus low cell density of each cell type in the tumor core and outer

invasive margin compartments using the median cell density for

that cell type (median number of cells per mm2 in any tumor type in

any compartment). This cut-off value ranged from 5.76 cells/mm2

for PD1+ T-lymphocytes to 558.95 cells/mm2 for CD163+

macrophages. Using these cutoffs, they defined the three

postulated phenotypes of immune topographies of tumors. ‘Hot’

or ‘inflamed’ tumors were defined as having high cell density inside

the tumor regardless of cell density outside of the tumor. ‘Cold’

tumors or ‘immune-desert’ were defined as having low cell density

inside and outside the tumor. Finally, ‘immune excluded’ tumors

were defined as having high immune cell density in the outer

invasive margin and low density in the core. To validate the clinical

utility of their classification system, they analyzed the topography of

CD8+ lymphocytes and CD163+ macrophages in colorectal cancer

(CRC) primary tumors because these cell types were previously

shown to be linked to prognosis (17) and also showed discordant

topographies in their pan-cancer cohort. They found a significant

association to overall survival when using bivariate immune

topographies. With ‘CD8-cold, CD163-cold’ as a reference, the

HR was 1.75 for ‘CD8-excluded, CD163 excluded’ (p=0.041) and

the HR was 2.71 for ‘CD8-excluded, CD163-hot’ (p=0.025).

Gruosso et al. (61) analyzed formalin-fixed, paraffin embedded

(FFPE) samples from a cohort of 38 therapy-naïve triple negative

breast cancer patients. They performed IHC to assess spatial

distribution and define patterns of CD8+ T cell localization. They

defined distinct compartments – the tumor margin, and the tumor

core, which was further subdivided into the tumor stroma and

tumor epithelium. CD8 + T cell density was quantified in each

compartment. Tumors were divided into two groups based on T cell

infiltration into the tumor core – corCD8hi (>100 cells/mm2) and

corCD8lo (<100 cells/mm2) – and further categorization of

corCD8hi tumors was done based on median cell density in the

epithelial compartment (epiCD8) of 204.5 cells/mm2. “Fully

inflamed” (FI) tumors had epiCD8 infiltration above the median

(corCD8hi epiCD8hi) while “Stroma-restricted” (SR) tumors had

epiCD8 infiltration below the median (corCD8hi epiCD8lo).

corCD8lo tumors were subdivided based on accumulation of CD8

+ T cells at the margin. “Immune desert” (ID) tumors had low

abundance of CD8+ T cells at the margins (marCD8 <200 cells/

mm2) and were classified as corCD8lo marCD8lo while “Margin-

restricted” (MR) tumors had accumulation of CD8+ T cells at the

tumor margins (marCD8 >200 cells/mm2) and were designated as
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corCD8lo marCD8hi. As an outcome measure, they used GSEA-

based metasignatures that best discriminated the subtypes and

applied these to an independent external data set for which

recurrence-free survival data were available. They were able to

show stratification into poor outcome (MR-like), intermediate

outcome (SR-like) and good outcome (FI-like), demonstrating the

prognostic value of this classification.

Failmezger et al. (62) performed automated morphologic cell

classification on H&E sections from 400 melanoma patients

available in The Cancer Genome Atlas (TCGA) database to

identify lymphocyte, cancer, and stromal cells in each patient’s

diagnostic sample. Based on cell spatial mapping provided by

automated image analysis, tumor topographs were created where

each cell was designated as a “node”, clusters of cancer cells were

identified as “supernodes” and edges between cells were drawn

based on spatial proximity (<35 mm between them). They then

defined measures of network centrality. The clustering coefficient

measures the degree to of connectivity of the neighborhood

surrounding a node with the clustering coefficient of a given node

defined as the number of closed triplets divided by the number of all

triplets, where a triplet consists of three nodes connected by edges.

Stromal clustering was defined as the average clustering coefficient

of stromal cells within a tumor and stromal barrier was calculated

by counting the number of stromal cells that a lymphocyte has to

cross to reach a cancer cluster. The overall stromal barrier of a

sample was calculated as the average of the individual stromal

barriers of the lymphocytes in the sample. They then defined four

combination groups: low-clustering/low-barrier, low-clustering/

high-barrier, high-clustering/high-barrier, and high-clustering/

low-barrier. They used overall survival (OS) to assess the

prognostic utility of this classification. Their results showed high

stromal clustering and barrier were both independently associated

with poor 10-year OS, and tumors with high-clustering/high-

barrier had significantly worse 10-year OS compared with low

clustering/low-barrier tumors. Although their study did not use

the term “immune-exclusion”, they defined different measures that

in essence reflect an absence of contact between immune cells and

cancer cells.

Derks et al. (63) described the spatial distribution of immune

cells in different subtypes of gastroesophageal adenocarcinomas.

They performed CD8 IHC on 63 archival FFPE surgically resected

specimens of untreated gastroesophageal adenocarcinomas to

measure the ratio of CD8+ T cell densities at the tumor center

(CT) compared to the invasive margin (IM). They then classified

tumors as having a ratio of cell densities at CT to IM of >1 or <1.

The authors did not use the term “immune exclusion”, but were

able to demonstrate profound differences in immune infiltration

between gastroesophageal adenocarcinoma subtypes, with Epstein-

Barr Virus positive (EBV+) gastroesophageal adenocarcinomas

having high CD8+ densities at the tumor center (ratio cell

densities TC : IM > 1) whereas most chromosomal instability

(CIN) gastroesophageal adenocarcinomas had clustering of CD8+

T cells at the invasive margin (ratio cell densities at TC : IM < 1).

Desbois et al. (54) performed CD8 IHC on 370 archival tissues

of patients with ovarian cancer. They developed a digital image

analysis algorithm and quantified the total CD8+ T-cell count as
Frontiers in Immunology 05
well as CD8+ T-cell counts per tumor epithelium and stroma area.

These counts were converted into polar coordinates defining two

new quantitative metrics: (1) the quantity of CD8+ T cells and (2)

the spatial distribution of CD8+ T cells. CD8+ T-cell quantity =

[square root ((CD8 tumor)2 + (CD8 stroma)2)] and CD8+ T-cell

spatial distribution = [atan(CD8 stroma/CD8 tumor)]. Next, these

two digitally defined quantitative metrics were used to profile the

immune phenotype of each tumor using a two-dimensional map

with desert tumors having low CD8+ T-cell quantity (R score) and

excluded versus infiltrated tumors differing in the spatial

distribution of CD8+ T cells (q score). Their results demonstrated

that in the vast majority of tumors, both total CD8+ T-cell

quantities and their spatial distribution in the tumor

microenvironment are more on a continuum rather than discrete

entities. This highlighted the advantage of using their digitally

devised two-dimensional quantitative metrics to define tumor

immune phenotype.

Hammerl et al. (53) determined spatial immunophenotypes in 4

large cohorts of triple negative breast cancer. In one of the cohorts,

they studied CD8+ T cell presence and spatial organization in 236

samples from untreated, primary triple negative breast cancer

(TNBC) using IHC. Manual scoring as well as digital image

analysis were used to measure CD8 + T cell density at the tumor

border and center. For manual scoring, the criteria used were -

inflamed: “almost equal frequencies of CD8+ T cells at the border

and center”; excluded: “>10 times more CD8+ T cells at the border

compared to center”; and ignored: “hardly any CD8+ T cells present

at the border and center.” Using digital image analysis, spatial

phenotypes were determined according to median CD8+ T cell

density at border and center as follows – inflamed: >200 cells/mm2

at border and ratio between border and center <10; excluded: >200

cells/mm2 at border and ratio between the border and center >10;

and ignored: <150 cells/mm2 at border and center. They found a

significant association of the phenotypes with survival. Tumors with

an inflamed phenotype had the best prognosis (10-year OS: 80%),

excluded phenotypes intermediate (10-year OS: 60%, HR:1.45, 95%

CI: 0.84–3.3), and ignored phenotypes the worst prognosis (10-year

OS: 40%; HR:3, 95% CI: 1.5–5.9).

Echarti et al. (52) looked at pre-treatment tissue samples of 280

patients with locally advanced head and neck squamous cell

carcinomas (HNSCC). CD8 IHC analysis of FFPE specimens was

done, and distribution of CD8+ cytotoxic T lymphocytes (CTLs)

was measured in the stromal and intraepithelial compartment of the

tumor. CTLs had a median density of 306.5 cells/mm2 in the

stromal compartment and 235.5 cells/mm2 in the intraepithelial

compartment. To define the different immunological phenotypes,

they determined cut-off values of CTL density. Arbitrarily, the

“immune desert” group was defined as < 10 CTL/mm2 stroma,

the “inflamed” group as > 1000 CTL/mm2 in the epithelium and the

“immune excluded” group as not meeting either parameter. Kaplan

Meier plots for overall survival were used to find a possible

difference between the “immune desert” and “immune excluded”

by changing the threshold in steps of 10 CTL. After finding a clear

difference (p < 0.010), the authors subsequently repeated this

approach comparing “immune excluded” and “inflamed” groups

while using steps of 50 CTLs. The cut off values that were found by
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this procedure were used in a second round repeating the same

procedure, which resulted in cut off values of ≤ 50 cells/mm2 in the

stromal and > 500 cells/mm2 in the epithelial compartment as the

best discriminative values regarding overall survival. Thus, cases

with less or equal to 50 CTLs/mm2 in the stroma were included in

the “immune desert” group, those with over 500 intraepithelial

CTLs/mm2 in the “inflamed” group. All the cases meeting neither of

the two definitions were included in the “immune excluded” group.

Using median survival as the outcome measure, they showed that

patients meeting “immune desert” criteria had an unfavorable

prognosis with a median survival of 37.0 months, the “immune

excluded” group had an intermediate survival of 61 months and the

“inflamed” group tended to have favorable overall survival of 85

months (p = 0.054).
Gene-based definitions

Some studies have attempted newer techniques such as using

gene signatures derived from gene set enrichment analyses to

classify tumor immune phenotypes. Mlynska et al. (55) analyzed

clinical and transcriptomic data from 489 high-grade serous ovarian

carcinoma (HGSOC) patients from The Cancer Genome Atlas

(TCGA) database. They selected a set of 40 genes coding for

major players in angiogenesis, immune response, and both

immune and reactive stroma, based on the evidence of each

immune subtype bearing a tumor microenvironment of a distinct

nature. The selected genes were used to define gene expression (GE)

rules for further patient clustering. A heatmap of expression

revealed three distinct biological groups, each representing a

specific immune subtype. The inflamed subtype was characterized

by high expression of immune response-associated genes and low

expression of angiogenesis genes, the excluded subtype had high

expression of genes representing the stroma along with low

expression of angiogenesis genes, and the desert phenotype

showed high expression of angiogenesis genes, with low

expression of stromal and immune response genes. Correlating

this categorization with clinical data, they observed differences in

overall survival among the groups with median OS being 48.7

months, 42.0 months and 40.4 months in the inflamed, desert and

excluded subtypes, respectively (p = 0.04).

The previously described study by Desbois et al. (54) went on to

develop a gene expression-based molecular classifier using a

machine-learning approach to characterize tumor-immune

phenotypes. The authors integrated digital pathology and

transcriptome analysis and used a random forest regression

model to identify genes whose expression could be predicted by

the quantity and/or spatial distribution of CD8+ T cells. By

performing consensus clustering, they identified 6 clusters with

distinct molecular profiles that could be assigned to one of the three

defined tumor immune phenotypes. Finally, the authors applied the

prediction analysis of microarrays (PAM) approach and built a 157

gene classifier to distinguish the three tumor immune phenotypes.

Applying this to a testing set from the ICON7 cohort, they

confirmed that the gene expression-based classifier assigned the

samples to the appropriate cohort as compared to digital pathology
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analysis. They also found high concordance between the classifier

and manual annotation by a pathologist for immune excluded

tumors. Analyzing data from 172 patients enrolled in the

chemotherapy control arm of the ICON7 clinical trial with

uniform follow-up, they showed that patients with the T-cell

excluded phenotype showed significantly shorter progression-free

survival (PFS) as compared to patients with the infiltrated or

desert phenotypes.

Petitprez et al. (64) studied the gene expression profiles in 608

tumors across subtypes of soft-tissue sarcoma (STS). They analyzed

the tumor microenvironment of four independent primary STS

cohorts using the microenvironment cell populations (MCP)-

counter which is a gene expression-based TME deconvolution

tool. Unsupervised clustering of samples in each cohort was done,

and the intracohort classifications were aggregated to deduce five

pan-cohort sarcoma immune class (SIC) profiles (A-E). SIC A was

characterized by the lowest expression of gene signatures related to

immune cells, as well as low vasculature, corresponding to the

‘immune desert’ phenotype. SIC E was characterized by the highest

expression of genes specific to immune populations such as T cells,

CD8+ T cells, natural killer cells, and cytotoxic lymphocytes,

corresponding to the ‘immune inflamed’ phenotype. SIC C,

‘vascularized’, was dominated by a high expression of endothelial-

cell-related genes. SICs B and D were characterized by

heterogeneous but generally immune-low and immune-high

profiles, respectively. The authors looked at the clinical outcome

of the five SICs and observed that patients with SIC A had the

shortest overall survival compared to patients in groups D or E (p =

0.048 and p = 0.025, respectively). Though the authors don’t

explicitly define an immune excluded class, their results highlight

the likely continuous nature of immune cell infiltration, with their

survival analysis suggesting that the intermediate classes (B-D),

possibly correspond to the excluded phenotype.

Hammerl et al. (53), in addition to the previously mentioned

IHC analysis, also developed a gene expression-based classifier from

patient RNA-seq data by identifying genes that were most

differentially expressed between patients’ samples as categorized

by the IHC analysis. This gene expression classifier was able to

correctly assign spatial phenotypes 81% of the time in patients held

out as a validation cohort. The gene classifier was then applied to

other TNBC cohorts where the immune excluded subtype was

shown to be prognostic and predictive of lack of response to PD-1

targeted therapy in the TONIC trial(56). This gene classifier was

next applied to a variety of malignancies in TCGA, with the results

showing that the immune excluded classification was associated

with a worse prognosis and was present in a higher proportion of

cancers that do not respond well to immunotherapy, such as

prostate and pancreatic cancers.

Xu et al. (65) analyzed immune cell infiltration patterns in

breast cancer by employing the genomic and transcriptomic

information of 1,198 breast cancer samples from the TCGA-

BRCA project and GSE58812 datasets. Using the CIBERSORT

computational method, the gene expression information of the

TCGA and GEO cohorts was analyzed to obtain a fraction matrix

of immune cell infiltration, which estimates the abundances of 22

distinct leukocyte subsets. Using another analytic approach,
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ESTIMATE, the level of infiltrating immune and stromal cells was

predicted by calculating the ESTIMATE, immune, and stromal

scores. Finally, single sample gene-set enrichment analysis

(ssGSEA) was conducted based on the expression level of 29

immunity-associated signatures. The samples were then clustered

into 3 discrete subgroups according to similarities exhibited in the

immune cell infiltration profiles. Thus, three different immune cell

infiltration patterns were finally identified by using an unsupervised

clustering. Cluster A was characterized by infiltration of quiescent

and innate immune cells along with stromal activation and was

considered to exhibit an immune-excluded phenotype; Cluster B

was characterized by a weakened immune cell infiltration and was

identified as having an immune-desert phenotype; and Cluster C

was characterized by an elevated inflammation response and was

recognized as showing an immune-inflamed phenotype. Kaplan-

Meier survival analysis of the three distinct patterns indicated that

Cluster A exhibited a prominent advantage of median survival time,

whereas Cluster B presented with the worst prognosis (p = 0.021).
Need for a consistent practical
definition of immune exclusion

With the increasing role of immunotherapy in treatment of

cancers and investigations into immune resistance ongoing to

understand which patients are most likely to benefit, it is a

pressing question to understand how cancer immune phenotypes

correlate to outcome and response to immunotherapy. The study by

Hammerl et al. (53) specifically looked at response to

immunotherapy with the different phenotypes and established

higher prevalence of the excluded phenotype in non-responders,

though it is limited by a small dataset. Other studies looking at

response to immunotherapy have also established better response

rates in the inflamed phenotype, though they do not make the

distinction between excluded and cold tumors. Given the

association between immune exclusion and resistance to existing

immunotherapies, there is potential to target the underlying

mechanism (or mechanisms) of immune exclusion to improve

patient outcomes. Data also suggest that the biology

underpinning immune exclusion does not mirror the other

phenotypes and therefore requires new tools, insights, and

methods to dissect it and translate it into actionable science.

The existing literature lacks in consistency when it comes to

practically defining immune exclusion, which limits the

interpretation and cross-study comparison of the results. To

better understand the relative impact of the immune excluded

phenotype on prognosis and response to treatment for different

cancer types, and to have an operational definition to apply in

clinical trials and ultimately clinical practice, an objective definition

of immune exclusion is necessary.

The definitions that have been used in the literature, while they

have been very valuable in raising awareness and identifying the

biologic and prognostic associations of immune exclusion, have

common limitations that can be addressed in future studies. For

one, they attempt to place each tumor into a distinct phenotypic
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category, at times using somewhat arbitrary cut-offs, an attempt

that is not well suited for describing immune phenotypes which are

notably complex and comprised of continuous variables. The work

of Desbois et al. (54) highlights that the number and distribution of

immune cells in tumors is a wide-ranging spectrum, an attribute

that can be lost with overly simplified definitions. Another

limitation is that they often do not account for tumor

heterogeneity, i.e., the variation in composition and spatial

distribution of components of the TME that occurs within an

individual patient’s tumor (18, 66, 67). And of course, differences

in the presentation of immune exclusion within different tumor

types may necessitate different approaches and criteria based on

cancer indication.
A new approach to defining
immune exclusion

The phenomenon of immune exclusion has been suggested to be a

continuum (22, 54). To better evaluate this, we propose that

investigators should consistently report the degree of immune

infiltration, particularly CD8+ lymphocytes, in the parenchyma of

the tumor and the surrounding stroma as density of immune cells and

the ratios between the compartments. This will aid in cross-study

comparisons to further refine the definition. Majority of the existing

data looking at immune cell infiltrates and their correlation with

outcomes has focused on CD8+ T-cells, hence their importance in

this regard is well established. As the study by Xu et al. (65) illustrated,

the activation status of infiltrating CD8+ T cells and nature of other

infiltrating or excluded immune cell subsets could be an important

parameter to include when defining immune exclusion. It is

increasingly recognized that gamma-delta T cells, NK cells and

plasma cells have significant contribution to the overall anti-tumor

response, therefore delineating the spatial distribution of these cell

types should also be considered (68). NK cells in particular can serve as

powerful effectors of the innate immune response by killing

transformed cells and have been shown to play an important role in

suppressing metastasis (69). However, their activity against established

solid tumors is limited by their inability to infiltrate the tumor core,

with studies showing localizing of NK cells in the tumor stroma in

certain cancers reflective of “immune excluded” phenotype, though

they are not defined or objectively measured as such.(70, 71) As more

data emerges and clarifies the role of other immune cell types and

subtypes in cancer, their degree of infiltrationmay perhaps also become

relevant. The different immune cell phenotypes and subsets may be

reported as absolute cell densities, percentage of total immune cells or

normalized to all cells analyzed. At this moment, however, more data is

needed to establish the most useful measure and we are not in a

position to define that, especially as it relates to the different cancer

histologies. Cut-offs to distinguish categorical phenotypes could be tied

to clinically meaningful outcome measures, as demonstrated by the

work of Echarti et al. (52) where categorical cut-off values were selected

to best discriminate overall survival differences. Another potential

differentiator could be response to immunotherapy as a clinically

relevant classification (Table 1).
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To address issues of tumor heterogeneity, we propose that efforts

should be made to assess as many areas of a given tumor sample as is

practically possible. This becomes a limitation when dealing with core

needle biopsies, that can be addressed, in part, by obtaining multiple

cores, when feasible. While averaging the immune infiltrate density

values would be more reflective of a sample than any one evaluated

portion, it may be most valuable to report the degree of heterogeneity,

as this coefficient may have its own biologic and prognostic

implications (72–74). Towards this end, approaches could be used

that evaluate immune cell density in the tumor center as compared to

the invasive margin, or a grid or patch like approach could be adopted

to give a fuller evaluation of differences in immune cell infiltration

across a tumor sample (Table 1).

Achieving clinically relevant definitions of immune phenotypes

that are not reliant on IHC staining and manual counting would allow

large association studies to be performed more quickly and with less

cost using existing datasets. Artificial intelligence (AI) and deep

learning have the potential to quickly evaluate large quantities of

slides by automating the simpler, repetitive and time-consuming

tasks while allowing the pathologists to spend additional time on

high level decision making. AI-based approaches, particularly CD8

IHC with quantification of CD8+ T cells relative to the tumor

parenchyma and tumor-associated stroma, allow extraction of

multiple subvisual morphometric features, potentially enabling the

evaluation of immune exclusion from diagnostic H&E-stained slides

using morphology-based cell and tissue classification (75). Routine

H&E slides offer the most practical method, with the potential to be

integrated into routine clinical workflows. As Failmezger et al (62)

showed, automated image analysis from H&Es also allows for more

complex and sophisticated measures to be defined, though this

methodology is yet to be validated against the gold standard IHC.

AI-based approaches in IHC could offer more specific and

sophisticated analyses, though it would likely be more challenging

to develop.

Gene signatures as reviewed above, also appear to hold great

promise. There are certain limitations, specifically, bulk RNA
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sequencing, as it is confounded by variable levels of tumor cell

purity. Within those limitations, consistently across studies, there

appears to be an increased expression of stromal genes in the

immune excluded phenotype, likely secondary to a higher proportion

of stroma within the tumor, and increased expression of immune/

inflammation genes in the immune inflamed phenotype due to the

presence of higher levels of immune cells. Given the variability in the

approaches used so far, further validation and consensus on these

signatures within individual histologic types and between different

types of cacer is needed. Most gene-based studies have used an

unsupervised clustering approach. As the understanding of molecular

signatures of different phenotypes improves, a practical approach to

gene-based definition might include tying the expression of relevant

genes and signatures in each phenotype with meaningful clinical

outcomes to define cut-offs, in a “semi-supervised” clustering

approach (76).

It is unclear if one definition of immune exclusion will apply across

all tumor types, but there would be value in achieving one definition,

understanding that some histologies will have a higher proportion of

immune excluded cancers than others, and the clinical implications of

the phenotype may vary between histologies. As a natural extension, a

consensus definition of immune exclusion would lead tomore concrete

definitions of immune inflamed and immune desert phenotypes as

well. A unified definition will also help allow better determination of

the underlying mechanisms of immune exclusion that span cancer

types and, ultimately, aid in the development of treatments to target

these mechanisms.
Conclusion and recommendations

As the understanding of the immune landscape of cancer has

improved, the concept of immune phenotypes, as it relates to

patient outcomes and response to immunotherapy, has become

increasingly relevant. This has led to further investigations into the

phenomenon of immune exclusion, where effector immune cells are
TABLE 1 Recommendation for evaluation and reporting Immune Exclusion in cancer samples.

Recommendation Notes

Tissue sample
Surgical resection specimen or core needle biopsy with multiple
cores

Locations of metastasis may impact the immune phenotype

Analysis
method

Immunohistochemistry or immunofluorencence with a marker to
differentiate stroma from tumor parenchyma

Gene signatures should be derived from a sufficiently large dataset of tumors
with spatial characterization

Immune cells
analyzed

CD8+ T lymphocytes
Evaluating T cell activation/exhaustion markers and other immune cell subsets
add additional information of the TME contexture

Compartments
analyzed

Tumor parenchyma

Tumor Stroma

Measured value
Cell densities (cells/mm3)

Ratio of parenchyma/stroma

Cut-off for
definition

Based on clinical outcome variables as available
These include overall survival, progression-free or disease-free survival, and
response to therapy

Tumor
heterogeneity

Evaluate multiple areas of tumor Report degree of heterogeneity
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present at the site of the tumor but unable to effectively engage

tumor cells. However, as a result of those investigations, which have

been carried out by multiple groups to assess immune exclusion

from multiple perspectives, there now exist varied and inconsistent

practical definitions of this concept.

In this review, we have looked at the various studies and diverse

definitions of immune exclusion and identified a key issue of

establishing clinically relevant cut-offs within the spectrum of

immune cell infiltration. We also bring forth tumor heterogeneity

as a major variable to factor in when evaluating immune exclusion.

Moving forward, we propose that future studies focused on the

spatial phenotypes of cancer consistently report the degree of

immune infiltration, particularly CD8+ lymphocytes, in the

parenchyma of the tumor and the surrounding stroma as density

of immune cells and the ratios between the compartments. We

further propose that efforts should be made to assess as many

separate areas of a given tumor sample as is practical. This data with

matched clinically meaningful endpoints, such as survival and

response to therapies, will allow the development of histology-

specific cutoffs that can be then be used in clinical trials to develop

therapeutics to address the mechanism driving exclusion of T cells.

We offer that taking these factors into account when analyzing

immune exclusion will help in achieving a consistent, practically

feasible, and clinically pertinent definition of immune exclusion

which could be applicable across a wide range of cancer histologies,

tissue analysis methods and study designs. This, in turn, will allow

for an improved understanding of the concept, aid in understanding

the potential mechanisms involved, and further progress to uncover

potential therapeutic targets to improve patient responses.
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