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Inflammation induced by nonspecific pathogenic or endogenous danger signals is

an essential mechanism of innate immune response. The innate immune

responses are rapidly triggered by conserved germline-encoded receptors that

recognize broad patterns indicative of danger, with subsequent signal

amplification by modular effectors, which have been the subject of intense

investigation for many years. Until recently, however, the critical role of intrinsic

disorder-driven phase separation in facilitating innate immune responses went

largely unappreciated. In this review, we discuss emerging evidences that many

innate immune receptors, effectors, and/or interactors function as “all-or-nothing”

switch-like hubs to stimulate acute and chronic inflammation. By concentrating or

relegating modular signaling components to phase-separated compartments,

cells construct flexible and spatiotemporal distributions of key signaling events

to ensure rapid and effective immune responses to a myriad of potentially

harmful stimuli.

KEYWORDS
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Introduction

Innate immune system is the first line of host defense against pathogens such as viruses

and bacteria. The innate immune signaling is triggered when exogenous pathogens

(Pathogen-Associated Molecular Patterns, PAMPs) and endogenous injury-related

molecules (Damage-Associated Molecular Patterns, DAMPs) are recognized by cell-surface

or cytosolic pattern recognition receptors (PRRs). Activation of immunosensors triggers

inflammatory response through the production of interferon and proinflammatory cytokines

(1–4).Upon stimulation, the PRRs recruit adaptors and effectors to form higher-order

assemblies that act as hub platform to perform signal transduction and signal

amplification functions (1, 5, 6).

To trigger the innate immune response, the innate immune cells use germline-encoded

PRRs that are located on the cell surface or in various intracellular compartments to detect

pathogen or danger-associated chemical patterns (7, 8). Multiple PRRs types are present on
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these immune cells, such as Toll-like receptors (TLR), retinoic acid-

induced gene I-like receptors (RLR), nucleotide oligomeric domain-

like receptors (NLR, also known as NACHT, LRR, and PYD domain

proteins), and cytoplasmic DNA sensors (8), also with melanoma 2

(AIM2)-like receptors (ALRs) and C-type lectin (CLRs) (9). Phase

separation activities have been increasingly investigated in the

regulation of innate immune response. The principal constituents

and mediators of Liquid- Liquid phase separation (LLPS) are proteins

and nucleic acids (RNA and DNA) (10). For example, viral

nucleocapsid proteins of respiratory syncytial virus (RSV) (11),

measles virus (MeV) (12) and highly infectious Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (13) can

induce phase separation to participate in host signaling

transduction. Proteins containing modular domains or inherently

disordered regions (IDRs) may trigger the formation of

membraneless condensates by dynamic protein-protein interactions,

which is a common strategy for signalosomes to carry out key

signaling and effector functions in innate immunity and

inflammation (14, 15).

A substantial number of the hub proteins that function in the

network of innate immune responses are intrinsically disordered

proteins (IDPs) or intrinsically disordered region-(IDR) containing

proteins, which can induce phase separation (16, 17). The formation

of LLPS is based on the capability of intrinsically disordered protein/

intrinsically disordered protein regions (IDPs/IDPRs) for polyvalent

stochastic interactions (17, 18). Recent structural studies and parallel

bioinformatics reveal that phase separation of proteins are frequently

involved in spatiotemporal control of cellular innate immune and

inflammatory signaling (19, 20). The nucleocapsid protein of SARS-

CoV-2 is shown to be the primary structural protein of virions. The

nucleocapsid protein engages in robust LLPS after binding to viral

RNA to enhance NF-kB activation (21). In addition to innate immune

responses, LLPS also mediate signal transduction of adaptive immune

responses. T cell receptor (TCR) signaling is essential for T cell

activation. On the surface of T cells, T cell clusters are formed by

transmembrane receptors (TCR, CD28 and PD-1), tyrosine kinases

(LCK and ZAP70), adaptor proteins (LAT and GRB2), and various

enzymes (SOS1 and PLCg1). The multivalent interaction among LAT,

GRB2 and SOS1 is mediated by LLPS to form T cell micro-clusters

(22). Phase separation has emerged as a key factor in many processes,

including chromatin assembly (23) and B-cell lymphogenesis (24). In

this review, we will highlight the flexible spatiotemporal control

mechanisms and the significance of IDPs/IDRs-mediated phase

separation in innate immune and inflammatory pathways.
cGAS-DNA phase separation enhances
innate immune responses to
cytosolic DNA

Cyclic GMP–AMP synthase (cGAS) is a sensor protein that

initiates inflammation in response to cytosolic DNA, a molecular

pattern indicative of intracellular pathogens or endogenous damage

(25–28). The full length of cGAS consists of a positively charged

disordered N-terminal and a structured C-terminal residue (core

cGAS) with a nucleotide transferase domain (Figure 1A). The high
Frontiers in Immunology 02
density positively charged residues in the N-terminal domain and

three identified DNA binding sites in the C-terminal domain provide

the structural basis for the polyvalent interaction between cGAS and

DNA (29) (Figure 1B).

Upon binding to dsDNA, cGAS dimerizes, assembles into liquid

droplets, and is activated to catalyze the synthesis of cyclic GMP-

AMP (cGAMP), which then activates the downstream Type I

interferon and NF-kB signaling pathway by binding to adaptor

protein STING as a second messenger (30). Studies have shown

that cGAS and DNA form liquid condensates in a concentration-

dependent manner (29). Activated cGAS molecules form

supramolecular cytosolic foci that co-localize with DNA, which is a

clue that phase separation might underly function (25) (Figure 1C).

The cGAS-STING pathway plays an essential role in host

defensing against various DNA viruses, while virus explores series

of immune evasion strategies against the sensing (31). It has been

reported that virus-derived ORF 52, VP22 (32), KicGAS (30) and

ORF9 (33) can extract DNAmolecules from cGAS-DNA droplets and

bind to itself to form new droplets, which leads to the dispersion of

cGAS-DNA droplets or reduces the DNA-mediated liquid phase

separation of cGAS-DNA, thereby alleviating the cGAS-STING

pathway and resulting in immune dysregulation (31) (Figure 1D).

The cGAS-DNA phase separation enhances the immune response

by inhibiting the activity of TREX1 nuclease, a cytoplasmic ER-related

DNA 3’!5’ exonuclease that prevents chronic cGAS activation by

degrading cytoplasmic DNA (34). Recent study has confirmed that

cGAS-DNA droplets isolate TREX1 to prevent DNA from being

degraded and also set barriers to autointegration factor 1 (BAF) from

the droplet to prevent improper innate immune signal

transduction (35).
Phase separation of DDX3X decides the
cell fate under stress

The DEAD-box RNA helicase DDX3X is involved in multiple

aspects of RNA metabolism, including RNA splicing, transcription

initiation and the assembly of stress particles (36, 37). The structure of

helicase core (V168-G582) of DDX3X has been studied by protein

crystallography (38) (Figure 2A). The N- and C-terminal regions of

DDX3X are predicted to be highly disordered by PONDR®VSL2

(Figure 2B). Biochemical analysis shows that DDX3X is a pivotal

component of stress granules (SGs) independent of its RNA helicase

activity (39, 40). IDRs in N-terminal of DDX3X can undergo LLPS in

vitro, and acetylome analysis shows that IDR in N-terminal of

DDX3X is a substrate of deacetylase HDAC6, and deacetylation of

the IDR by HDAC6 promotes LLPS and assembly of SGs in response

to stress, while its acetylation at multiple lysine residues largely

impairs the liquid droplet formation (41).

Stress granules are cytosolic compartments formed by cells in the

face of various stress conditions, which enable cells to survive under

various pressures (42). A recent study suggests that stress granule

protein DDX3X serves as a signaling hub that forms in response to

various stressors, and the DDX3X molecules are competed by stress

granules and the NLRP3 inflammasome to coordinate the activation

of innate immune responses and subsequent cell-fate decisions (42,
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43). The cytoplasmic stress granule protein DDX3X is identified as an

NLRP3 interactor and drives activation of NLRP3 inflammasome

independent of RNA helicase activity. The Induction of stress

granules sequesters DDX3X, and thereby specifically inhibits

NLRP3 inflammasome activation, ASC speck formation and

pyroptosis. DDX3X acts as a co-competitive factor for the

formation of stress particles and the activation of NLRP3

inflammasomes, and in the binding process, DDX3X enables cells

to understand stress signals and determine their fate (Figure 2C)

(34, 35).

DDX3X participates in the regulation of various viral life cycles

and also act as a master regulator in virus-induced cell fate decision.

Virus utilizes DDX3X granules as platforms for lipid metabolism and

viral assembly (44, 45). DDX3X responds to cellular stress primarily

by participating in SG formation that is also a type of LLPS. In

productive virus infection, DDX3X facilitates the translocation of

virus proteins to the liquid droplet surface of DDX3X granules

through initiating its dynamic associations with virus core proteins,

which is crucial for lipogenesis and viral assembly (45–47). Moreover,

Sannula Kesavardhana et al. showed that DDX3X interferes with the

activation of NLRP3 inflammasome by forming SG during IAV

infection, thus preventing immune escape from IAV (48) (Figure 2D).

In sexual dimorphic helicases DDX3X and DDX3Y, DDX3Y was

found to be more droplet oriented than DDX3X, because of the

difference in IDR1 sequence. This difference also results in DDX3Y

having a stronger ability to aggregate FUS than DDX3X (49). The FET
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family of proteins, consisting of FUS (TLS), EWS (EWSR1), and

TAF15, participates in phase transitions at RNA storage sites and

assembles into higher-order structures through RNA stimulation,

functions that are impaired in humans and contribute to disease.

RNA repeat amplification can also lead to abnormal function, and the

repeated RNA sites can capture RNA-binding proteins and cause

their loss of function (50). Increased cytoplasmic FUS concentration

leads to increased recruitment of stress granules, which leads to

neurodegenerative disease.
Phase separation links with dynamic
spatiotemporal regulation of innate
immune response

STING is a 4 times transmembrane protein distributed in the

endoplasmic reticulum (ER). After binding with 2’3’ - cGAMP, it

needs to undergo transport, leaving the ER, passing through the Golgi

apparatus, and finally arriving at the small membrane vesicles derived

from the Golgi apparatus. The endoplasmic reticulum cubic

membrane structure generated by STING phase separation can

“sequester” STING-TBK1 and the key transcription factor IRF3 in

space, and then negatively regulate the cGAS-STING pathway.

Therefore, this cubic membrane structure of ER triggered by high

intracellular concentration of 2’3’ - cGAMP, promoted by Mn2+, and
A

B

D

C

FIGURE 1

cGAS-DNA phase separation enhances innate immune responses to cytosolic DNA (A) Structural prediction of cGAS using PONDR (B) Schematic of the
domain structure of human cGAS.(C) Model of cGAS-DNA phase separation. The IDRs of Nterminal cGAS nonspecifically bind with DNA, and then a
robust cGAS-DNA phase separation and higher-order assembly are induced. (D) viral proteins restrict cGAS-DNA condensates in vitro and in cells;
ORF52/VP22 virus can disrupt the cGAS-DNA condensates through extracting the DNA to form new droplets with DNA in order to evade immune
surveillance.
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formed by phase separation of STING protein is named “STING

phase-separator”(Figure 3A), which is used to separate inactive

STING-TBK1(Figures 3B, C). Thus, the STING phase-separator

prevents overactivation of innate immunity at a new level (30,

51) (Figure 3).

Neurofibroma protein 2 (NF2), a classical tumor suppressor that

controls tumor growth and regulates angiogenesis in the tumor

microenvironment, has been reported to regulate cGAS-STING

signaling through NF2 mutation mediated-LLPS (52–54). NF2

localizes to plasma membranes, cell tight junctions and the

cytoskeleton to mediate cell-to-cell signaling, including the Hippo

pathway (55). NF2 positively regulates the innate immune response

by affecting the activity of the major effector of Hippo pathway-YAP

(56, 57). While a patient-derived point mutant of NF2 FERM domain

(NF2m) was found to strongly inhibit nucleic acid recognition and

subsequent anti-tumor immunity (54). The NF2m-mediated LLPS

formation that initiated by the nucleic acid recognition and activation

of IRF3, in turn attenuates nucleic acid sensing signals and cGAS-

STING signals through acting as an independent docking platform to

deactivate TBK1 (54).

Innate sensor NLRP6 has been reported to regulate anti-viral

immune response through phase separation-induced inflammasome

activation (58). The polybasic regions of NLRP6 are required for

phase separation and inflammasome activation. NLRP6 undergoes

LLPS to form a membraneless compartment in the cytosol upon

binding dsRNA, which serves as a starting point and signaling hub for

multiple pathways. NLRP6 condensates activate IFN signaling
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through recruitment of ASC and activation of caspase-1, and the

NLRP6 ligand further promotes the NLRP6 LLPS through leading

DHX15/dsRNA into the NLRP6 condensates. Additionally, the

K350–354A mutation of NLRP6 impairs multivalent interactions of

NLRP6, and NLRP6-mediated inflammasome activation, and thus

reduces cell death in immortalized bone marrow-derived

macrophages, which suggests that LLPS is an important driving

force for higher-order assembly of NLRP6 inflammasome (30, 58, 59).
Phase separation of autophagy factors
balances inflammation

Autophagy is a general homeostatic process, which has been

extensively linked to the regulation of innate immune signaling

pathways and makes a pivotal contribution to cell autonomous

control of inflammation (60). The autophagy pathway has two

main specialized physiological functions, the quality control process

of selective mitochondrial autophagy (Mitophagy) and the defensive

process of exogenous pathogen-engulfment (Xenophagy). Both

processes have been demonstrated to control the activation of

inflammasomes to limit inflammation (60, 61).

To prevent the excessive inflammasome activation, autophagy

deploys an indirect mode of suppression by breaking down the

damaged or irreversibly depolarized mitochondria, or has a direct

suppressive effect by taking individual inflammasome components as

substrates for autophagic degradation (62, 63). Additionally,
A

B

D

C

FIGURE 2

Phase separation of DDX3X decides the cell fate under stress (A) Crystal structure of helicase core (V168-G582) of DDX3X. (B) The schematic of the
domain structure and the intrinsic disorder profile of human DDX3X obtained by PONDR® are shown. (C) Model of competition of DDX3X between the
pro-survival stress granules and the pyroptotic NLRP3 inflammasome activation. (D) Model of DDX3X-enhanced lipogenesis and viral assembly. IDR of
DDX3X facilitates the translocation of virus proteins to the liquid droplet surface of DDX3X granules, and leads to IKK-a activation and SREBP-mediated
elevated expression of lipogenic genes.
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autophagy components have also been reported to facilitate

unconventional secretion of mature IL-1b by engulfment of the

autophagic membrane (64). Thus, autophagy seems to play a

balancing act of supporting productive inflammatory factors and

preventing excessive inflammatory responses.

Liquid-liquid phase separation plays important roles in different

steps of autophagy (65). In the process of phase separation mediating

autophagy substrates assembly, autophagy cargo receptor p62/

SQSTM1 sequesters intracellular misfolded, ubiquitin-positive

proteins and mediates cargo delivery for their selective autophagic

degradation (66–68). Depending on its self-oligomerization and

ubiquitin-binding ability, p62 forms membraneless phase-separated

condensates with polyubiquitin, which is critical for its function as a

cargo receptor (68, 69).

The IDR has been identified in P62, and the polyubiquitination of

P62 further enhances LLPS (66, 68)(Figure 4A). P62 recruits the

ULK1 subunit FIP200 to the membraneless ubiquitin-positive

condensates through the interaction between the IDRs (residues

326-380) of p62 and FIP200-CT (70), which could serve as a

platform to initiate autophagosome biogenesis. The IDRs-mediated

interaction may promote autophagosome nucleation via enhancing

the activation of ULK1. Simultaneously, the ULK1 activation triggers

negative-feedback control of STING activity to prevent the sustained

innate immune signaling (71).

A selective autophagy cargo receptor NBR1 plays an important

role in promoting the formation of ubiquitin condensates by directly
Frontiers in Immunology 05
interacting with the N-terminal PB1 domain of P62. NBR1

introduces its high-affinity ubiquitin-associated (UBA) domain

into P62 filaments, thereby facilitating efficient cargo aggregation

of P62 (69, 72). NBR1 recruits a third receptor TAX1BP1, which can

drive robust FIP200 recruitment, so as to initiate autophagosome

formation (72) (Figure 4B). Additionally, another important way of

regulating autophagy by phase separation is that transcription

factors affect gene expression through phase separation. TFEB

(transcription factor EB), which is responsible for autophagy and

lysosome biogenesis gene transcription (73), forms nuclear

condensates and then colocalizes with MED1 puncta, thus

participating in the activated expression of genes involved in the

autophagic lysosomal pathway (74).
Concluding remarks and
future perspectives

Here, we summarize the discoveries of novel signaling

mechanisms of phase separation in innate immune response

during inflammation. Phase separation represents a new paradigm

in hub signaling and provides several new perspectives on

understanding biological systems such as precise immune

regulation (75, 76). The formation of membraneless condensates

driven by phase separation flexibly regulates innate immune

signaling, in a spatiotemporal control pattern, including the
A

B

C

FIGURE 3

STING phase separator-mediated spatiotemporal regulation of innate immune response (A) STING Phase Separator. 2’3’ -cGAMP- STING -TBK1 can be
aggregated to form the STING phase separator. (B) STING, 2’3’ -cGAMP and TBK1 are present on the normal ER membrane. (C) Formation of STING
phase separation. The “STING phase separator” comparts the inactive STING-TBK1 (also including 2 ‘3’ -cGAMP) and prevents the over-activation of
innate immunity, which finally can be broken down by lysosomes or autophagosomes.
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innate immune pathways cGAS-STING, innate immune sensor

NLRP6, autophagy-related factors p62/SQSTM1, NBR1, TFEB and

RNA helicase DDX3X. In terms of dynamic spatiotemporal

regulation, LLPS that mainly mediated by multivalent interactions

through IDRs, is not only an important driving force for assembly of

inflammasome and autophagic matrix, but also an induction

pathway that activates innate sensors, host effectors and the

transcriptional cascade, thereby enriching or separating

intracellular components and enabling them to be rapidly and

efficiently activation (65). Recently, increasing evidences have

emerged that LLPS is involved in innate immune responses to

viral infections. For example, SARS-CoV-2 nucleocapsid protein

can form LLPS with viral genomic RNA to promote viral replication

and assembly (77). The dimerization domain of SARS-CoV-2

nucleocapsid protein that is responsible for the LLPS, inhibits

Lys63-linked polyubiquitination and MAVS aggregation, and thus

blocks innate antiviral immune response (78). These studies provide

a new framework for understanding the mechanisms by which

viruses replicate and may aid in the development of antiviral drugs.

To date, the role of phase separation in immune signal

transduction, such as cGAS-STING and inflammasome signaling,

links with the regulation of pathogen recognition, protein complex

assembly and organelle homeostasis leading to the activation of innate

immune pathways have been demonstrated (75, 76, 79). The specific

mechanisms underlying the dynamic characteristics of phase

separation in innate immunity are still lacking. Research on the

mechanisms of phase separation, especially the screening of key

molecules that regulate phase separation, will provide a theoretical

basis for the identification of effective targets. There might be

important theoretical and practical significance for both

physiological exploration and pathological function research of

phase separation in regulation of innate immune response and

inflammation-related diseases.
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FIGURE 4

Phase separation of autophagy factors balances inflammation (A) The schematic of the domain structure and the intrinsic disorder profile of P62
obtained from PONDR are shown. (B) Model of cargo receptors’ interplay in autophagy initiation. Oligomerized p62 and polyubiquitin chains interact
with each other to trigger their phase separation and start forming p62 bodies. TAX1BP1 is recruited by NBR-1 which promotes p62 phase separation and
initiates FIP200 recruitment.
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