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Background: Increasing evidence shows that systemic inflammation is an

embedded mechanism of proliferative diabetic retinopathy (PDR). However, the

specific systemic inflammatory factors involved in this process remained obscure.

The study aimed to identify the upstream and downstream systemic regulators of

PDR by using Mendelian randomization (MR) analyses.

Methods:We performed a bidirectional two-sample MR analysis implementing the

results from genome-wide association studies for 41 serum cytokines from 8,293

Finnish individuals, and PDR from FinnGen consortium (2,025 cases vs. 284,826

controls) and eight cohorts of European ancestry (398 cases vs. 2,848 controls),

respectively. The inverse-variance-weighted method was adopted as the main MR

method, and four additional MR methods (MR-Egger, weighted-median, MR-

pleiotropy residual sum and outlier (MR-PRESSO), and MR-Steiger filtering

methods) were used for the sensitivity analyses. Results from FinnGen and eight

cohorts were pooled into a meta-analysis.

Results: Our results showed that genetically predicted higher stem cell growth

factor-b (SCGFb) and interleukin-8 were positively associated with an elevated risk

of PDR, with a combined effect of one standard deviation (SD) increase in SCGFb

and interleukin-8 causing 11.8% [95% confidence interval (CI): 0.6%, 24.2%]) and

21.4% [95% CI: 3.8%, 41.9%]) higher risk of PDR, respectively. In contrast, genetically

predisposition to PDR showed a positive association with the increased levels of

growth-regulated oncogene-a (GROa), stromal cell-derived factor-1 alpha

(SDF1a), monocyte chemotactic protein-3 (MCP3), granulocyte colony-

stimulating factor (GCSF), interleukin-12p70, and interleukin-2 receptor subunit

alpha (IL-2ra).

Conclusions: Our MR study identified two upstream regulators and six

downstream effectors of PDR, providing opportunities for new therapeutic

exploitation of PDR onset. Nonetheless, these nominal associations of systemic

inflammatory regulators and PDR require validation in larger cohorts.

KEYWORDS
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Introduction

Diabetic retinopathy (DR) is a specific microvascular

complication of diabetes mellitus and is the leading cause of

preventable blindness in the adult working population (1). The

damage of DR starts with non-proliferative diabetic retinopathy

(NPDR) and progresses to an advanced stage as proliferative

diabetic retinopathy (PDR) (2). PDR is a quite severe condition

that can result in the progressive loss of peripheral and central

vision in patients (3). Throughout the period 1980 to 2008, 35

studies conducted worldwide estimated the global prevalence of DR

and PDR at 35.4% and 7.5%, respectively (4). Clinically, PDR is

commonly diagnosed by fluorescein angiography using a contrast

agent which may cause nausea in 10% of patients and even

anaphylaxis or death (5). Thus, it is important and necessary to

explore noninvasive, reliable, and practical biomarkers for

preoperatively predicting the risk of PDR.

Increasing evidence shows that systemic inflammation is an

intrinsic mechanism of occurrence and development of DR (6).

Normally, the retina is an immune-privileged region that is divided

by blood-retinal barriers that restricts exchange of proteins and fluids.

However, long-term exposure to chronic inflammation can cause the

destruction of the blood-retina barrier, triggering bleeding, exudation,

edema of the retinal tissue, which mark the onset of DR (7, 8). With

further endothelial cell damage and abnormal capillary basement

membrane function, the disease progresses to PDR and the automatic

regulation of capillary blood flow is severely interrupted (9). In this

process, a critical cause and trigger is ischemia-induced angiogenesis,

inflammation, and fibrosis of the retina (10). Research in recent years

has emphasized the role of the vascular endothelial growth factor

(VEGF) and other bioactive substances with angiogenic and

antiangiogenic activity in the pathogenesis of PDR (such as platelet-

derived growth factor (PDGF), interleukin 8 (IL-8), monocytes

Chemotactic protein 1 (MCP)-1), tumour necrosis factor-a (TNF-

a)) (11, 12). Despite promising results from clinical trials of novel of

new treatments targeting these factors, few have reached significant

and long-term clinical success. In one example, clinical studies have

shown that widespread anti-VEGF agents do not target the

underlying DR pathogenesis, therefore cannot resolve DR onset and

progression (13). For that, one can speculate that the same factor may

exert distinct roles in different cell types and different developmental

stages, which makes it difficult to determine its specific role in the

PDR onset. For instance, the role of IL-18 in PDR remains enigmatic

as it can either promote or suppress angiogenesis (14). Moreover,

most previous studies exclusively focused on the roles of some specific

inflammatory factors in vitreous or intraocular fluid while the

systemic circulating changes of inflammatory factors are equally

important (15). Finally, considering observational studies are

vulnerable to bias and reverse causation, they are not appropriate
Abbreviations: BMI, body mass index; DR, diabetic retinopathy; DBP, diastolic

blood pressure; GWAS, genome-wide association study; ICBP, international

Consortium for Blood Pressure; IVW, inverse variance weighted; MR, mendelian

randomization; MR-PRESSO, mendelian randomization pleiotropy residual sum

and outlier; PDR, proliferative diabetic retinopathy; SBP, systolic blood pressure;

T1D, type 1 diabetes; T2D, type 2 diabetes.
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for identifying the upstream and downstream regulatory mechanisms

of PDR.

Mendelian randomization (MR) is an analytic approach to

establishing causality between a gene product and intermediate

phenotype which is in essence tantamount to a randomized clinical

trial (16). It is designed based on the fact that genetic variants are

randomly allocated during gamete formation and conception,

therefore, are free of reverse caution and confounding bias (17). By

using MR methods, Han et al. identified a strong causal relationship

between circulating C-reactive protein levels and age-related macular

degeneration which provided new insights into the role of systemic

therapies (18). Furthermore, a bidirectional MR analysis, as an

extension of the traditional MR method, could help tease apart

complex relationships of biological systems, such as the existence of

feedback loops between exposure and outcome variables (19). For

example, a bidirectional MR study also found that targeted

interventions of several specific inflammatory factors could alleviate

the risk of multiple myeloma (20). Herein, we took advantage of the

largest publicly available genome-wide association study (GWAS)

data available for human cytokines and PDR to identify the upstream

regulators and downstream effectors for PDR using a two-sample

bidirectional MR.
Methods

Study design

A brief description of the bidirectional MR design is displayed in

Figure 1. Genetic instruments for 41 systemic inflammatory

regulators were obtained from published GWAS of three Finnish

cohorts (21). Data for PDR were obtained from FinnGen (22) and

eight cohorts of European ancestry (23). First, we selected genetic

variants for each inflammatory regulator to infer the causality from

each inflammatory regulator to PDR. Second, genetic variants

associated with PDR were exploited to infer the causality from PDR

to inflammatory regulators. Finally, we combined estimates from two

sources of PDR using meta-analysis method. Studies included in the

original GWASs had been approved by a relevant institutional

review board.
Data source for inflammatory regulators

The published large-scale GWAS meta-analysis for the circulating

concentrations of 41 cytokines was used in this study, which included

up to 8,293 Finnish individuals from three independent population

cohorts: the Cardiovascular Risk in Young Finns Study (YFS),

FINRISK1997, and FINRISK2002 (21). The quantification of

cytokines was performed from EDTA plasma in FINRISK 1997,

from heparin plasma in FINRISK 2002, and from serum in YFS

and measured by Bio-Rad’s premixed Bio-Plex Pro Human Cytokine

27-plex Assay and 21-plex Assay, and a Bio-Plex 200 reader with Bio-

Plex 6.0 software. Those 41 cytokines distributions were normalized

with two-step inverse transformation. To be specific, we first

normalized cytokine distributions by inverse transformation, and

then performed inverse transformation for residuals of linear
frontiersin.org
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regression model of transformed cytokines on age, sex, body mass

index (BMI), and genetic principal components. Genotype

imputation was performed based on reference haplotypes provided

by the 1000 Genomes Project Phase 1. In each cohort, an additive

model with adjustment for age, sex, BMI and the first 10 genetic

principal components were performed to test genetic associations

between 10.7 million SNPs and 41 cytokine concentrations. Meta-

analyses were performed to combined genetic associations across the

three cohorts (21).
Data sources for PDR

Summary-level data on PDR was extracted from a GWAS of

286,851 individuals of European ancestry from the FinnGen

consortium (R7 release) (22). The FinnGen Study is a Finnish,

nationwide GWAS meta-analysis of 9 biobanks, which has very

limited overlap (<3%) with the GWAS of inflammatory regulators.

Thus, we considered the risk of bias due to sample overlap minimal

(24). The biobanks have been linked with longitudinal digital health

record data from nationwide health registries. The GWAS of PDR in

the FinnGen Study included 2,025 PDR cases and 284,826 controls. The

PDRwas defined as the later stage of diabetic retinopathy, characterized

by neovascularisation of the retina in ICD-10 (code: H36.03). The

genetic associations were adjusted for age, sex, 10 principal
Frontiers in Immunology 03
components, and genotyping batch. More details in FinnGen were

described in https://finngen.gitbook.io/documentation/v/r7/.

Another PDR summary-level data derived from GWAS of eight

European cohorts (23). Early Treatment Diabetic Retinopathy Study

(ETDRS) score was used to define PDR case in the GWAS study (25).

GWAS meta-analysis of PDR included 398 individuals (ETDRS ≥60)

with PDR and 2,848 controls. Liability threshold modelling of the

duration of diabetes and glycaemic control and five principal

components were considered in this GWAS meta-analysis (23). The

samples of this study were non-overlapped with the samples of

cytokines GWAS.
Selection of genetic instrumental variables

To satisfy the MR assumptions (Figure 1), all SNPs are strongly

and independently (R2 < 0.001 within 10 Mb) predicted exposures

from the published GWAS at genome-wide significance (P <5×10-8).

Since only 8 systemic inflammatory regulators had 3 or more

independent SNPs that reached genome-wide significance, we

adopted less stringent thresholds of 5×10-6 to obtain more SNPs for

inflammatory regulators. The thresholds are appropriate to select

genetic instrumental variables as described before (26).

A critical assumption of the MR design is that SNPs should

influence the outcome only through the exposure of interest. Using
FIGURE 1

Datasets, assumptions, and study design of the bidirectional Mendelian randomization study of the associations between 41 inflammatory factors and
PDR. BMI, body mass index; DBP, diastolic blood pressure; FG, fasting glucose; FI, fasting insulin; IVs, instrumental variables; PDR, proliferative diabetic
retinopathy; SBP, systolic blood pressure; SNPs, single-nucleotide polymorphisms; T1D, type 1 diabetes; T2D, type 2 diabetes.
frontiersin.org

https://finngen.gitbook.io/documentation/v/r7/
https://doi.org/10.3389/fimmu.2023.1088778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1088778
the publicly available GWAS summary data, we examined whether

any of these SNPs were associated with common confounders (T1D,

T2D, HbA1c, SBP, and DBP, fasting glucose, fasting insulin, and

BMI) and outcomes at a P-value of Bonferroni level (0.05/number of

SNPs). For T1D, the genetic associations were derived from a meta-

analysis of GWASs in 25,063 (9,358 cases and 15,705 controls)

European-descent individuals (27). The genetic associations of these

SNPs with T2D were obtained from a meta-analysis of GWASs in

898,130 European-descent individuals (9% cases) (28). For HbA1c,

fasting glucose, and fasting insulin, the genetic associations were

derived from a GWAS meta-analysis in ~200,000 European-ancestry

individuals without diabetes (29). For blood pressure, the associations

of these SNPs with SBP or DBP were obtained from a meta-analysis of

GWAS in 757,601 individuals of European ancestry, which included

458,577 participants from UK Biobank and 299,024 participants from

international consortium for blood pressure (ICBP) (30). The

associations of these SNPs with inverse-normally transformed BMI

were obtained from a meta-analysis of GWASs in ~700 000

participants of European ancestry (31).

At last, we quantified the strength of SNPs using the mean F-

statistic (32). Mean F-statistic >10 suggested sufficient strength to

ensure the validity of the SNPs for the trait.
Statistical analysis

We performed a bidirectional two-sample MR method using

summary association data to explore the causal direction of

relationship between inflammatory regulators and PDR. If the SNP

associated with the exposure is missing from the outcome GWAS, we

replaced the SNP by a proxy SNP in high linkage disequilibrium (R2

>0.80) with the SNP using LDlink (https://ldlink.nci.nih.gov/) (33).

We critically performed data harmonization to make sure that the

effect of a SNP on the exposure and the outcome corresponded to the

same allele. For SNPs with different effect alleles due to different

strands, we corrected the strand and ensured same effect allele in

both datasets. However, palindromic SNPs are much harder to

harmonize because the alleles are the same on both strands, then we

deleted them to avoid ambiguity as to whether exposure and outcome

GWAS report the same effect allele (34). In the main analysis, we

calculated a Wald ratio estimate for each genetic variant and

summarized the estimates using the inverse-variance weighted (IVW)

method. The IVW with multiplicative random effects method provides

a concise estimation and takes into account potential heterogeneity

among the Wald ratio estimates from SNPs (35). Thus, if there is

heterogeneity, random-effects IVW models are applied; otherwise, the

fixed-effect IVW model is applied. Estimates of bidirectional

associations of inflammatory regulators with the risk of PDR were

from a combination of FinnGen consortium data and data of eight

cohorts using the meta-analysis. Heterogeneity of meta-analysis was

examined by the Cochran Q test and I2. Scatter plots depicting the

bidirectional causal associations of systemic inflammatory regulators

with PDR were also provided. The effects in 41 cytokines were reported

as changes in inverse normalized cytokines concentration per effect

allele dosage. Results of the effect of 41 cytokines on PDR are presented

as ORs (95% CIs) per 1 SD genetic predicted cytokine change. The
Frontiers in Immunology 04
effects of PDR on systemic inflammatory regulators were reported as b
coefficients and 95% CIs.
Sensitivity analysis

We performed a set of sensitivity analyses using methods with

different assumptions about horizontal pleiotropy, including MR-

Egger, weighted median, and Mendelian Randomization Pleiotropy

RESidual Sum and Outlier (MR-PRESSO). MR-Egger analysis

provides an assessment of instrumental variable pleiotropy, with a

non-zero intercept indicating that the IVW estimate is biased (36).

The weighted median can provide a consistent estimate for the causal

effect even if up to half of the SNPs violate horizontal pleiotropy (37).

MR-PRESSO uses the global test to detect horizontal pleiotropy, and

if necessary, could correct for potentially pleiotropic outliers via

outliers removal (38). Heterogeneity in the IVW estimates was

examined by the Cochran Q test and I2 index. We further repeated

the analyses after MR-Steiger filtering which removes SNPs suggestive

of a reversed causal direction. MR-Steiger filtering assumes a valid

genetic variant should explain more variance in the exposure than the

outcome and genetic variant are identified to have bidirectional effects

if genetic instruments do not satisfy this criterion (39).

The Bonferroni method was used to correct for multiple testing

and, therefore, we considered associations with P-values below 0.0012

(0.05/41) as strong evidence of associations. Results with P-values

between 0.0012 and 0.05 were regarded as suggestive associations. All

analyses were two-sided and conducted using TwoSampleMR (version

0.5.6) and MRPRESSO (version 1.0) packages in R software (version

3.6.3). Reporting follows the STROBE-MR statement.
Results

Causal effects of inflammatory regulators
on PDR

Across 8 inflammatory regulators that we examined, estimates of

F-statistics for their respective SNPs with P-value <5×10-8 ranged

from 202.48 to 1053.06, suggesting that weak instruments bias would

be minimal (Supplementary Tables 1, 3). Figure 2 showed causal

relationships between the 8 systemic inflammatory regulators and

PDR risk with SNPs reaching P < 5 × 10-8. Among them, genetically

predicted higher stem cell growth factor b (SCGFb) was strongly

associated with elevated risk of PDR in both FinnGen consortium

data and meta-analysis (P<0.001), with a combined OR of one SD

increase in genetically predicted SCGFb causing 27.7% ([95% CI:

11.6%,46.2%]; P<0.001) higher risk of PDR. Additionally, there was

no evidence of other 7 inflammatory regulators associated with PDR

in meta-analysis (all P >0.05). Weighted median method gave

consistent results and MR-Egger suggested no evidence of

horizontal pleiotropy in the two data sources (Supplementary

Tables 2, 4). MR-Steiger filtering detected no invalid genetic

instruments for these analyses. No evidence of heterogeneity was

detected by Cochran Q test (all P-values for Cochran Q test>0.05),

thus, fixed-effects meta-analyses were applied in the 8 inflammatory

regulators (Supplementary Table 5).
frontiersin.org

https://ldlink.nci.nih.gov/
https://doi.org/10.3389/fimmu.2023.1088778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2023.1088778
All 41 inflammatory regulators using the less stringent cut-off of P

<5×10-6 had 3 or more SNPs with the F-statistics ranged from 80.79

to 1923.92 in two data sources (Supplementary Tables 6, 8). The

primary IVWmethod showed genetically determined levels of SCGFb

and IL-8 were suggestively positive associated with the risk of PDR in

FinnGen consortium and meta-analysis (Figure 3). The combined

ORs of PDR were 1.118 [95% CI:1.006, 1.242] per a 1-SD increase in

SCGFb and 1.214 [1.038, 1.419] per a 1-SD increase in IL-8 (Figure 3).

Associations between each instrumental variable of SCGFb and risk of

PDR are shown in Figures 4A, C for summary-level data on PDR

from FinnGen and eight cohorts, respectively. Similarly, Figures 4B, D

showed the associations between IL-8 and PDR from FinnGen and

eight cohorts, respectively. No other associations were observed in the

study (Supplementary Tables 7, 9, 10). MR-Egger intercept test

yielded no indication of potential pleiotropy in both datasets (all P-

value >0.05; Supplementary Tables 7, 9), while MR-PRESSO

suggested pleiotropic SNPs may present for monocyte chemotactic

protein-1 (MCP1), monokine induced by interferon gamma (MIG),

and macrophage colony-stimulating factor (MCSF) in FinnGen

consortium data but the results do not alter after removing outliers
Frontiers in Immunology 05
(Supplementary Table 7). No more significant effects were detected in

the weighted median method and MR-Egger method (Supplementary

Tables 7, 9). No invalid SNPs were detected by MR-Steiger filtering

method. Since there is evidence of heterogeneity for basic fibroblast

growth factor (FGFBasic) in meta-analysis, random-effects methods

w e r e p e r f o rm ed t o c omb i n e e ff e c t s f o r FGFB a s i c

(Supplementary Table 10).
Causal effects of PDR on
inflammatory regulators

According to the process of SNPs selection mentioned in the

method, we extracted 20 SNPs reaching a genome-wide significance

P-value threshold of 5×10-8 for PDR in the FinnGen consortium,

while a set of 10 SNPs reported to be associated with PDR at a less

stringent P-value threshold of 5×10-6 in the GWAS of eight cohorts.

The F-statistics for FinnGen consortium data and data of eight

cohorts were 1195.91 and 240.73, respectively, suggesting that weak

instrument bias was minimal (Supplementary Tables 11, 13). We
FIGURE 2

Associations between genetically predicted systemic inflammatory regulators and proliferative diabetic retinopathy (with genome-wide significant SNPs).
IL, interleukin; MCP1, monocyte chemotactic protein-1; MIP1b, macrophage inflammatory protein-1 beta; PDGFbb, platelet-derived growth factor BB;
SCGFb, stem cell growth factor beta; SNPs, single-nucleotide polymorphisms; TRAIL, TNF-related apoptosis-inducing ligand; VEGF, vascular endothelial
growth factor.
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observed higher genetically predicted IL-2ra and GCSF that were

consistent in FinnGen consortium data, eight cohorts and meta-

analysis (all P<0.05; Figure 5). Specifically, one-unit increase in log

OR of PDR strongly leading to 0.046 [95% CI: 0.020-0.071] SD higher

levels of IL-2ra (P <0.001) and 0.028 [95% CI: 0.009-0.047] SD higher

levels of GCSF (P =0.003) in meta-analysis (Figure 5). In addition,

genetic predisposition to PDR showed suggestively positive

association with the increased levels of stromal cell-derived factor-1
Frontiers in Immunology 06
alpha (SDF1a), monocyte chemotactic protein-3 (MCP3), and IL-

12p70 in meta-analyses (all P<0.05; Figure 5). Scatter plots of

relationships between genetically predicted PDR and these

inflammatory regulators were provided in Supplementary Figure S1

for FinnGen and Supplementary Figure S2 for eight cohorts. There

was no evidence for causal associations between PDR and other

inflammatory regulators (Supplementary Table 15). The MR-Egger

intercept detected no horizontal pleiotropy, while MR-PRESSO global
FIGURE 3

Significant associations between genetically predicted systemic inflammatory regulators and proliferative diabetic retinopathy (with SNPs reaching
P<5×10-6). IL, interleukin; SCGFb, stem cell growth factor beta.
A B

DC

FIGURE 4

Scatter plot of SCGFb and IL-8 related SNPs with the risk of proliferative diabetic retinopathy. (A) Genetic association of SCGFb related SNPs and PDR
from FinnGen. (B) Genetic association of IL-8 related SNPs and PDR from FinnGen. (C) Genetic association of SCGFb related SNPs and PDR from eight
cohorts. (D) Genetic association of IL-8 related SNPs and PDR from eight cohorts. Black line indicates the estimate of effect using the inverse variance
weighted method. Circles indicate marginal genetic associations with SCGFb or IL-8 and risk of outcome for each variant. Error bars indicate 95%
confidence intervals. IL, interleukin; SCGFb, stem cell growth factor beta; SD, standard deviation.
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test for MIP1b, MIG and CTACK in FinnGen consortium data and

FGFBasic in data of eight cohorts suggested that there may be

pleiotropic SNPs (P for global test <0.05) but the MR-PRESSO

outlier-adjusted causal estimates did not alter the results

(Supplementary Tables 12, 14). No invalid SNPs were detected by

MR-Steiger filtering method.
Discussion

To our knowledge, this is the first study that comprehensively

evaluated the causal effects of 41 systemic inflammatory

regulators on PDR, and vice versa. We performed a two-sample

bidirectional MR analysis in two independent populations and

combined the results to a meta-analysis. Our results suggested

that genetically predicted SCGFb and IL-8 were positively

associated PDR risk while genetic predisposition to PDR

suggestively contributed to an increase in GROa, SDF1a, MCP3,

GCSF, IL2-ra and IL-12p70. These findings were generally robust

in sensitivity analyses.

Previous studies demonstrated that inflammation plays a

pivotal molecular basis in the pathogenesis of DR (40). Several

inflammatory molecules, like IL-6, IL-8, IL-10, TNF-a, and VEGF,

have been proposed as serum biomarkers of PDR (41). However,

these observational studies could be subjected to confounding

factors and reverse caution, distorting the true causal

relationships. In this study, we performed a two-sample
Frontiers in Immunology 07
bidirectional MR analysis and identified the upstream and

downstream inflammatory regulators of PDR. Generally

consistent with prior studies, our results identified that elevated

IL-8 and SCGFb levels are associated with increased risk of PDR.

IL-8 was a well-established pro-inflammatory cytokine and plays

an essential role in initiating and strengthening inflammatory

cascade (42). Meanwhile, it is one of the most consistently

reported up-regulated cytokines in DR patients (42–44).

Numerous studies have detected higher levels of IL-8 in PDR

patients, leading to the inference that IL-8 may have a synergistic

effect on the pathogenesis of the disease (43, 44). Biologically, IL-8

belongs to a family of ELR+ CXC chemokines with the ELR motif

that mainly attract neutrophils (45). It exerts its effects on

neutrophils via two different cell surface receptors initially

named as CXCR1 and CXCR2, mediating and regulating

leukocyte recruitment and activation at sites of inflammation

(46) , fo l l owed by i s chemia , p romot ing l eakage , and

neovascularization (47). Within the eye, IL-8 can likewise

promote angiogenesis , induce superoxide and peroxide

production in endothelial cell, thereby destroying the blood-eye

barrier and finally leading to PDR (48). Second, SCGFb is a newly

found protein secreted sulfated glycoprotein and functions as a

growth factor at the early stage of hematopoiesis (49). It is

selectively produced by bone and hematopoietic stromal cells

and can mediate their proliferative activity against primitive

hematopoietic progenitors (50). One recent case-control study

suggested that SCGFb showed significantly higher expression
FIGURE 5

Significant associations between genetically predicted proliferative diabetic retinopathy and systemic inflammatory regulators. GCSF, granulocyte colony-
stimulating factor; GROa, growth-regulated oncogene-alpha; IL, interleukin; MCP3, monocyte chemotactic protein-3; SDF1a, stromal cell-derived factor
1.
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levels in proliferative vitreoretinopathy, although no difference

between PDR and other eye disease types (51). Therefore, SCGFb

may have the potential to promote the PDR onset, but mechanisms

behind this remain to be elucidated. Nonetheless, novel

biomarkers also can complement limitations of traditional

biomarkers in routine clinical practice.

In PDR stage, new aberrant blood vessels are fragile and could

lead to vitreous hemorrhage and/or tractional retinal detachment

from progressive fibrosis (52). In response to these injury, some

retinal cell types, such as astrocytes and neurons, can upregulate

the expression of various gene encoding cytokines, chemokines

and elements of the complement cascade, promoting retinal

degeneration (53). As expected, we observed a group of

genetically increased systemic inflammatory regulators levels

derived from PDR. Some of them were previously reported to

be related to PDR, such as GROa, SDF1a, GCSF (54–57), while

other inflammatory factors, as MCP-3, IL-12p70 and IL-2ra have

been rarely studied so far. From limited available data, MCP-3,

was only investigated in a gene array analysis based on an animal

model study and found to be significantly upregulated among all

member of the chemokine family (58). As for IL-2ra, a study

provided clues into the underlying the causality between IL-2ra

and PDR as the elevated plasma levels of soluble IL-2ra was

positively with the vascular complications (59). Besides, limited

information is available regarding the roles of IL-12p70 due to its

low activity.

The study has several strengths. First, this is the first MR study

to evaluated the causal re lat ionship between systemic

inflammatory regulators and PDR using an up-to-date summary-

level data. Traditional observational studies are prone to be biased

by reverse causality, as diabetes-induced hyperglycemia could

cause retinal micro vasculopathy, inflammation, and retinal

neurodegeneration as well. In this bidirectional MR study, we

were able to avoid reverse causality and minimize residual

confounding. Second, we conducted a meta-analysis by

combining results from two data sources of PDR to increase

statistical power, which guaranteed the robustness of our

findings. Third, in a clinical practice, serum is one of the most

accessible and easily obtained biofluids which allows for sample

collection from both DR patients and healthy controls, whereas

vitreous and aqueous sample collection requires highly invasive

procedures for DR patients. Furthermore, previous research has

been mainly based on the pathogenic mechanism involved in the

development of PDR but our study focuses on both upstream and

downstream circulating biomarkers that could be responsible for

the prediction or treatment of PDR.

However, the study had several limitations. First, not all

relevant SNPs of exposure availably obtained in the outcome

GWAS, even after searching for potential proxies. Despite

affecting the statistical power to detect small effects, we could

still include a fair number of SNPs and perform adequate MR

analyses. Second, although genetic instruments for inflammatory

regulators were extracted from the largest current GWAS source of

inflammatory regulators, there were still only a few genome-wide

significant SNPs available for eight inflammatory regulators. A

relative relaxed threshold of 5×10-6 was adopted for selecting
Frontiers in Immunology 08
instruments, which was considered as rational threshold (26).

Moreover, the F-statistics of inflammatory were all greater than

10, suggesting the weak instruments bias is minimal. Third,

although we cannot rule out the possibility of pleiotropy, we

have excluded SNPs associated with potential confounders and

conducted multiple sensitivity analyses (e.g., MR-Egger and MR-

PRESSO) with different assumptions, which showed similar

conclusions. Forth, MR is not perfectly analogous to a

randomized contro l l ed tr ia l (RCT) . Therefore , causa l

relationships of systemic inflammatory cytokines with PDR

derived from MR analyses may differ in magnitude from those

anticipated in an RCT and should be explained as life-course

effects. Finally, our study only included participants of European

descent, which could limit the generalizability of our results to

other ethnicities.
Conclusion

The present bidirectional MR study identified two upstream

regulators and six downstream effectors of PDR. These findings

provided opportunities for new therapeutic exploitation of PDR

onset and permit us to implement a more personalized treatment

with better visual function outcomes. Additional research is

warranted to validate the role of specific inflammatory regulators

on PDR.
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