
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ann-Kristin Östlund Farrants,
Stockholm University, Sweden

REVIEWED BY

Ming Zheng,
Academy of Military Medical Sciences,
China
Guojun Qian,
Guangzhou Medical University, China

*CORRESPONDENCE

Zhengxiu Luo

luozhengxiu816@163.com

SPECIALTY SECTION

This article was submitted to
Systems Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 09 November 2022
ACCEPTED 16 January 2023

PUBLISHED 27 January 2023

CITATION

Wang Z, He Y, Li Q, Zhao Y, Zhang G and
Luo Z (2023) Network analyses of
upper and lower airway transcriptomes
identify shared mechanisms among
children with recurrent wheezing and
school-age asthma.
Front. Immunol. 14:1087551.
doi: 10.3389/fimmu.2023.1087551

COPYRIGHT

© 2023 Wang, He, Li, Zhao, Zhang and Luo.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 January 2023

DOI 10.3389/fimmu.2023.1087551
Network analyses of upper and
lower airway transcriptomes
identify shared mechanisms
among children with recurrent
wheezing and school-age asthma

Zhili Wang1,2, Yu He1,2, Qinyuan Li1,2, Yan Zhao1,2, Guangli Zhang3

and Zhengxiu Luo3*

1Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Key
Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and
Disorders, Ministry of Education, Chongqing, China, 2Chongqing Key Laboratory of Pediatrics,
Chongqing, China, 3Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical
University, Chongqing, China
Background: Predicting which preschool children with recurrent wheezing (RW)

will develop school-age asthma (SA) is difficult, highlighting the critical need to

clarify the pathogenesis of RW and the mechanistic relationship between RW and

SA. Despite shared environmental exposures and genetic determinants, RW and SA

are usually studied in isolation. Based on network analysis of nasal and tracheal

transcriptomes, we aimed to identify convergent transcriptomic mechanisms in

RW and SA.

Methods: RNA-sequencing data from nasal and tracheal brushing samples were

acquired from the Gene Expression Omnibus. Combined with single-cell

transcriptome data, cell deconvolution was used to infer the composition of 18

cellular components within the airway. Consensus weighted gene co-expression

network analysis was performed to identify consensus modules closely related to

both RW and SA. Shared pathways underlying consensus modules between RW

and SA were explored by enrichment analysis. Hub genes between RW and SA

were identified using machine learning strategies and validated using external

datasets and quantitative reverse transcription-polymerase chain reaction (qRT-

PCR). Finally, the potential value of hub genes in defining RW subsets was

determined using nasal and tracheal transcriptome data.

Results: Co-expression network analysis revealed similarities in the transcriptional

networks of RW and SA in the upper and lower airways. Cell deconvolution analysis

revealed an increase in mast cell fraction but decrease in club cell fraction in both

RW and SA airways compared to controls. Consensus network analysis identified

two consensus modules highly associated with both RW and SA. Enrichment

analysis of the two consensus modules indicated that fatty acid metabolism-

related pathways were shared key signals between RW and SA. Furthermore,

machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4,

POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated

using three independent external datasets and qRT-PCR. The gene signatures of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1087551/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1087551/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1087551/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1087551/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1087551/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1087551&domain=pdf&date_stamp=2023-01-27
mailto:luozhengxiu816@163.com
https://doi.org/10.3389/fimmu.2023.1087551
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1087551
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2023.1087551

Frontiers in Immunology
the five hub genes could potentially be used to determine type 2 (T2)-high and T2-

low subsets in preschoolers with RW.

Conclusions: These findings improve our understanding of the molecular

pathogenesis of RW and provide a rationale for future exploration of the

mechanistic relationship between RW and SA.
KEYWORDS

cell deconvolution, gene co-expression network, machine learning, recurrent wheezing,

school-age asthma, scRNA-seq, RNA-seq
Introduction

Wheezing is a common symptom in preschool-age children (2–5

years) and a global public health issue (1, 2). It is associated with high

morbidity and significant health care costs (e.g., 53 million pounds in

the UK annually) (3). Almost 50% of preschoolers experience at least

one wheezing episode (2, 4). Although most preschool children

recover from wheezing during the school-age period (aged 6–13

years), some experience recurrent wheezing (RW) and may develop

asthma (2, 5). However, despite substantial efforts, it is difficult to

predict which children with RW will develop school-age asthma (SA)

(4, 6), highlighting a critical need to clarify the pathogenesis of RW.

Allergic asthma is the most common type (over 80% of cases)

among children and is characterized by a type 2 (T2)-biased airway

inflammatory response involving a complex network of epithelial

cells, T helper 2 (Th2) cells, group 2 innate lymphoid cells,

eosinophils, and mast cells, as well as their major cytokines (7, 8).

Despite recent evidence showing that loss of airway epithelial barrier

integrity and impaired wound repair capacity following insults are

tightly associated with RW, the biological mechanisms underlying

RW remain poorly understood (9, 10). Previous studies have

identified multiple environmental (e.g., atopic sensitization, tobacco

exposure, and respiratory tract infections early in life) and genetic risk

factors (e.g., chr17q21 locus) shared by RW and SA (8, 11–13). The

intrinsic associations during disease trajectory and similarities in

environmental exposures and genetic determinants suggest

potential overlap in the mechanisms and pathogenic pathways of

RW and SA. Thus, exploring the mechanisms common to RW and SA

should increase our understanding of the pathogenesis of RW.

Recent computational methods in systems biology, such as network

analysis and machine learning, can facilitate our understanding of

disease by analyzing multi-omics data (e.g., RNA-sequencing (RNA-

seq)) at the systemic level (14). Weighted gene co-expression network

analysis (WGCNA) (15) can identify gene modules of highly correlated

genes and their association with clinical or phenotypic traits. WGCNA

also applies a unique consensus network-based approach (16) to reveal

consensus gene modules shared among datasets and consensus

modules related to clinical trait information. To the best of our

knowledge, previous studies have not explored the molecular

networks shared by RW and SA.

High-throughput single-cell RNA sequencing (scRNA-seq)

enables comprehensive analysis of tissue microenvironments (17).
02
Although scRNA-seq is a powerful tool for resolving cellular

heterogeneity, it remains impractical for large-scale analysis (18).

The recently developed CIBERSORTx algorithm allows

deconvolution of bulk RNA-seq data to estimate the abundances of

member cell types in a mixed cell population using signature genes

derived from scRNA-seq for large-scale tissue dissection (19).

However, our current understanding of the changes in the RW

airway microenvironment remains limited.

As RW affects the entire airway, integrated study of the upper

(e.g., nasal) and lower (e.g., tracheal) airways is a powerful approach

for understanding RW (20). Here, based on nasal and tracheal bulk

RNA-seq data, scRNA-seq analysis, cell deconvolution (using

CIBERSORTx), and consensus network analysis, we identified

consensus gene modules and critical cellular components shared by

RW and SA. Molecular pathways common to RW and SA were

explored by enrichment analysis of key consensus modules. Hub

genes between RW and SA were identified using machine learning

strategies, then validated using independent external datasets and

quantitative reverse transcription-polymerase chain reaction (qRT-

PCR). The potential value of hub genes in defining RW subsets was

also determined using nasal and tracheal RNA-seq data. The

identified hub genes, cellular components, and pathways between

RW and SA should provide new insights into the pathogenesis of RW

and help identify RW-affected preschoolers with distinct molecular

mechanisms of airway inflammation.
Materials and methods

Ethics statement

This study was approved by the Ethics Committee of the

Children’s Hospital of Chongqing Medical University. Written

informed consent was obtained from the legal guardians of the

study participants before enrollment.
Patient recruitment

A total of 32 preschoolers with RW (defined as ≥ 3 physician-

diagnosed wheezing episodes) (21, 22), 15 children with SA (23), and

18 control individuals (patients without current respiratory tract
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infection, current wheezing, or history of allergy or wheezing)

undergoing bronchoscopy were enrolled in the study. Collection of

bronchoalveolar lavage fluid (BALF) from controls and patients with

RW was carried out using standard procedures (24). BALF was gently

aspirated and centrifuged at 2 500 rpm for 5 min at 4°C after collection.

The bronchoalveolar lavage (BAL) cells were resuspended in

phosphate-buffered saline (PBS) and stored at −80°C. Details on

subject characteristics are included in Supplementary File 1; Table S1.
RNA-seq dataset collection and processing

RNA-seq data (raw count matrix) of RW, SA, and healthy

controls were obtained from the Gene Expression Omnibus (GEO)

database at the National Center for Biotechnology Information

(NCBI; accession number GSE118761). This dataset included nasal

and tracheal brushing samples from RW (n = 14), SA (n = 13), and

healthy (n = 14) groups (Supplementary File 1; Table S2). To prevent

sampling noise caused by lowly expressed genes, genes with low

expression (< 30 counts in total across all nasal or tracheal samples)

were excluded. For subsequent analysis and visualization of count

data, variance stabilizing transformation (VST) normalized

expression values were calculated using the “DESeq2” (25) R

package (v1.34.0).
Identification and analysis of differentially
expressed genes

The DEGs between groups (RW or SA vs. control) were identified

using the “DESeq2” R package (v1.34.0), with P < 0.05 and |log2fold-

change| > 0.5 considered significant. To identify common DEGs (co-

DEGs) between RW and SA in the upper and lower airways, the

“UpSetR” (26) R package (v1.4.0) was used to construct an

UpSet diagram.
scRNA-seq data acquisition and processing

The scRNA-seq data (count matrix) of airway samples collected

from 18 healthy children were obtained from the FigShare repository

(Supplementary File 1; Table S2). The R package Seurat (27) (v4.1.2)

was used to process the scRNA-seq data. To ensure high-quality

single cells were used for downstream analysis, cells expressing fewer

than 500 genes and cells with more than 15% mitochondrial reads

were filtered out. In total, 38 399 filtered cells were used for

further analysis.

Raw data were normalized using the “NormalizeData” function,

and 2 500 highly variable genes were identified using

“FindVariableFeatures”. Principal component analysis (PCA) was

then performed for dimensionality reduction after data scaling. The

top 40 principal components were selected for downstream analysis.

The Uniform Manifold Approximation and Projection (UMAP)

algorithm was used for cell visualization. The “FindClusters”

function was used for cell clustering. To annotate cell clusters, the

DEGs for each cell cluster were identified by comparing each cluster

to all other clusters with the “FindAllMarkers” function. Genes with
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adjusted P < 0.05 were considered DEGs. The cell subsets were

annotated based on the DEGs and known markers (28).
Cellular composition in upper and lower
airways based on CIBERSORTx

The CIBERSORTx online platform (https://cibersortx.stanford.

edu/) was applied to infer the cellular composition of the bulk airway

transcriptomes. We first prepared and uploaded the single-cell

expression matrix from our scRNA-seq analysis according to the

CIBERSORTx instructions using default parameters. We ran

“CIBERSORTx” and obtained a signature matrix of 18 cell types,

then uploaded the gene expression matrix data for the RW, SA, and

control groups. The previously obtained signature matrix was used for

deconvolution analysis, with all parameters set to default. After

running “CIBERSORTx”, we obtained the relative proportions of

the 18 cell subsets in each sample.
Consensus WGCNA

WGCNA was performed using the “WGCNA” (15) R package

(v4.1.2) and the VST-normalized gene expression profile data were

used for network construction. We first constructed nasal and

tracheal co-expression gene networks for RW and SA in parallel

using default parameters. The RWmodules were then correlated with

the SA modules (Supplementary File 1; Figures S1A, B). We

calculated the overlap of each pair of RW-SA modules and used

Fisher’s exact test to assign a P-value to each pairwise overlap. Next,

we built nasal and tracheal consensus networks for RW and SA,

respectively. Based on scale-free topology criteria, we selected

appropriate soft-threshold power values for network construction

(Supplementary File 1; Figures S2, S3). The Dynamic Tree Cut

method was used to identify different modules, with modules

showing similar expression patterns then merged (Supplementary

File 1; Figures S4A, B). The minimum module size was set to 40 and

the DeepSplit parameter was set to 2.5.
Identification of key consensus modules
shared by RW and SA

In order to identify consensus modules significantly correlated with

clinical features of RW and SA (and in the same positive or negative

direction), we performed Pearson correlation analysis of consensus

module eigengenes and clinical traits (atopy and cellular compositions

inferred from CIBERSORTx). Modules showing significant positive

correlations with both RW and SA, as well as important phenotypic

traits, were considered as key consensus modules.
Functional annotation and pathway
enrichment analysis

To identify the biological functions of the co-DEGs and genes

within the key consensus modules, Gene Ontology (GO) (29) and
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Kyoto Encyclopedia of Genes and Genomes (KEGG) (30) pathway

analyses were performed using the “clusterProfiler” R package

(v4.2.2), with significant enrichment considered at P < 0.05.
Screening of hub genes common to RW and
SA based on machine learning

Two machine learning algorithms, Random Forest (RF) (31) and

support vector machine-recursive feature elimination (SVM-RFE)

(32), were used to screen hub genes (i.e., genes within key

consensus modules) highly correlated with RW and SA. Specifically,

RF and SVM-RFE were used to estimate how well each candidate hub

gene correctly classified RW or SA compared to the controls, and to

detect the number of feature genes required to separate groups with

maximum accuracy. The RF and SVM-RFE modeling procedures

were based on three-fold cross-validation (CV) using the

“randomForest” and “e1071” R packages, respectively. The

classification accuracies of different numbers of feature genes were

determined for RF and SVM-RFE, with those showing the highest

classification accuracy retained to determine the final hub genes. Hub

genes were selected by intersecting the co-DEGs and common feature

genes identified by RF and SVM-RFE.

For testing hub gene efficacy, receiver operating characteristic

(ROC) curves and corresponding areas under the ROC curves (AUC)

were calculated for each hub gene based on their standardized

expression levels.
External validation of hub gene expression
and convergent mechanisms in RW and SA

To validate the expression profiles of the hub genes in RW and

SA, external validation was performed with two independent SA nasal

gene expression datasets (GSE19187 and GSE65204) and one RW

nasal gene expression dataset (GSE103166). The GSE103166 and

GSE65204 datasets were used to validate shared mechanisms between

RW and SA. The GSE103166 dataset contained 56 RW and 21 healthy

individuals, the GSE65204 dataset contained 36 SA and 33 healthy

individuals, and the GSE19187 dataset contained 13 SA and 11

healthy individuals. Detailed information on these datasets is

provided in Supplementary File 1; Table S2.
RNA extraction and qRT-PCR for hub genes

Total RNA was extracted from BAL cells using TRIzol reagent

(Invitrogen, USA), and purified using a Micro Total RNA Extraction

Kit (Tianmo Biotech, China). cDNA was synthesized using a

PrimeScript RT Kit (TaKaRa, Japan) according to the

manufacturer’s instructions. Reactions were carried out in a total

volume of 10 mL, including 5 mL of TB Green®Premix Ex Taq™ II

(TaKaRa, Japan), 0.2 mL of each specific primer, 2.6 mL of ddH2O, and

2 mL of cDNA. The relative expression levels of the hub genes were

calculated using the2-DDCt method. GAPDH was used as an internal

reference. The specific primers for each gene are provided in

Supplementary File 1; Table S3.
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Transcriptional regulatory network
of hub genes

To identify the potential regulatory transcription factors (TFs) for

the hub genes, we performed enrichment analysis of TF binding

motifs (TFBMs) and TFs surrounding the transcription start site

(TSS) of genes using the “RcisTarget” (33) R package (v1.14.0).

Significantly enriched TFBMs (normalized enrichment score (NES) >

3.0) were annotated to TFs using the provided annotation database.

The TF-target network was visualized with Cytoscape (v3.8.2) (34).
Statistical analysis

All continuous data are expressed as mean ± standard deviation

(SD). All statistical analyses were conducted using R (v4.1.2; https://

www.r-project.org/). Wilcoxon’s rank-sum test was used to compare

gene expression levels (Figures 1F, 2C, D and Supplementary File 1;

Figures S9E–G) and cellular compositions inferred by CIBERSORTx

between groups (Figure 3C). Pearson correlation analysis (Figures 2E,

F) was performed to obtain correlation coefficients (r) and P-values. A

P-value of < 0.05 was considered statistically significant.
Results

Identification of co-DEGs between RW and
SA in upper and lower airways

Compared with the healthy controls, we identified 567 DEGs (335

up-regulated and 232 down-regulated) and 549 DEGs (201 up-

regulated and 348 down-regulated) in the RW nasal and tracheal

samples, respectively, and 838 DEGs (152 up-regulated and 686

down-regulated) and 412 DEGs (189 up-regulated and 223 down-

regulated) in the SA nasal and tracheal samples, respectively

(Figure 4A). The UpSet diagram in Figure 4B shows the number of

overlapping DEGs between RW and SA across nasal and tracheal

samples. In total, 16 co-DEGs were shared between RW and SA across

the upper and lower airways (Figures 4A, C). Compared to the healthy

controls, these genes were overrepresented in RW and SA. The co-

DEGs were retained for identifying hub genes shared by RW and SA.

To investigate the biological behaviors of the co-DEGs, GO

functional annotation and KEGG enrichment analysis were performed.

Results indicated that the co-DEGs were mainly involved in

sensory perception of taste, wound healing, endopeptidase inhibitor

activity, and regulation of cell-matrix adhesion (Figure 4D). Salivary

secretion and pancreatic secretion were the major biological pathways

involved (Figure 4E).
Inferring critical cell components shared by
RW and SA through deconvolution of airway
transcriptome data

To understand changes in the RW and SA airway

microenvironments as well as potential critical cell populations

shared by RW and SA, we performed cell deconvolution of the upper
frontiersin.org
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and lower bulk transcriptome data to deduce changes in cell-type

frequency within the airways of RW and SA.

First, we analyzed the scRNA-seq data using cells from airway

samples of 18 healthy children. After stringent quality control, 38 399

cells were retained for further analysis. Unsupervised clustering by

UMAP identified 18 cell subsets (Figure 3A) based on representative

marker genes from previous research (28). The cell clusters identified

by cell lineage-specific marker gene expression are shown in

Supplementary File 1; Figure S5. Based on the CIBERSORTx

algorithm, a signature matrix of 2 360 genes in 18 cell clusters was

created (Supplementary File 2; Table S4).

Next, using the signature matrix derived from scRNA-seq analysis,

we calculated the relative proportions of the 18 cell subsets for the RW,

SA, and control samples using CIBERSORTx. The histogram in

Figure 3B shows the proportions of each cell type in the upper and

lower airways of preschool and school-age children. We then examined

fractional differences in each cell type between RW and SA and the

control group. Interestingly, a higher fraction of mast cells and lower

fraction of club cells were observed in both the upper and lower airways

of the RW and SA patients compared to the healthy controls (Figure 3C).
Identification of key consensus gene
modules shared by RW and SA

To explore the possibility that RW and SA share certain

mechanisms and biological pathways, we analyzed similarities in
Frontiers in Immunology 05
their gene expression networks across nasal and tracheal

transcriptomes using WGCNA. WGCNA can identify gene

modules with similar gene expression patterns, thus providing

biological insight based on the principal that genes with highly

correlated expression patterns are likely to participate in the same

biological processes. By constructing co-expression gene networks for

RW and SA in parallel, we identified 25 and 25 network modules for

RW and SA from their nasal transcriptomes, respectively

(Supplementary File 1; Figure S1A), and 26 and 25 network

modules for RW and SA from their tracheal transcriptomes,

respectively (Supplementary File 1; Figure S1B). To determine

whether network modules identified in RW could also be identified

in SA, we explored the correlations between RW-specific and SA-

specific modules. Results showed that most RW-specific modules had

one or more SA module counterparts in both the upper and lower

airways (Supplementary File 1; Figures S1A, B), thus suggesting

possible similarities in the underlying transcriptional networks

between RW and SA.

Next, we built consensus networks using the nasal and tracheal

transcriptome data, with the resulting network modules representing

robust gene co-expression patterns shared by RW and SA. The nasal

and tracheal consensus networks contained 23 and 25 modules of co-

expressed genes, respectively (Supplementary File 1; Figures S4A, B).

To determine key consensus network modules highly correlated with

both RW and SA, we performed Pearson correlation analysis between

consensus module eigengenes and clinical traits of RW and SA,

including the fractions of the 18 cell subsets inferred by
A B D

E F G

C

FIGURE 1

Identification and validation of hub genes shared by RW and SA. Process of identifying hub genes using random forest (RF) algorithm across nasal (A) and
tracheal samples (B). Identifying hub genes based on support vector machine-recursive feature elimination (SVM-RFE) across nasal (C) and tracheal
samples (D). X-axis denotes number of feature genes; y-axis represents classification accuracy. Annotated numbers represent number of feature genes
corresponding to maximum classification accuracy. (E) UpSet diagram showing 16 overlapping hub genes between co-DEGs and candidate hub genes
screened by two machine learning algorithms. (F) qRT-PCR validation of POSTN, CST1, CST2, CST4, and NTRK2 expression in bronchoalveolar lavage
(BAL) cells from controls, patients with SA, and preschoolers with RW. Statistical significance was assessed using Wilcoxon rank-sum test. Asterisks
indicate P-values for RW or SA versus control. *P < 0.05, **P < 0.01, ***P < 0.001. (G) ROC curves evaluating discriminatory power of hub genes for
children with RW. AUC, area under ROC curve; co-DEGs, common differentially expressed genes; con, control; N, nasal; qRT-PCR, quantitative reverse-
transcription polymerase chain reaction; ROC, receiver operating characteristic; RW, recurrent wheezing; T, tracheal.
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CIBERSORTx. Heatmaps were constructed to show the relationship

between nasal (Supplementary File 1; Figures S6A, B) and tracheal

(Supplementary File 1; Figures S7A, B) consensus modules and clinical

trait information for RW and SA. To obtain consensus module-trait

relationships across both RW and SA, we integrated the separate

consensus module-trait relationships specific to RW and SA. We

retained the lower absolute value in the two sets with the same

correlation sign, and “NA” for those with the opposite trend.

Figures 5A, B shows the integrated consensus module-trait

relationships in both RW and SA. Of note, in the upper and lower

airway consensus networks, only two consensus modules (orange

module in the nasal consensus network and plum module in the

tracheal consensus network) were significantly positively correlated
Frontiers in Immunology 06
with RW and SA. Interestingly, these two consensus modules were also

significantly positively correlated with atopy and mast cells. Therefore,

the nasal orangemodule and tracheal plummodule were selected as key

consensus gene modules shared by RW and SA.
Key consensus module gene signatures can
distinguish RW and SA from controls across
upper and lower airways

Next, we explored whether key consensus module gene

signatures could be distinguished between children with RW and

SA and healthy subjects. We performed hierarchical clustering
A B

D

E F

C

FIGURE 2

Identification of RW patient subsets using expression profiles of hub genes. Heatmap of hierarchical clustering of POSTN, CST1, CST2, CST4, and NTRK2
expression levels across all subjects with RW in nasal (A) and tracheal samples (B), respectively. Comparison of gene expression levels of 12 T2
inflammatory markers between high- and low-hub expression groups of all RW patients across nasal (C) and tracheal samples (D). Statistical significance
was assessed using Wilcoxon rank-sum test. Asterisks indicate P-values for hub high-expression versus hub low-expression. *P < 0.05, **P < 0.01.
Correlation heatmaps showing associations between hub genes (row) and 12 T2 inflammatory markers (column) across nasal (E) and tracheal samples
(F). Boxplot above heatmap showing correlation coefficients obtained by Pearson correlation analyses between each T2 inflammatory genes and hub
genes. Blue to orange gradient coloration implies increased Pearson correlation coefficient. Correlation coefficients (r) and P-values were obtained by
Pearson correlation analysis. *P < 0.05, **P < 0.01. NS, no significance; RW, recurrent wheezing; T2, type 2.
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analyses using the 66 (Supplementary File 3; Table S5) and 98

(Supplementary File 4; Table S6) genes in the nasal orange module

and tracheal plum module, respectively. Heatmap visualization of

the genes in the nasal orange module (Figure 6A) and tracheal plum

module (Figure 6B) indicated that: (1) genes were more highly

expressed in the RW and SA individuals; (2) hierarchical clustering

grouped samples into two major clusters, with RW and SA clustered

together based on similar expression patterns; and (3) hierarchical

clustering using key consensus module gene signatures clearly
Frontiers in Immunology 07
dist inguished RW and SA patients from the controls .

Furthermore, PCA of the genes in the nasal orange module and

tracheal plum module also distinguished RW and SA patients from

the controls in both the nasal and tracheal samples (Figures 6C, D).

Notably, the RW and SA individuals tended to cluster together.

These results suggest the potential biological significance of the co-

expressed genes in the key consensus modules and highlight the

possibility of shared underlying molecular mechanisms between

RW and SA.
A B

C

FIGURE 3

Deconvolution of airway transcriptome data to infer critical cell components shared by RW and SA. (A) Overall cell-type composition of 38 399 cells
from 18 healthy children visualized using UMAP. CD8_Tm, memory CD8+ T cells; CTL, cytotoxic T cells; DNT, double-negative T cells; FOXN4, FOXN4+
cells; IL-17A_CD8, IL-17A-expressing CD8+ T cells; mDC, myeloid dendritic cells; Ma, macrophages; moMa, monocyte-derived macrophages; pDCs,
plasmacytoid dendritic cells. (B) Histogram displaying proportion of each cell type in preschool and school-age subjects across nasal and tracheal
samples. (C) Heatmap of proportion of each cell type across upper and lower airways of RW, SA and healthy controls inferred by cell deconvolution
analysis. NA indicates P-value could not be calculated because corresponding cellular components were not detected by CIBERSORTx. Statistical
significance was assessed using Wilcoxon rank-sum test. Asterisks indicate P-values for RW or SA versus control. *P < 0.05, **P < 0.01. Con, control; NA,
not applicable; RW, recurrent wheezing; SA, school-age asthma.
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Identification and validation of convergent
mechanisms in RW and SA

We further explored shared mechanisms between RW and SA

by identifying significantly overrepresented biological pathways

and GO terms for the two key consensus modules. Overall, the

nasal and tracheal consensus modules were associated with several

similar GO terms, including fatty acid oxidation, fatty acid

metabolic process, and sensory perception of bitter taste

(Figures 6E, F). Fatty acid metabolism-related pathways were

also significantly enriched in both the nasal orange and tracheal

plum modules (Figures 6E, F).

To validate the convergent mechanisms in RW and SA, we

performed similar analysis using two larger validation datasets,
Frontiers in Immunology 08
GSE103166 (56 RW patients and 21 controls) and GSE65204 (36

SA patients and 33 controls). As expected, fatty acid metabolism-

related biological processes and pathways were significantly enriched

for both RW and SA (Supplementary File 1; Figure S8).
Identification and validation of hub genes
shared by RW and SA

To further screen hub genes most relevant to RW and SA within the

key consensus modules, we applied the RF and SVM-RFE machine

learning algorithms. Gene expression profiles in the nasal orange module

(66 genes) and tracheal plum module (98 genes) were extracted, and the

RF and SVM-RFE algorithms were run. Twelve and 14 feature genes in
A

B

D E

C

FIGURE 4

Identification of co-DEGs shared by RW and SA across upper and lower airways. (A) Volcano plots showing DEGs between healthy controls and children with
RW/SA. (B) UpSet diagram showing overlapping DEGs between RW and SA across nasal and tracheal samples. In total, 16 co-DEGs were shared by RW and
SA across nasal and tracheal samples. (C) Heatmap visualization of differential expression changes (colors in inner circle indicates corresponding log2FC) and
significance values (colors in outer circle represent corresponding -log10P-value) for 16 co-DEGs derived from integrated analysis. (D) GO term enrichment
analysis of co-DEGs. (E) KEGG pathway enrichment analysis of co-DEGs. co-DEGs, common DEGs; DEGs, differentially expressed genes; FC, fold-change;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; N, nasal; RW, recurrent wheezing; SA, school-age asthma; T, tracheal.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1087551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1087551
the nasal orange module were identified with the best classification

accuracy based on RF and SVM-RFE, respectively (Figures 1A, C), while

21 and 15 feature genes in the tracheal plummodule were identified with

the best classification accuracy based on RF and SVM-RFE, respectively

(Figures 1B, D). As shown in the UpSet diagram in Figure 1E, five genes

(CST1, CST2, CST4, POSTN, and NTRK2) overlapped between the two

algorithms. These five genes were also co-DEGs between RW and SA

(Figure 4C) and were therefore selected as hub genes.

To verify the efficacy of the hub genes, ROC analyses were

performed to evaluate the power of each hub gene to distinguish RW

and SA patients from healthy controls. Overall, the results showed that

each hub gene displayed a moderate ability to distinguish children with

RW and SA from healthy controls across both nasal and tracheal

samples (Supplementary File 1; Figures S9A–D).

To further validate transcriptome data accuracy, we analyzed the

expression levels of the hub genes using two independent SA gene

expression datasets (GSE19187 and GSE65204) and one RW gene

expression dataset (GSE103166). As expected, all five genes were

significantly up-regulated in both RW and SA patients compared to

the controls (Supplementary File 1; Figures S9E–G). Next, we

examined the mRNA expression levels of hub genes using qRT-

PCR of BAL samples from 18 controls, 15 children with SA, and 32

preschoolers with RW. Similar results were obtained after comparing

the expression levels of hub genes, revealing that CST1, CST2, CST4,

POSTN, and NTRK2 were highly overrepresented in preschoolers

with RW and patients with SA (Figure 1F). Furthermore, CST1,

CST2, CST4, and NTRK2 displayed moderate-to-high discriminatory

power (AUC = 0.91, 0.77, 0.90, and 0.89, respectively) and POSTN

showed high discriminatory power (AUC = 0.92) for distinguishing

RW from controls (Figure 1G).
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We next performed enrichment analysis of TFs to identify

potential upstream regulators of the hub genes. All enriched TFs

and their corresponding AUC and NES values are shown in

Supplementary File 5; Table S7. The TF-gene interaction networks

of the top 10 enriched TFs for each hub gene and corresponding hub

genes are shown in Supplementary File 1; Figure S10. Results

indicated that the master TF regulator of CST1, CST2, and CST4

was TRIM28, which had the highest NES, while the main TF regulator

for POSTN and NTRK2 was TBPL2.
Hub gene expression profiles could be used
to identify RW patient subsets

Previous studies in adults have shown that POSTN and several

other genes can be used to define subsets with T2-high and T2-low

asthma (35–37). Thus, we explored whether the combined expression

signatures of the five hub genes could be used to classify RW subjects

into different subsets. Using the nasal and tracheal transcriptomes, we

performed hierarchical clustering analysis of all subjects with RW

based on the expression levels of POSTN, CST1, CST2, CST4, and

NTRK2. Approximately 30% of RW patients with high hub gene

expression were grouped together in one major branch of the

dendrogram in both the nasal (Figure 2A) and tracheal samples

(Figure 2B). We then compared the expression levels of 12 T2

inflammatory markers (35, 38) between RW patients with high

and low hub gene expression. Interestingly, most T2 marker genes

(e.g., interleukin-5 (IL-5), IL-13, and IL1RL1) showed significantly

higher expression in subjects with high hub gene expression than in

those with low hub gene expression (Figures 2C, D). Furthermore, we
A B

FIGURE 5

Consensus module-trait relationships across RW and SA in nasal (A, B) tracheal networks. Each module is represented by its eigengene value and
Pearson correlation analysis between eigengene values and clinical traits was performed. Each color represents one consensus gene module. Each row
corresponds to a module eigengene, and each column to a clinical trait. Each cell contains corresponding Pearson correlation coefficient (first number)
and P-value (number in parenthesis). Green to purple gradient coloration implies increased Pearson correlation coefficient. Nasal orange module and
tracheal plum module were significantly positively associated with RW, SA, atopy, and mast cells. RW, recurrent wheezing; SA, school-age asthma.
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found high positive correlations between the expression levels of hub

genes and T2 inflammatory genes (Figures 2E, F). Taken together,

these results suggest that the identified hub genes could potentially be

used for defining subsets (T2-high vs. T2-low) of preschoolers

with RW.
Discussion

To the best of our knowledge, this is the first study to investigate

the potential common mechanisms underlying RW and SA using cell

deconvolution and network analysis of nasal and tracheal

transcriptomes. Our results support the possibility of overlapping

mechanisms based on the similarities in transcriptional networks

between RW and SA in both the upper and lower airway samples. Cell
Frontiers in Immunology 10
deconvolution analysis indicated that mast cells and club cells were

critical cellular components shared by RW and SA. Furthermore,

consensus network analysis identified key nasal and tracheal co-

expressed gene modules shared by RW and SA, functionally

associated with fatty acid metabolism-related biological processes

and pathways. We also identified five hub genes (POSTN, CST1,

CST2, CST4, and NTRK2) highly associated with RW and SA, with

mRNA expression validated using external datasets and qRT-PCR.

Finally, we found that the gene signature of the five hub genes may be

used to determine T2-high and T2-low subsets of preschoolers

with RW.

Using cell deconvolution, we showed that the proportion of mast

cells increased, and the proportion of club cells decreased in both the

RW and SA airways. Mast cells are key factors in acute allergic

reactions in sensitized asthmatic patients. When two adjacent
A B

D

E F

C

FIGURE 6

Key consensus module gene signatures can distinguish RW and SA from controls across both upper and lower airway samples. Heatmaps of expression
patterns of 66 genes in nasal orange consensus module across all nasal samples (A) and 98 genes in tracheal plum consensus module across all tracheal
samples (B), where genes and samples were ranked using hierarchical clustering. PCA across all nasal samples based on 66 genes in nasal orange
module (C) and across all tracheal samples based on 98 genes in tracheal plum module (D). Dot plot showing enriched GO terms (BP, CC, and MF) and
KEGG pathways for nasal orange module (E) and tracheal plum module (F), respectively. BP, biological process; CC, cellular component; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MF, molecular function; PCA, principal component analysis; RW, recurrent wheezing; SA, school-age asthma.
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immunoglobulin E (IgE) molecules are cross-linked by an allergen,

mast cells are activated to release biologically active mediators such as

histamine and neutral proteases such as tryptase and chymase (39,

40). They also produce lipid mediators and T2-associated cytokines

(IL-4, IL-5, IL-9, and IL-13), thereby reinforcing the T2 environment

(39, 40). However, little is known about the changes and functional

significance of mast cells in RW, and further research is needed to

explore their precise functional roles. Airway epithelial injury and

epithelial barrier dysfunction play key roles in the development and

progression of asthma (41, 42). Epithelial damage has been observed

in asthmatic and wheezy pediatric airways, and dysregulated repair

following insult has been implicated in RW and SA pathogenesis (9,

10, 43). Club cells of the small airways secrete a specific secretoglobin

family 1A member 1 protein (SCGB1A1) (44). In response to

epithelial injury, club cells differentiate into ciliated and mucus-

secreting goblet cells to restore epithelial integrity (45). SCGB1A1-

positive epithelial cells are significantly lower in the small airways of

adult asthmatic subjects with significantly decreased BALF and serum

SCGB1A1 levels compared to controls (46, 47). In addition,

mutations in the SCGB1A1 gene are associated with an increased

risk of childhood asthma and a significant decrease in serum

concentrations of SCGB1A1 (48, 49). Although these findings

suggest that club cells may play important roles in epithelial repair

after injury in RW and SA, their contributions to disease pathogenesis

are not well characterized, which will be of interest in future

investigations. Here, cell deconvolution analysis yielded mixed cell

populations, with more than 80% (84%–92%) of cells identified as

epithelial cells in the upper and lower airways (Figure 3B). Nasal and

bronchial brushings generally produce over 90% epithelial cell

populations (50), underscoring the robustness of our

deconvolution analysis. However, the presence of several minor

immune cells and relatively scarce cells in the mixed cell

populations may make the cell composition estimates less accurate.

Future studies, especially scRNA-seq studies focusing on RW and SA,

are necessary for more precise exploration of cellular heterogeneity

within the complex inflammatory airway microenvironments.

We compared the gene co-expression networks in RW and SA

through WGCNA and found high similarities (Supplementary File 1;

Figure S1), suggesting common underlying mechanisms between RW

and SA. Subsequently, using consensus network analysis, the nasal

orange and tracheal plum consensus modules were shown to be

significantly correlated with both RW and SA. Interestingly, the two

modules were also positively correlated with atopy and mast cells.

Associations between atopic history in early life and increased risk of

asthma and responsiveness to bronchial allergen challenge have been

reported in many pediatric cohorts (51, 52). Therefore, the co-

expressed genes in both modules may represent functionally

important transcriptional changes associated with the initiation and

progression of RW and SA. We also noticed that the tracheal plum1

consensus module was significantly negatively correlated with both RW

and SA, as well as atopy and mast cells (Figure 5B), while no

corresponding nasal consensus module was significantly negatively

correlated with RW and SA (Figure 5A). This is perhaps not

surprising. Although most nasal consensus modules significantly

correlated with clinical traits of RW and SA had one or more

tracheal consensus module counterparts (showing the same sign),

consistent with the “united airways concept” (53) (i.e., under disease
Frontiers in Immunology 11
settings, a pathological process in one region of the airway would affect

the function of the entire airway), the gene network modules specific to

nasal or tracheal regions reflected region-specific patterns of regulation.

We also investigated the possible shared mechanisms between

RW and SA by exploring the biological pathways behind the nasal

orange and tracheal plum consensus modules. We found that fatty

acid metabolism-associated biological processes and pathways, such

as fatty acid oxidation and degradation, were the most common and

were overrepresented in both modules (Figures 6E, F). Fatty acids are

key structural components of phospholipids, and the role of fatty acid

metabolites generated through the arachidonic acid (AA) pathway in

asthma has long been appreciated (54). Fatty acid catabolism

produces leukotrienes (LTs) and prostaglandins (PGs), which can

be derived from AA, a polyunsaturated fatty acid present in cell

membrane phospholipids (54). Allergen exposure results in the

secretion of phospholipase A2, which is responsible for the release

of AA from cell membranes (54). LTs play multiple roles in the

pathophysiology of asthma by inducing bronchoconstriction,

recruiting inflammatory cells, inducing plasma extravasation, and

driving tissue edema (55). PGs exert complex biological effects on the

pathophysiological processes of asthma by binding to one or more

PG-specific receptors. For instance, prostaglandin D2 (PGD2)

activates Th2 lymphocytes by binding to PGD2 receptor 2,

inducing eosinophil and Th2 cell chemotaxis to the site of allergic

inflammation (56); as an endogenous counterpart to pro-

inflammatory mediators, prostaglandin E2 (PGE2) protects against

allergic responses and airway inflammation by inhibiting the

functions of eosinophils and macrophages (57). Given the pivotal

role of fatty acid metabolism in the pathophysiology of asthma, we

speculate that it may also play a key role in airway inflammation in

RW. Elucidating the relationship between fatty acid metabolism

and RW may improve our understanding of the pathogenesis of

RW and facilitate the development of early prevention and

treatment strategies.

We identified five hub genes shared by RW and SA from the nasal

orange and tracheal plum consensus modules. Cystatin SN (encoded

by CST1), cystatin SA (encoded by CST2), and cystatin S (encoded by

CST4) are members of the type 2 cystatin protein superfamily (58).

Cystatins constitute a large group of evolutionarily related proteins

that act as protease inhibitors of papain-like proteases (58). Recent

studies have implicated CST1, CST2, and CST4 in T2 airway

inflammation. Notably, CST1, CST2, and CST4 are up-regulated by

in vitro stimulation of human airway epithelial cells with IL-13 (37)

and up-regulated in bronchial brushing samples from both mild and

moderate adult asthmatics (59). CST1 expression in nasal epithelial

cells is up-regulated by thymic stromal lymphopoietin and IL-33,

which reciprocally amplifies the release of these “alarmins” (60).

Intranasal treatment with CST1 induces the production of T2-

associated cytokines (IL-4, IL-5, IL-13) and increases Th2 cell

infiltration in murine sinonasal mucosa (58). Supplementaryly,

CST1 enhances eosinophil activation and recruitment by inducing

IL-5 production in nasal polyp cells isolated from patients with

eosinophilic chronic rhinosinusitis (61). However, further work is

necessary to clarify the specific functional roles of CST2 and CST4 in

T2 airway inflammation. Brain-derived neurotrophic factor (BNDF)

and its receptor, neurotrophic tyrosine kinase receptor type 2

(NTRK2), play important roles in neuronal differentiation,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1087551
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1087551
maturation, and survival (62). In mammals, airway smooth muscle

contractions are primarily mediated by parasympathetic cholinergic

neurons (63). One previous study (64) has reported that mRNA

expression of NTRK2 is elevated in bronchial biopsies of adult

asthmatics and disruption of BDNF/NTRK2 signaling by NTRK2

receptor blockade down-regulates cholinergic innervation density in

the airways of an ovalbumin-induced murine model of asthma,

thereby ameliorating airway hyperresponsiveness. POSTN encodes

for periostin, a secreted extracellular matrix protein that contributes

to airway remodeling, a crucial pathophysiological feature of asthma

(65). POSTN is one of the most highly expressed genes in the airways

of adult and school-age asthmatics (35, 66). Furthermore, higher

serum periostin levels in RW-impacted preschoolers are reported to

be associated with an increased risk of acute wheezing attacks (67) in

the following year and risk of developing asthma at school-age (68).

All hub genes identified in this study are relevant to the pathogenesis

of asthma, highlighting the need for follow-up studies to clarify their

possible roles in the context of RW pathogenesis.

Finally, we found that the gene signatures of the five hub genes may

be used to identify T2-high and T2-low subsets of RW. Previous studies

have shown that POSTN and several other genes in airway epithelial

brushings can be used to classify adult asthmatics into T2-high and T2-

low endotypes (35–37). Molecular endotyping of asthma based on T2

inflammation may have important clinical implications. First,

compared to T2-low patients, T2-high patients exhibit a greater

bronchodilatory response to salbutamol (36) and significantly

improved airway obstruction with inhaled steroids (35). Therefore,

classifying asthmatics based on T2 status may help to stratify patients

for optimal treatment. Second, T2 gene expression is positively

correlated with the degree of airway obstruction in adult asthmatics

and is more pronounced in patients with poorly controlled asthma

(69). Therefore, evaluation of T2 status in asthma may contribute to

better prognostic assessment. Over the last two decades, substantial

efforts have been devoted to understanding the heterogeneity of

preschool wheezing and tremendous advances have been made in

defining wheezing phenotypes and understanding the longitudinal

evolution of wheezing trajectories (70). However, research exploring

RW endotypes in disease subtypes with similar underlying

pathophysiological mechanisms remains limited but could facilitate

our understanding of RW pathogenesis and better targeted treatment.

Interestingly, approximately 30% of RW patients were classified as T2-

high based on hub gene expression (Figures 2A–D), which is lower than

that reported for SA (over 80%) (7). Thus, although the underlying

mechanisms of RW and SA may overlap to some extent, mechanistic

heterogeneity between them still exists. Large-scale prospective studies

are needed to verify the roles of these hub genes in RW endotyping and

to explore the significance of RW endotyping.

The present study has some limitations. First, the small sample

size used for bioinformatics analysis may affect the robustness of the

results. Second, as publicly available RW datasets are scarce, the

extrapolation of our findings based on a single dataset may be limited,

although the dataset contained high-quality RNA-seq data from both

the upper and lower airway samples. Importantly, key results from

transcriptomic analysis of nasal samples were well reproduced in

parallel analysis of the tracheal transcriptome. Furthermore, the hub

genes were validated by external datasets and qRT-PCR. Third,

validation of hub genes was only performed at the transcriptional
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level, and further validation is required at both the protein and

functional levels. Although our transcriptome analysis and external

validation suggested that fatty acid metabolism-related pathways were

possibly shared mechanisms for RW and SA, further in-depth studies

are needed to verify this intriguing findings. Notably, although we

integrated single-cell and bulk transcriptome datasets to estimate

common changes in the cellular composition of airways in RW and

SA, inferring cell composition with bulk transcriptome data may be

less precise than using scRNA-seq. Finally, the raw data lacked

corresponding clinical information, which may reveal new research

perspectives when combined with our results.

In summary, co-expression network analysis revealed similarities

in the transcriptome networks between RW and SA. Mast cells and

club cells were identified as critical cellular components shared by RW

and SA. Fatty acid metabolism-related biological processes and

pathways were key signals in both RW and SA. Furthermore, five

hub genes (CST1, CST2, CST4, POSTN, and NTRK2) were closely

related to both RW and SA. Gene signatures of the five hub genes

could be used to determine T2-high and T2-low subsets in RW

patients. Collectively, these findings advance our understanding of the

molecular pathogenesis of RW and provide a rationale for future

exploration of the mechanistic relationship between RW and SA.
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