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Staphylococcus aureus infection is a severe public health concern with the growing

number of multidrug-resistant strains. S. aureus can circumvent the defense

mechanisms of host immunity with the aid of multiple virulence factors. An

efficacious multicomponent vaccine targeting diverse immune evasion strategies

developed by S. aureus is thus crucial for its infection control. In this study, we

exploited the SpyCatcher-SpyTag system to engineer bacterial outer membrane

vesicles (OMVs) for the development of a multitargeting S. aureus click vaccine. We

decoratedOMVswith surface exposed SpyCatcher via a truncatedOmpA(a.a 1-155)-

SpyCatcher fusion. The engineered OMVs can flexibly bind with various SpyTag-

fused S. aureus antigens to generate an OMV-based click vaccine. Compared with

antigens mixed with alum adjuvant, the click vaccine simultaneously induced more

potent antigen-specific humoral and Th1-based cellular immune response, which

afforded protection against S. aureus Newman lethal challenge in a mouse model.

Our study provided a flexible and versatile click vaccine strategy with the potential

for fighting against emerging S. aureus clinical isolates.

KEYWORDS

outer membrane vesicles, Staphylococcus aureus vaccine, SpyCatcher-SpyTag, ‘click’
display, flexible antigen display, multi-targeting vaccine
1 Introduction

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium commonly found as part

of the normal flora on the skin of humans (1). It usually becomes invasive in patients with

immunological or barrier defects, and has been a leading cause of many infection diseases in

the hospital and community (2–4). S. aureus infections are notoriously difficult to control as
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an increasing number of its clinical isolates exhibits resistance to

multiple antibiotics (5–7). Patients recovered from S. aureus infection

also show no immunity to subsequent infections (1). To this end,

there is a dire need to develop prophylactic vaccines that provide

protective immunity against S. aureus.

A variety of surface adhesion proteins and secreted proteins which

are implicated in S. aureus immune evasion have been exploited as

potential vaccine antigens (1, 8–10a; 11). The current antigenic targets

mainly focus on virulence factors (10, 12, 13), capsular polysaccharide

(14), iron-regulated proteins (15–17) and cell wall-anchored enzymes

such as adenosine synthase (18). However, most of the clinical trials for

vaccines based on antigens from either a single protein or a certain

protein family have failed so far (19, 20). S. aureus can easily circumvent

defense mechanisms of the host immune system by expressing multiple

virulence factors and combined function of invasion molecules (21).

Therefore, it still demands novel vaccine strategies which combine

multiple antigenic components to simultaneously target diverse

strategies that S. aureus deployed to circumvent host immunity.

Outer membrane vesicles (OMVs) are membrane-derived vesicles

released spontaneously during growth by many bacteria species (22,

23). As natural OMVs obtained from a pathogen present a range of

surface antigens in a native conformation, they have been directly

explored as vaccine products against parental pathogenic bacteria (24,

25). More recently, due to the immunostimulatory, self-adjuvant and

ease of genetic manipulation properties, engineered OMVs show

promise to become a versatile vaccine platform (26–28). OMV-

based vaccines were initially generated by directly fusing OMV

scaffold protein with antigens or routing modified antigens to the

OMV lumen (29–34). More recently, by combining the SpyCatcher-

SpyTag system, the function of OMVs as nanocarriers was further

expanded for rapid and flexible surface display of recombinant

proteins or tumor antigens (35–37). The covalent bond formation

between SpyCatcher and SpyTag can occur at a range of temperatures

and pH values (38). Such a flexible “click” system should allow rapid

and multiple antigen attachment to OMVs in vitro, which will enable

an effective and multi-targeting S. aureus vaccine platform.

In this study, we engineered OMVs secreted from a common

laboratory Escherichia coli (E. coli) MG1655 strain with surface

exposed SpyCatcher via truncated OmpA-SpyCatcher fusions. We

show that the engineered OMVs can flexibly assemble with various

SpyTag-fused S. aureus antigens to generate OMV-based click

vaccines. The click vaccine simultaneously induced strong humoral

and cellular immunity specific for multiple antigens displayed, which

conferred protection against S. aureus lethal challenge in a mouse

model. Our results presented a multipurpose and potent OMV-based

S. aureus vaccine platform.
2 Materials and methods

2.1 Bacterial strains, plasmids and media

Bacteria strains and plasmids used in this study are listed in

Supplementary Table 1. E. coli MG1655 wild type (WT) strain was

utilized as a parental strain for mentioned isogenic gene deletion and

chromosomal modification. E. coli strain BL21(DE3) was used for
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recombinant protein expression. Standard Luria-Bertani (LB) broth

with appropriate antibiotics (100 mg/ml ampicillin, 50 mg/ml

kanamycin or 25 mg/ml chloramphenicol) was used for E. coli culture.
2.2 Strain construction

To create the lpxM deletion strain, PCR-amplified DNA fragments

containing 40 bp homologous arms flanking lpxM open reading frame

together with a selection antibiotic marker were purified. PCR products

were then electroporated into MG1655 harboring l red recombinase

expression plasmid pKD46. Positive clones were selected by 25 mg/ml

chloramphenicol and verified by DNA sequencing. Subsequently, the

antibiotic selection marker flanked by loxP sites was removed using the

helper plasmid p705Cre. The DlpxM ompA-spycatcher strain was

further constructed using the similar recombineering method. An

ompA(1-465 bp)-G4S linker-spycatcher-6his fusion gene was

synthesized and used to replace the chromosomal ompA gene.

Positive clones were selected using 50 mg/ml kanamycin and

confirmed by DNA sequencing.
2.3 Plasmid construction

A gene fragment encoding SpyTag (AHIVMVDAYKPTK) was

first inserted in the pET28a plasmid between NheI and BamHI

restriction sites to produce the pET28a-spytag plasmid. Gene

fragments of GFP and S. aureus antigen rEsxA, rSbi, and a mutated

form of rSpAKKAA (rSpA) from the Newman strain were synthesized

and inserted between BamHI and SalI restriction sites to create a

series of SpyTag-fused GFP or antigen expression plasmids. Positive

clones were screened and verified by colony PCR and DNA

sequencing. Primers used in this study are listed in Supplementary

Table 2. Correctly constructed plasmids were then prepared and

transformed into BL21 (DE3) strain for protein expression

and purification.
2.4 Purification of His6-tagged proteins

SpyTag fusion proteins were expressed in E. coli BL21 (DE3)

strains and purified by nickel column. Bacteria were grown in LB

broth at 37°C with constant shaking (220 r.p.m) until OD600 of 0.6

before adding 1 mM IPTG to induce fusion protein expression. After

induction for an additional 3-6 h at 37°C, cells were harvested by

centrifugation. Bacterial pellets were then resuspended in 2 ml of lysis

buffer (0.5 M NaCl, 50 mM pH 7.2 Tris-HCl, 40% glycerol, 20 mM

imidazole, 150 mM PMSF, and 500 mM DTT) followed by sonication

for cell lysis. Bacterial lysates were obtained by centrifugation at

15,000 g for 30 min and the resultant supernatant was subjected to a

1.5-ml Ni-nitrilotriacetic acid-agarose column (Qiagen) equilibrated

with binding buffer (0.5 M NaCl, 50 mM pH 7.2 Tris-HCl, 40%

glycerol, and 40 mM imidazole). After rounds of washing with

binding buffer, proteins were eluted with elution buffer (0.5 M

NaCl, 50 mM pH 7.2 Tris-HCl, 40% glycerol, and 500

mM imidazole).
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2.5 OMV purification and quantification

Engineered bacteria were grown in 250 ml LB broth at 37°C with

constant shaking (220 r.p.m) until OD600 of 1.0. The bacteria culture was

centrifuged at 4,500 × g for 20 min at 4°C. The resultant supernatant was

filtered by 0.45-µm filters (Corning) and followed by ultracentrifugation

at 100,000 × g for 1 h at 4°C. OMV-containing pellets were then

resuspended in DPBS and filtered by 0.22-µm filters (Corning) for

further use. The total protein concentration of purified OMVs was

determined by BCA assay. The surface display of SpyCatcher on

OMVs was verified by western blot using a His-Tag Monoclonal

antibody (Proteintech). The OMV size was determined by Nano-flow

cytometry (NanoFCM) according to manufacture instructions.
2.6 Transmission electron microscopy

For TEM analysis, diluted OMVs were fixed with 4% PFA and

absorbed to copper grids. Negative staining was performed with 1%

aqueous uranyl acetate at room temperature and washed to remove

excess aqueous uranyl acetate. Electron micrographs were collected

from randomly-selected fields using Philips CM100 transmission

electron microscope.
2.7 SpyCatcher and SpyTag reaction assay

Equal amount (50 mg) of OMV-SpyCatcher and SpyTag-GFP

proteins were incubated at room temperature for 30 min. Unbound

SpyTag-GFP in the reaction were removed by ultrafiltration using a

0.5mL 100-KDa ultrafiltration unit (Millipore). For the first round of

ultrafiltration, the reaction was supplemented to a volume of 300 ml in
total by adding DPBS and then centrifuged at 14,000 g until a volume

of 50 ml. The resultant reaction was resuspended to 300 ml for the
second round of ultrafiltration to a volume of 50 ml. GFP fluorescence

was captured by UVP ChemStudio (Analytikjena). To perform the

reaction assay in living cells, DlpxM and DlpxM ompA-spycatcher

bacterial cells were collected and washed in PBS. Bacteria were then

adjusted to OD600 of 0.3 and incubated with or without 5 mg Spytag-
GFP at room temperature for 10 min. Samples were washed three

times with ice-cold PBS and subjected to flow cytometry analysis

using FITC channel (CytoFLEX, Beckman).
2.8 Animal immunization

Six-week-old female BALB/c mice were immunized with OMV

triple-linked antigens, a cocktail of three OMV single-linked antigens

and antigens formulated with 10% aluminum hydroxide gel (AHG)

by subcutaneous (s.c) injection. For OMV triple-linked antigens

group, 50 mg OMV-SpyCatcher were incubated with three antigens

(10 mg each) for 30 min. For a cocktail of three OMV single-linked

antigens group, each 16.7 mg OMV-SpyCatcher were incubated with

10 mg of a single antigen for 30 min, then the three OMV single-linked

antigens were pooled together to make a cocktail before injection. To

prepare AHG+Antigens group, 30 mg antigens (10 mg for each) were
mixed with 10% AHG. 50 mg empty OMVs purified from DlpxM
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strain and PBS were also injected as control groups. Mice were

immunized three times at 2-week interval. Seven days after the last

immunization, blood samples or spleens were collected for ELISA or

ELISpot assay respectively. Animal immunization experiments were

performed in accordance with institutional guidelines following

experimental protocol review and approval by the Institutional

Animal Care and Use Committee.
2.9 Antibody detection by ELISA

The IgG detection were performed by enzyme-linked

immunosorbent assay (ELISA). SpyTag fused EsxA, tSbi and SpA

proteins (1 µg/ml in 0.05 M carbonate-bicarbonate buffer, pH 9.6,

200 µl/well) were coated in ELISA plates (Nunc, Denmark) and

incubated overnight at 4°C. The plates were blocked with phosphate-

buffered saline (PBS) containing 5% nonfat milk at room temperature

for 3 h and washed four times with PBS containing 0.05% Tween 20.

Three-fold serially diluted mice sera were added into the wells and

incubated at room temperature for 1 h. Then the plates were washed six

times with PBS containing 0.05% Tween 20 and incubated with

horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG at

room temperature for 1 h. The color was developed using

tetramethylbenzidine (TMB) solution (Sigma) and absorbance was

measured using a plate reader (BioTek Microplate Reader) at 450

nm. The antibody level was determined as the area under the curve

(AUC) calculated by GraphPad Prism 9 (GraphPad Software, USA).
2.10 ELISpot assay

IFN-g-producing splenocytes from vaccinated or naive

unvaccinated mice were analyzed using a Mouse IFN-g ELISpot
PLUS (HRP) kit (Mabtech). Spleens were minced in RPMI 1640

Medium (Thermo Fisher Scientific) and cells were filtered through

a 70-mm sterile cell strainer (Corning). Red blood cells were lysed

using red blood cell lysis buffer. Remaining splenocytes were washed

and adjusted to a concentration of 1 × 106 cells ml-1 in complete

RPMI 1640 medium. 100 ml cells/well were added to conditioned

ELISpot plates and each recombinant antigen, stSpA, stSbi or stEsxA,

was used as the inducer with a final concentration of 2 mg/ml. Plates

were incubated at 37°C in a humidified incubator with 5% CO2 for 24

hours. Following 2 h primary antibody incubation and 1 h secondary

antibody incubation at room temperature, spots were developed using

TMB substrate solution and recorded in an immunospot analyzer.
2.11 Lethal challenge

Immunized animals were challenged on day 42 by intravenous

injection with 5 × 107 CFU of S. aureus Newman strain. The well-

being of infected mice was monitored daily for 6 days and lethal

disease was recorded. The surviving mice were euthanized after day 6

post challenge as a predetermined humane endpoint. Lethal challenge

experiments were approved by the Committee on the Use of Live

Animals in Teaching and Research of the University of Hong Kong

(approval no. CULATR 5163-19).
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2.12 Statistical analysis

One way ANOVA was used to analyze the statistical significance

of ELISpot assay results and GFP binding. Log rank (Mantel-Cox)

analysis was used to analyze the statistical significance of the data

from the lethal-challenge experiments. Analysis was performed using

GraphPad Prism 9 (GraphPad Software, USA), and a P value of <0.05

was considered statistically significant.
3 Results

3.1 Generation and characterization of
engineered bacterial OMVs

We modified the composition of bacterial OMVs by deleting the

lpxM gene which encodes lipid A acyltransferase in E. coliMG1655. The

deletion of lpxM leads to under-acylation of LPS and largely attenuates

the endotoxic activity of LPS which may cause adverse effects for in vivo

applications of engineered OMVs (39–41). To further generate OMVs

with surface-exposed SpyCatcher, we did genomic insertion in the DlpxM
strain to replace the chromosomal ompA open reading frame with a

truncated ompA (1- 465 bp) and spycatcher fusion gene (Figure 1A).

OmpA is one of the most abundant outer membrane proteins in E. coli

and subsequently in OMVs (42). It was reported that the 144-160 amino

acids of OmpA were extracellular exposed (43) and fusion with a

truncated version of OmpA (a.a 1-159) allowed the display of a fused

protein on E. coli cell surfaces (44, 45). Therefore, the SpyCatcher is

expected to be exposed on the surface of engineered OMVs when fused

with the 155 a.a truncated OmpA (trOmpA) (Figure 1A).

We first detected the expression of the trOmpA-SpyCatcher

fusion protein by western blot in engineered OMVs (OMVsc)
Frontiers in Immunology 04
isolated from the DlpxM ompA-spycatcher strain, but not in control

OMVs (OMVnc) from the DlpxM strain (Figure 1B). We confirmed

the OMV morphology by TEM as electron-dense particles with

characteristic OMV structures (Figure 1C). We further determined

the size of purified OMVs by Nano-flow cytometry. Figure 1D

showed the size of OMVsc displayed a similar pattern as that of

OMVnc with a typical diameter distribution ranging from 40 to 200

nm, which is in accordance with previous findings (46–48).
3.2 ‘Click’ display of GFP on
Engineered OMV

To examine whether the OMV-presented SpyCatcher based on

trOmpA fusion works well in vitro, we applied SpyTag-fused GFP

(stGFP) to test the ability of ‘click’ display of heterogenous antigens by

our OMVsc (Figure 2A). OMVsc and OMVnc were separately

incubated with stGFP and the ‘click’ linking of OMV and GFP was

analyzed by western blot. The result indicated that only OMVsc group

but not OMVnc generated trOmpA-GFP fusion proteins (~70 kDa),

proving specific conjugation between OMVsc and stGFP mediated by

SpyCatcher-SpyTag system (Figure 2B).

We further tested the specific binding of stGFP on OMVsc by

fluorescence. When incubating living bacterial cells with stGFP,

fluorescence signal could only be detected by flow cytometry for the

strain expressing trOmpA-SpyCatcher after washing (Supplementary

Figure 1). We then incubated purified OMVsc with stGFP and

subsequently removed the unbound stGFP by ultrafiltration. After a

second round of ultrafiltration, we detected significantly higher GFP

fluorescence in OMVsc+stGFP filtration group compared with either

stGFP or OMVsc group, suggesting the trap of stGFP by OMVst during

ultrafiltration (Figure 2C). Together, our results demonstrate that
D

A

B C

FIGURE 1

Generation and characterization of engineered bacterial OMVs. (A) A schematic diagram of the DlpxM ompA-spycatcher E coli strain producing engineered
OMVs containing trOmpA (a.a 1-155)-SpyCatcher fusions. (B) Western blot analysis of OMVs purified from DlpxM ompA-spycatcher (OMVsc) and the DlpxM
strain (OMVnc). An anti-His6 primary antibody was used to detect the trOmpA-SpyCatcher-His6 fusion protein. (C) A randomly selected transmission electron
microscopy (TEM) image of OMVsc. Scale bar: 200 nm. (D) Nano-flow cytometry analysis of the size distribution of OMVsc and OMVnc.
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engineered OMVsc could utilize trOmpA-SpyCatcher to ‘click’ display

SpyTag fused GFP, which makes a versatile antigen display

vaccine platform.
3.3 Decoration of engineered OMVs with
heterologous S. aureus antigens

We selected three S. aureus antigens which are conserved in a

large panel of S. aureus strains to assemble with OMVsc. The three

antigens, EsxA, truncated Sbi and a mutated form of truncated SpA

(SpAKKAA) (49), target different virulent or immune evasion pathways

of S. aureus. We fused SpyTag with the entire EsxA (a.a 2-97), one Ig

binding domain and one complement binding domain of Sbi (a.a 96-

195) and two Ig binding domains of SpA (a.a 34-153) to separately

generate stEsxA, stSbi and stSpA antigens (Figure 3A). To test

whether the recombinant antigens could be displayed on OMVsc,

we incubated 10 mg of OMVsc with various amounts of stEsxA, stSbi,

or stSpA antigens and then detected the OMV-antigen binding using

western blot. As expected, all three SpyTag fused antigens formed

conjugation with OMVsc in a dose-dependent manner (Figure 3B).
3.4 Immunogenicity of OMV-based S.
aureus click vaccine in mice

To evaluate the immunogenicity of our click vaccine in vivo, we

immunized mice subcutaneously with 3 doses of different vaccines

(Figure 4A). In particular, we prepared two forms of click vaccines, OMV-

Antigens (OMVsc triple-linked antigens) and OMV-Antigen cocktail (a

cocktail of three OMVsc single-linked antigen). The click vaccines were
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compared with AHG+antigens (Antigens mixed with commonly used

adjuvantAHG),OMVs(OMVscalone)andPBSasanegativecontrol.

Th1-biased cellular immunity has been shown to play essential

roles in the protection against S. aureus. The release of IFN-g is

indicative of Th1-biased immune responses. Therefore, we performed

IFN-g ELISpot assays for splenocytes collected from immunized mice

7 days after the third immunization. The results showed that

splenocytes from both click vaccine groups had significantly more

IFN-g secreting cells than that of AHG+antigens and other control

groups (Figures 4B, C). Quantification of IFN-g+ spots indicated that

OMV-Antigens induced stronger anti-Sbi and anti-EsxA cellular

immune response than OMV-Antigen cocktail (Figure 4C).

To investigate the stimulation of humoral immunity by our click

vaccine, we also collected the serum samples from each group to detect

the levels of antigen-specific immunoglobulin G (IgG) by ELISA in terms

of area under the curve (AUC). The results showed that immunization

with OMV-Antigen cocktail induced high levels of IgG for all antigens,

while immunization with OMV-Antigens only induced a high level of

IgG for SpA. The anti-Sbi and anti-EsxA IgG induced by OMV-Antigens

were comparable with that induced by AHG+antigens (Figure 4D).

Taken together, the above results suggested that the OMV-based click

vaccine could successfully evoke potent S. aureus antigen-specific

humoral and cellular immunity in a mouse model.
3.5 Protective effects of OMV-based
click vaccine against S. aureus lethal
challenge in mice

We then investigated whether immune responses elicited by the

click vaccine could translate into protective effects against S. aureus
D
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C

FIGURE 2

Click display of GFP on engineered OMVs. (A) A schematic diagram of the click display of GFP on the surface of OMVsc. (B) Detection of the assembly
between OMVsc and stGFP by western blot. OMVsc and OMVnc were incubated with stGFP separately and unbond stGFP was washed subsequently. The
trOmpA-GFP fusion protein was detected by using an anti-His6 primary antibody. (C) Detection of the fluorescence of OMV-GFP. OMVsc were
incubated with stGFP at room temperature to allow in vitro binding. The mixing sample, sfGFP and OMVsc alone were subjected to two rounds of
ultrafiltration. Fluorescent images were taken after each around of ultrafiltration and fluorescent intensity was quantitatively analyzed (n=3). An OMVsc
and stGFP mixing group and a stGFP group were used as non-ultrafiltration control. The data are shown as mean ± SD. Statistical analysis was performed
by one way ANOVA. ns: not significant; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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A B

FIGURE 3

Decoration of engineered OMVs with heterologous S. aureus antigens. (A) Schematic representation of the selection of the recombinant S. aureus
antigen stEsxA, stSbi and stSpA. (B) Western blot analysis of OMVsc bond with heterologous recombinant S. aureus antigens by using an anti-His6
primary antibody. The red arrow indicates the trOmpA-antigen conjugations and the black arrow indicates the trOmpA-SpyCather fusion protein.
D

A B

C

FIGURE 4

In vivo immunogenicity test of the OMV-based S. aureus click vaccine. (A) Schematic representation of the vaccination strategy and each vaccination group. (B)
Representative images of splenic IFN-g ELISpot responses for each immunization group. (C) Quantification of IFN-g positive splenocytes for each immunization
group. Splenocytes were prepared from spleens taken from mice (n=3) 7 days post the third immunization. (D) Quantification of antigen-specific IgG for each
immunization group by ELISA in terms of the area under the curve (AUC). Sera were taken from mice (n=4) for OMV-Antigens, OMV-Antigen cocktail and AHG
+Antigens immunization groups and mice (n=2) from OMV and PBS immunization group 7 days post the third immunization. The data are shown as mean ±
SEM. Statistical analysis was performed by one way ANOVA. ns, not significant. **P < 0.01; ***P < 0.001; ****P < 0.0001.
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lethal challenge in mice. Mice receiving different vaccinations were

challenged with a lethal dose of S. aureus Newman strain (Figure 5A).

All mice in the PBS treated group died within 72 hours post Newman

challenge. However, survival rates were significantly improved by

vaccination with OMV-Antigens (40% survival; P=0.0027) or OMV-

Antigen cocktail (40% survival; P=0.0027). Notably, our click vaccines

also conferred better protection compared with AHG+antigens

vaccination (20% survival; P=0.0150) (Figure 5B).
4 Discussion

S. aureus infection is a growing public health concern due to the

emergence of multidrug-resistant (MDR) strains. Vaccination holds

promise to be an alternative strategy to control MDR-pathogen

infections. In this work, we exploited the “Plug-and-Display”

technology to decorate OMVs with heterologous antigens for S. aureus

vaccine development. We generated an OMV-based multi-targeting click

vaccine which elicited stronger humoral and cellular immune responses

compared with that evoked by the alum adjuvanted vaccine. The click

vaccine showed potent protective activity against S. aureus Newman

lethal challenge with increased survival rate in mice.

S. aureus utilizes a myriad of virulence factors to circumvent the

defense mechanisms of the host immune system (50). Subunit

vaccines composed of antigens targeting an individual pathway may

not be ideal, as the redundant and multifaceted functions of virulence

factors can compensate for the loss of function of a particular vaccine

target (1a). Therefore, it is crucial to combine multiple antigens

targeting diverse immune evasion strategies exploited by S. aureus

to develop an efficacious vaccine. In a previous study, a successful

OMV-based S. aureus vaccine platform was developed by harnessing

the lipoprotein transport machinery to enrich multiple lipidated

antigens within OMVs (34). This strategy requires an individual co-

expression and purification process for OMVs containing each

antigen. Detoxified S. aureus membrane vesicles (MVs) which

contain multiple native antigens have also been demonstrated as a

promising vaccine candidate (51). Promoting the efficient release and

detoxification of EVs demands sophisticated genetic engineering of a

given S. aureus clinical isolate. Here, we showed that the OMV-based

click display technology could facilitate the formulation of diverse

selected antigens in a rapid and flexible fashion (Figure 3B). As the

antigen combinations displayed on engineered OMVs can be easily

adjusted by generating novel SpyTag-antigen fusions, our click

vaccine strategy is valuable for protecting against emerging S.

aureus clinical isolates when selected antigens were not conserved.

To engineer OMVs for surface display of proteins, a novel strategy is

to fuse SpyCatcher or SpyTag with surface scaffold proteins of the OMV.

For this purpose, hemoglobin protease (Hbp) and ClyA have already

been exploited to load functional SpyTag or SpyCatcher on OMV surface

(35–37). OmpA is also one of themost abundant surface scaffold proteins

of bacteria OMVs. However, as the N- and C-terminal of OmpA are both

on the periplasmic side of the outer membrane (52), fusion with OmpA

would lead to the package of protein of interest into the lumen of OMVs

(53). Notably, the 144-160 amino acids of OmpA were reported to be

extracellularly exposed and recombinant proteins fused with a truncated

version of OmpA (a.a 1-159) were displayed on E. coli cell surfaces (44,

45). This raises a potential site for the surface display of exogenous
Frontiers in Immunology 07
antigens on OMVs. In this study, we fused SpyCatcher to the C-terminal

of a truncated OmpA (a.a 1-155). We found the formation and

morphology of OMVs were not much affected by the fusion

(Figures 1C, D). With in-vitro incubation, SpyTag fused GFP or S.

aureus antigens could bind to the engineered OMVs (Figures 2B, C),

suggesting that SpyCatcher was exposed on the OMV surface and

functioned properly. Therefore, we provided another anchoring site for

OMV surface display and expanded the engineerability of OMVs. When

combined with additional orthogonal protein ligation systems such as

split inteins (54), expanded OMV surface display sites may allow

programmable loading of different antigens with precise spatiotemporal

and ratio control. A potential limitation for this OMV-based click

platform for vaccine development is the stability of the antigens to be

linked. Antigens used for immunization are often from surface adhesion

or membrane proteins. Their instability and tendency to aggregate will

prevent their flexible linking with OMVs. For this type of antigen, a

compromised way might be linking it with an alternative OMV scaffold

protein in vivo by direct gene fusion or other orthogonal ligation systems

such as split inteins. The resultant OMVs can then be isolated for further

antigen loading.

Previous studies have shown that OMV-based vaccines usually

elicited stronger immune responses compared with that evoked by

purified antigens formulated with alum (30, 34). Our study also

showed similar results that the OMV-based click vaccine, particularly

the cocktail of OMV-antigen, could induce higher antigen-specific IgG

production than that obtained with antigens formulated with AHG

(Figure 4D). Our ELISpot results also confirmed that the OMV-based

click vaccine could simultaneously induced significantly stronger T cell

response for all antigens delivered. This may be explained by the

observation that OMVs can be efficiently uptaken by antigen

presenting cells (APCs) for subsequent T cell activation (37, 55). As

AHG adjuvant tends to favor Th2 cytokine production and thus the

antibody-based humoral response, it will be interesting to use Th1

adjuvant CpG for comparison to further evaluate the capacity of

OMV-based vaccine to provoke Th1-biased T cell response.

Noteworthy, “empty” OMVs also evoked detectable IFN-g+ cellular

response (Figure 4C, group 4). The non-specific IFN-g secretion might

be attributed to the activation of NK cells by LPS contained in the OMVs,

as it was reported that LPS could indirectly activate NK cells by activating

DC or macrophages through LPS receptor TLR4 and triggering the

production of NK stimulating cytokines and ligands (56). Substantial IgG

level was also detected in OMVs as well as PBS control immunization

group when examining the humoral immune response specific for rSpA

antigen. The intrinsic ability of the Ig binding domains of rSpA to capture

antibodies in sera may account for the high background IgG titer

detected by the ELISA assay. Finally, OMV-Antigens generally

outperformed OMV-Antigen cocktail in terms of activating antigen-

specific cellular immunity while OMV-Antigen cocktail was better at

evoking humoral immunity, implicating that distinct forms of the

multicomponent click vaccine might favor different types of immune

response in vivo.

Despite being more immunogenic than adjuvanted subunit

vaccine, our click vaccines did not achieve high protection efficacy

against Newman lethal challenge. Firstly, the selection of antigen is a

fundamental determining factor for final protective efficacy that can be

achieved. For three antigens we choose in this study, EsxA is a virulent

factor interfering with host cell apoptotic pathways (57, 58). Sbi
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promotes the depletion of complement and inhibits opsonophagocytic

clearance of S. aureus (59). SpA has high affinities and specificities to

the complement binding (Fc) domain of immunoglobulins and also

inhibits phagocytosis (60). Obviously, the combination of them when

used as subunit vaccine was already less effective in the lethal challenge

model (Figure 5B). Even though the OMV platform could significantly

improve their immunogenicity, the improvement of protection efficacy

might be trivial. Secondly, further optimization of the immunization

routes as well as dosage may be necessary for the improvement of

protection efficacy. Here, we choose the subcutaneous (s.c) route of

immunization. OMVs can be preferentially uptaken by antigen

presenting cells for processing due to their nano-size effect. Thus,

Langerhans cells, the professional APCs situated under the skin can

efficiently uptake OMV-based vaccines. S.c administration can also

target the therapeutics to lymph nodes and the lymphatic system (61),

where OMV-based vaccines can be further accumulated for immune

stimulation. It is intriguing to test other immunization routes as they

can not only affect the strength of the immune response, but also

control the type of it. S.c, Intraperitoneal (i.p) or intramuscular (i.m)

route may evoke different level of IgG and T cell based response that are

important for S.aureus protection. It was reported that immunization of

OMV vesicles through intranasal (i.n) route could additionally induce a

significant level of IgA (62). Considering the recent finding of IgA in

suppressing the multiplication of S.aureus (63), it is also interesting to

check if i.n administration can improve protection, particularly in

mucosal infection models.
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