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Background: Inhibition of sphingosine kinase 1 (SphK1), which catalyzes bioactive

lipid sphingosine-1–phosphate (S1P), attenuates NLRP3 inflammasome activation.

S1P exerts most of its function by binding to S1P receptors (S1PR1-5). The roles of

S1P receptors in NLRP3 inflammasome activation remain unclear.

Materials and methods: The mRNA expressions of S1PRs in bone marrow-derived

macrophages (BMDMs) weremeasured by real-time quantitative polymerase chain

reaction (qPCR) assays. BMDMs were primed with LPS and stimulated with NLRP3

activators, including ATP, nigericin, and imiquimod. Interleukin-1b (IL-1b) in the cell

culture supernatant was detected by enzyme-linked immunosorbent assay (ELISA).

Intracellular potassium was labeled with a potassium indicator and was measured

by confocal microscopy. Protein expression in whole-cell or plasma membrane

fraction was measured by Western blot. Cecal ligation and puncture (CLP) was

induced in C57BL/6J mice. Mortality, lung wet/dry ratio, NLRP3 activation, and

bacterial loads were measured.

Results: Macrophages expressed all five S1PRs in the resting state. The mRNA

expression of S1PR3 was upregulated after lipopolysaccharide (LPS) stimulation.

Inhibition of S1PR3 suppressed NLRP3 and pro-IL-1b in macrophages primed with

LPS. Inhibition of S1PR3 attenuated ATP-induced NLRP3 inflammasome activation,

enhanced nigericin-induced NLRP3 activation, and did not affect imiquimod-

induced NLRP3 inflammasome activation. In addition, inhibition of S1PR3

suppressed ATP-induced intracellular potassium efflux. Inhibition of S1PR3 did

not affect the mRNA or protein expression of TWIK2 in LPS-primed BMDMs. ATP

stimulation induced TWIK2 expression in the plasma membrane of LPS-primed

BMDMs, and inhibition of S1PR3 impeded the membrane expression of TWIK2

induced by ATP. Compared with CLP mice treated with vehicle, CLP mice treated

with the S1PR3 antagonist, TY52156, had aggravated pulmonary edema, increased
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bacterial loads in the lung, liver, spleen, and blood, and a higher seven-day

mortality rate.

Conclusions: Inhibition of S1PR3 suppresses the expression of NLRP3 and pro-IL-

1b during LPS priming, and attenuates ATP-induced NLRP3 inflammasome

activation by impeding membrane trafficking of TWIK2 and potassium efflux.

Although inhibition of S1PR3 decreases IL-1b maturation in the lungs, it leads to

higher bacterial loads and mortality in CLP mice.
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Introduction

Sepsis is a critical clinical condition caused by infection. Globally,

more than 19 million people are diagnosed with sepsis each year (1).

Despite advances in supportive care for patients with sepsis, mortality

remains over 25% (1). Currently, no specific treatment is available for

sepsis. Sepsis is defined as a dysregulated host response to infection,

and thus modulation of immune response is considered a reasonable

approach to the treatment of sepsis.

Nucleotide-binding oligomerization domain-like receptor

containing pyrin domain 3 (NLRP3) inflammasome is a

multiprotein complex that triggers inflammatory responses in

immune cells including macrophages (2). Nlrp3 deficiency has been

reported to protect mice from excessive pro-inflammatory cytokine

storm and organ damage in inflammatory conditions including sepsis

(3, 4). The activation of NLRP3 requires at least two signals (5). In the

initial stage, the priming signals such as lipopolysaccharide (LPS) or

tumor necrosis factor a (TNF-a) upregulate the transcription of

NLRP3, interleukin-1b (IL-1b), and interleukin-18 (IL-18) in a

nuclear factor kB (NF-kB)-dependent way (5). In addition, the

priming signal licenses NLRP3 to rapidly respond to activating

stimuli by post-translational modifications (6). Next, pathogen-

associated molecular patterns (PAMPs) or danger-associated

molecular patterns (DAMPs) such as adenosine triphosphate (ATP)

act as the activation signal, which leads to the recruitment of the

adaptor protein apoptosis-associated speck-like protein containing a

caspase recruitment domain (ASC), never in mitosis A-related kinase

7 (NEK7) and pro-caspase-1 to NLRP3 (5). Then pro-caspase-1 is

cleaved into bioactive caspase-1, which activates pro-IL-1b and pro-

IL-18 into IL-1b and IL-18, respectively. Although reactive oxygen

species production, metabolism disorder, mitochondrial dysfunction,

lysosomal damage, and iron flux contribute contributes to NLRP3

activation, studies have shown that the decrease in intracellular

potassium is an essential upstream event in NLRP3 activation

induced by ATP and other DAMPs (7, 8). However, the

mechanism of potassium efflux triggered by DAMPs remains

poorly understood.

Sphingosine-1-phosphate (S1P) is a bioactive lipid that is

generated from sphingosine by two key isoforms of sphingosine

kinases, SphK1 and SphK2. S1P regulates diverse biologic processes

by binding to five transmembrane sphingosine-1-phosphate receptors
02
(S1PRs), S1PR1-S1PR5 (9). SphK1/S1P/S1PRs axis plays a key role in

the pro-inflammatory response of macrophages and orchestrates the

pathogenesis of inflammatory-related diseases such as inflammatory

bowel disease, atherosclerosis, and infection (10). S1P is shown to

stimulate NLRP3 inflammasome activation by acting as both priming

and activation signals (11, 12). We have reported that inhibition of

SphK1 improved the survival and lung vascular leakage in mice with

cecal ligation and puncture (CLP)-induced sepsis by impeding

NLRP3 inflammasome activation and subsequent IL-1b release

from macrophages (11). However, the roles of S1PRs in NLRP3

inflammasome activation remain unclear. In this study, we explored

whether the S1P receptors have a regulatory role in NLRP3

inflammasome activation and sepsis.
Materials and methods

Animals

Male C57BL/6 mice (10-to 12-week-old, 23-25g) were used in the

experiments. All mice were housed in a specific pathogen-free facility

with a 12:12 light: dark cycle and were free to food and water. Animal

experimental protocols were approved by the Animal Care and Use

Committee of the Zhongshan Hospital, Fudan University.
Polymicrobial sepsis model and
drug treatment

Polymicrobial sepsis was induced by cecal ligation and puncture

(CLP). Mice were intraperitoneally anesthetized with pentobarbital (80

mg/kg). Under the aseptic condition, laparotomy was performed with a

1 cm cut in the lower abdomen. The cecum was ligated at the point of 1

cm from the distal end of the cecum followed by a puncture with a 16-

gauge needle. A small amount of feces was exteriorized from the cecum

and the cecum was returned to the peritoneal cavity. The sham surgery

was performed as surgical control, where the same operations were

conducted except for cecal ligation, puncture, and exteriorization of

feces. TY52156 was resolved in dimethyl sulfoxide (DMSO) at a

concentration of 20mg/ml. Twenty minutes before surgery, TY52156

(10 mg/kg) or DMSO was injected intraperitoneally. No antibiotics
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1090202
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1090202
were given. An overdose of pentobarbital was used for the euthanasia

of mice.
Measurement of bacterial burden

Blood and tissues were aseptically harvested from mice at 24 h

after CLP. Tissues were homogenized in sterile PBS at 4°C, and the

homogenates were diluted 10-fold with sterile PBS. Then blood and

tissue homogenates were plated on LB agar plates, which were

incubated at 37°C for 16 to 24 h under aerobic conditions. Colony-

forming units (CFUs) were calculated and log-transformed for

statistical analysis.
Measurement of wet/dry ratio

Left lung tissues harvested 24 h after CLP were weighed as the wet

weight. Then, the lung tissues were dried in an oven at 60 °C for 48 h,

the tissues were weighed again as the dry weight. The ratio of lung

wet/dry weight was calculated.
Cell culture and stimulation

Bone marrow cells were prepared from C57BL/6J mice, as

previously described. In brief , bone marrow cells were

differentiated into bone marrow-derived macrophages (BMDMs)

for 6-7 days with DMEM/F12 medium (Hyclone, USA)

supplemented with 20% L929 conditioned media and 10% heat-

inactivate fetal bovine serum (FBS) (Biological Industries, Israel).

The medium was replaced every 2-3 days. BMDMs were primed

with 1 mg/ml LPS for 3 h in FBS free medium, with S1PR1 antagonist

(W146, 3602, Tocris Bioscience, USA), S1PR2 antagonist (JTE-013,

10009458, Cayman, USA), S1PR3 antagonist (TY52156, 19119,

Cayman, USA), S1PR4 antagonist (CYM 50358, 4679, Tocris

Bioscience, UK), S1PR5 agonist (A971432, SML1744, Sigma-

Aldrich, USA) or vehicle. After priming, BMDMs were stimulated

with 3 mM ATP (A2383-5G, Sigma-Aldrich, USA), 10mMNigericin

(tlrl-nig, In vivogen, USA), 25mg/mL imiquimod (tlrl-imq, In

vivogen, USA) for 30 min; 2mg/mL flagellin (tlrl-stfla, In vivogen,

USA) with 2.5 ml/ml of Lipofectamine 2000, 5mg/mL dsDNA mg
(tlrl-patn, In vivogen, USA) with 2.5 ml/ml of Lipofectamine 2000

for 6h. Cells were lysed for Western blot, and the supernatant was

collected after stimulation.
Real-time quantitative polymerase chain
reaction assays

The total ribonucleic acid (RNA) was extracted from BMDMs

using TRIzol reagent (Invitrogen, USA), and was converted to

complementary deoxyribonucleic acid with the Reverse

Transcription Master Mix (EZBioscience, USA). Quantitative real-

time polymerase chain reaction (qPCR) was performed using SYBR

Green qPCR Master Mix (EZBioscience, USA) according to the

manufacturer’s protocols. Primers are listed in Supplementary Table 1
Frontiers in Immunology 03
Enzyme-linked immunosorbent assay

IL-1b in the supernatant was measured by Mouse IL-1 beta/IL-

1F2 DuoSet enzyme-linked immunosorbent assay kit (R&D, DY401-

05, USA) according to the manufacturer’s instructions.
Western blot

Cells were lysed in Nonidet P-40 lysis buffer with

phenylmethanesulfonyl fluoride and protease inhibitor. Boiled

samples of cell lysate with loading buffer were electrophoresed and

transferred onto a 0.2mmpolyvinylidene fluoride membrane (Millipore,

USA). Membranes were blocked with 5% nonfat dry milk for 1 h at

room temperature followed by incubation with primary antibodies

overnight at 4°C. Then the membranes were incubated with secondary

antibodies for 1 h at room temperature and were detected with an

enhanced chemical luminescence kit (Beyotime technology, China).

Antibodies are shown in Supplementary Table 2.
Measurement of intracellular potassium

Cells were loaded with a potassium indicator, ION Potassium

Green-2 AM (ab142806, Abcam, UK) at 5mM for 30 min at room

temperature, according to the manufacturer’s instructions. After two

washes in warmed PBS, cells were imaged using an Olympus FV3000

inverted confocal microscope. The fluorescence signal between

530nm and 560 nm was recorded.
Plasma membrane protein separation

The plasma membrane was isolated using Plasma Membrane

Protein Extraction Kit (ab65400, Abcam, UK) according to the

manufacturer’s instructions. One 10-cm plate of cells for each

condition was scraped in phosphate-buffered saline (PBS). The cells

were centrifugated at 3000 rpm for 5 minutes and washed once with

ice-cold PBS. Then the cells were re-suspended in the Homogenize

Buffer Mix in an ice-cold Dounce homogenizer and were

homogenized 50 times. The homogenates were transferred to 1.5 ml

microcentrifuge tubes and centrifuged at 700 g for 10 minutes at 4°C.

The supernatants were transferred to new vials and centrifuged at

10,000 g for 30 min at 4°C to pellet total cellular membrane protein.

Plasma membrane proteins were purified from the total cellular

membrane protein with phase separation solutions and were

pelleted and dissolved in 0.5% Triton X-100, followed by

Western blot.
Statistical analysis

A two-tailed unpaired Student’s t-test or Mann–Whitney U test

was used to compare the two groups. Three or more groups were tested

with the one-way analysis of variance (ANOVA) followed by Tukey’s

post hoc test. The Kaplan–Meier plot with log-rank (Mantel-Cox) test

was adopted to assess survival differences between groups. Grayscale or
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fluorescence intensity in image data was quantified with ImageJ

(National Institutes of Health, USA). Statistical analyzes were

performed in GraphPad Prism 9 (GraphPad Software Inc., USA).

The RNA sequencing (RNAseq) data of healthy controls and septic

patients on the Gene Expression Omnibus (GEO) database (GSE46955)

was analyzed with an online GEO2R tool. The R scripts were got from

GEO2R with some modifications to download and save the data. A

two-tailed hypothesis test was used, and a p value less than 0.05 was

considered statistically significant.
Results

Expression of S1PRs in macrophages in
resting and inflammatory state

We first checked the relative mRNA expression of S1PR1-5 in

BMDMs, and we found that BMDMs mainly expressed S1PR1,

S1PR2, and S1PR4 in the resting state (Figure 1A). Only the

expression of S1PR3 was upregulated in BMDMs after LPS

stimulation (Figures 1B-F). Next, we analyzed the expressions of

S1PR3 in monocytes of healthy volunteers and septic patients with the

online RNAseq data. Five S1PRs were detected in human monocytes

(Supplementary Figure 1). Human monocytes mainly expressed

S1PR1 and S1PR4. The analysis showed that only the mRNA

expression of S1PR3 was upregulated in human monocytes after

LPS stimulation (Supplementary Figure 1). In addition, compared
Frontiers in Immunology 04
with healthy controls, septic patients had higher mRNA levels of

S1PR3 in monocytes (Figure 1G).
Inhibition of S1PR3 suppresses
ATP-induced NLRP3 inflammasome
activation in macrophages

To determine the effects of S1PRs on NLRP3 activation, S1PR1-

S1PR4 were inhibited with their respective antagonists during LPS

priming followed by ATP stimulation in BMDMs, and S1PR5 was

activated with its agonist during LPS priming because no

commercial antagonist of S1PR5 was available (Figure 2;

Supplementary Figure 2). Inhibition of S1PR3 significantly

reduced both caspase-1 cleavage and IL-1b maturation in LPS-

primed BMDMs after ATP stimulation (Figure 2A). Consistently,

the level of IL-1b in the supernatant of BMDMs treated with LPS

and the S1PR3 antagonist was lower than that of BMDMs treated

with LPS (Figure 2B). Inhibition of S1PR2 also partially suppressed

NLRP3 activation induced by ATP (Supplementary Figure 2B).

Responses of BMDMs to ATP remained intact when treated with

the S1PR1 antagonist or the S1PR4 antagonist (Supplementary

Figures 2A, C). Activation of S1PR5 did not further potentiate IL-

1b or caspase-1 activation in BMDMs after ATP stimulation

(Supplementary Figure 2D). These results suggest that NLRP3

inflammasome activation induced by ATP is mainly limited by

the suppression of S1PR3 signaling in BMDMs.
A B

D E F G

C

FIGURE 1

The expression of sphingosine-1-phosphate receptors in BMDMs. (A) Relative mRNA expression of S1PRs to GAPDH in BMDMs (n=7). (B-F) BMDMs were
treated with LPS (1mg/mL) or PBS for 4h. The mRNA expressions of S1PRs in BMDMs were measured by RT-qPCR (n=4). (G) The mRNA expression values
of S1PR3 in monocytes from healthy controls stimulated with or without LPS, and from septic patients were analyzed with data from the GEO database.
Data are presented as mean ± SD. *p<0.05, **p < 0.01, ***p < 0.001, two-tailed t-test. NS, non-sense.
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Inhibition of S1PR3 suppresses the LPS
priming signal in BMDMs

To understand the mechanism by which inhibition of S1PR3

suppressed NLRP3 inflammasome activation, we first examined the

roles of S1PR3 in LPS priming. The results show that inhibition of

S1PR3 during LPS priming downregulated mRNA expression of IL-

1b, IL-18, NLRP3 (Figure 3A), and protein levels of pro-IL-1b and

NLRP3 in BMDMs (Figure 3B). Inhibition of S1PR3 did not affect the

mRNA and protein expression of pro-caspase-1(Supplementary

Figure 3). These data suggest that inhibition of S1PR3 suppresses
Frontiers in Immunology 05
the expression of IL-1b and NLRP3 in macrophages during

LPS priming.
Inhibition of S1PR3 suppresses ATP-induced
NLRP3 inflammasome activation via
potassium efflux

Next, we explored the roles of S1PR3 in NLRP3 activation in LPS-

primed BMDMs. Given that potassium efflux is a common upstream

of NLRP3 inflammasome induced by DAMPs including ATP (8), we
A B

FIGURE 2

Inhibition of S1PR3 suppresses NLRP3 inflammasome activation induced by ATP. (A, B) BMDMs were primed with LPS (1mg/mL) and treated with TY52156
(0, 1, 5, 10mM) for 3.5h, followed by ATP (3mM) stimulation for 30 min. Pro-IL-1b, IL-1b p17, pro-caspase-1, and caspase-1 p20 in BMDMs were measured
by Western blot (n= 3) (A). IL-1b in the supernatant was measured by ELISA (n= 3) (B). Values are presented as mean ± SD. *p < 0.05, ***p < 0.001,
****p < 0.0001, one-way ANOVA.
A

B

FIGURE 3

Inhibition of S1PR3 suppresses the LPS priming signal in BMDMs. (A-B) BMDMs treated with LPS (1mg/mL) for 4h with or without TY52156 (10 mM). The
mRNA expressions of IL-1b, IL-18, NLRP3, and caspase-1 were measured by RT-qPCR (A). The protein expression of pro-IL-1b and NLRP3 (B) were
measured by Western blot (n=3). Values are presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed t-test.
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tested whether S1PR3 can regulate potassium efflux induced by ATP.

We found that inhibition of S1PR3 significantly reduced potassium

efflux after ATP stimulation (Figure 4A). We further investigated the

effects of inhibition of S1PR3 in NLRP3 inflammasome activation by

nigericin, a bacterial potassium pore-forming toxin, which induces
Frontiers in Immunology 06
NLRP3 activation via directly mediating potassium efflux, and

imiquimod, which activates NLRP3 inflammasome independent of

potassium efflux (13). We found that inhibition of S1PR3 potentiated

NLRP3 inflammasome activation induced by nigericin, but did not

affect on that induced by imiquimod (Figures 4B-E). Furthermore, we
A

B

D EC

FIGURE 4

Inhibition of S1PR3 suppresses ATP-induced NLRP3 inflammasome activation via potassium efflux. (A) BMDMs were primed with LPS (1mg/mL) and
treated with TY52156 (10mM) or vehicle for 3.5h, followed by ATP (3mM) stimulation for 30 min. Representative intracellular potassium fluorescence
image of 5 fields from 3 independent experiments. Values are presented as mean ± SD. ****p < 0.0001, two-tailed t-test. (B-E) BMDMs were primed with
LPS (1mg/mL) and treated with TY52156 (10mM) or vehicle for 3.5h, followed by ATP (3mM), nigericin (10mM), or imiquimod (25mg/mL) stimulation for 30
min. Pro-IL-1b, IL-1b p17, pro-caspase-1, and caspase-1 p20 in BMDMs were measured by Western blot (n= 4) (B). IL-1b in the supernatant was
measured by ELISA (n= 3) (C-E). Values are presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, two-tailed t-test.
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found that inhibition of S1PR3 enhanced dsDNA-induced AIM2

inflammasome and salmonella infection-induced NLRC4

inflammasome activation, as indicated by enhanced caspase-1

cleavage (Supplementary Figures 4A, B). These results thus

demonstrate a specific role of S1PR3 signaling in ATP-induced

NLRP3 inflammasome activation by suppressing potassium efflux.
Inhibition of S1PR3 suppresses ATP-induced
potassium efflux through TWIK2
membrane trafficking

The evidence has shown that TWIK2-mediated potassium efflux

is required for ATP-induced NLRP3 inflammasome activation (13).
Frontiers in Immunology 07
In macrophages, ATP binds to P2X7 receptors to activate NLRP3

inflammasome. Thus, we investigated the effect of S1PR3 on the

expression of TWIK2 and P2X7 receptors in macrophages. Inhibition

of S1PR3 did not affect the mRNA or protein expression of TWIK2 in

BMDMs primed with LPS (Figures 5A, B). The mRNA levels of P2X7

receptors in macrophages were slightly increased after LPS

stimulation, but the protein expression of P2X7 receptors was

unchanged (Supplementary Figures 5A, B). Recent evidence has

indicated that both TWIK2 and P2X7 receptors dynamically move

between the plasma membrane and cytosol (14–17). We found that

the expression of TWIK2 on the plasma membrane was induced by

ATP stimulation in LPS-primed BMDMs (Figure 5C). Meanwhile,

compared with the control BMDMs, less TWIK2 was expressed on

the plasma membrane of S1PR3–inhibited BMDMs (Figure 5C). The
A B

C

FIGURE 5

Inhibition of S1PR3 suppresses ATP-induced potassium efflux through TWIK2 membrane trafficking. (A) BMDMs were primed with LPS (1mg/mL) and
treated with TY52156 (10mM) or vehicle for 4h. The mRNA expression of KcnK6, which codes TWIK2, was measured by RT-qPCR (n=3). Values are
presented as mean ± SD. Data were analyzed with a two-tailed t-test. (B) BMDMs were primed with LPS (1mg/mL) and treated with TY52156 (0, 1, 5,
10mM) for 4h. The TWIK2 in BMDMs was measured by Western blot (n= 3). Values are presented as mean ± SD. Data were analyzed with one-way
ANOVA. (C) BMDMs were primed with LPS (1mg/mL) and treated with TY52156 (10mM) or vehicle, followed by ATP (3mM) stimulation for 30 min. The
TWIK2 in the plasma membrane and whole-cell were measured by Western bot (n= 5). Values are presented as mean ± SD. *p < 0.05, ****p < 0.0001,
one-way ANOVA.
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protein expression of P2X7 receptors on the plasma membrane was

unaffected by LPS, LPS plus ATP stimulation, or S1PR3 inhibition

(Supplementary Figure 5C). These results suggest that inhibition of

S1PR3 could suppress ATP-induced NLRP3 inflammasome

activation by limiting TWIK2 membrane trafficking.
Inhibition of S1PR3 increases mice mortality
in polymicrobial sepsis

Next, we examined the role of S1PR3 in sepsis with the S1PR3

antagonist, TY52156. Twenty-four hours after CLP, mice in the S1PR3

inhibition group had lower levels of cleaved IL-1b in the lungs, compared

with mice in the vehicle control group (Figure 6A). However, mice in the

S1PR3 inhibition group had higher wet/dry ratios and heavier bacterial

burdens in the lungs, livers, spleens, and blood than those in the vehicle

control group (Figures 6B-F). The survival rate of CLP mice was 11.11%

and 44.44% in the S1PR3 inhibition group and the vehicle control group

(p < 0.001) (Figure 6G), respectively.
Discussion

Activation of the inflammatory NLRP3 inflammasome is an

important mechanism by which macrophages combat invading
Frontiers in Immunology 08
pathogens in the early stages of sepsis. Our data suggested that

inhibition of S1PR3 suppressed the expression of NLRP3 and IL-1b
during LPS priming and attenuated ATP-induced NLRP3

inflammasome activation by limiting TWIK2 membrane trafficking

and subsequent potassium efflux (Supplementary Figure 6).

ATP is a common NLRP3 stimulus that was released in large

quantities during sepsis, contributing to systemic inflammation and

secondary organ damage (18, 19). Thus, we first tested the effects of

S1PRs on NLRP3 inflammasome activation with ATP. Upon ATP

stimulation, inhibition of S1PR3 significantly attenuated NLRP3

activation in LPS-primed macrophages. Notably, our results showed

that inhibition of S1PR2 also partially hampered NLRP3 inflammasome

activation in macrophages. A possibility is that the S1PR family members

are functionally redundant. Indeed, it is reported that both S1PR2 and

S1PR3 can activate the receptor-bound G-proteins Gai, Gaq, and Ga12/13

(20, 21). Evidence for the functional redundancy of S1PR2 and S1PR3

has also been described in modulating macrophage behaviors, such as

motility in cholestatic liver injury (22), phenotype reprograming in

mycobacteria infection (23), and phagocytosis in lung infection (24).

Our results show that LPS stimulation only induced the expression of

S1PR3 in both BMDMs and human monocytes, and that inhibition of

S1PR3 attenuates NLRP3 inflammasome activation more efficiently than

inhibition of S1PR2 in BMDMs. Therefore, we speculate that S1PR3

plays a major role in ATP-induced NLRP3 activation in macrophages

under inflammatory conditions.
A B D
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FIGURE 6

Inhibition of S1PR3 increases mortality and bacterial burden in sepsis. (A) Western blots of lung tissues from CLP mice treated with TY52156 or vehicle, and
sham surgery control treated with TY52156 or vehicle (n=3 in each group) Values are presented as mean ± SD. ***p < 0.001, ****p < 0.0001, one-way
ANOVA. (B) Lung wet/dry ratio of mice undergone CLP and then treated with TY52156 (10mg/kg) or vehicle (n=7 in each group). Values are presented as
mean ± SD. **p < 0.01, two-tailed t-test. (C-F) Bacterial burden in the lung (C), liver (D), spleen (E), and blood (F) of mice undergone CLP and then treated
with TY52156 (10mg/kg) or vehicle (n=7 in each group). Values are presented as the mean of log10 CFU ± SD (C-F). *p < 0.05, **p < 0.01, ***p < 0.001,
Mann-Whitney test. (G) Kaplan Meier survival curves of mice undergone CLP or Sham surgery and then treated with TY52156 (10mg/kg) or vehicle (n=6 in
Sham groups, n=18 in CLP groups). ***p < 0.001, log-rank test. NS, non-sense.
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Potassium efflux is a main upstream event in NLRP3 inflammasome

activation induced by various stimuli including ATP (13, 25). Our results

indicate that inhibition of S1PR3 suppresses potassium efflux induced by

ATP. Notably, inhibition of S1PR3 enhanced NLRP3 activation induced

by nigericin, a potassium ionophore directly leading to potassium efflux

(26, 27), and inhibition of S1PR3 had no effects on NLRP3 activation

induced by imiquimod, which is independent of potassium efflux (28).

Besides, inhibition of S1PR3 also enhanced AIM2 or NLRC4

inflammasome activation. These results suggest that the effects of

S1PR3 on canonical inflammasome depend on the given stimulus and

that inhibition of S1PR3 has an exclusive role in ATP-induced NLRP3

inflammasome activation via potassium efflux. Since ATP plays an

essential role as an extracellular signaling molecule in the development

of sepsis and septic organ failure (6), we focused on the mechanism of

S1PR3 in ATP-induced NLRP3 inflammasome activation in our

research. The mechanisms underlying the effects of S1PR3 on NLRP3

inflammasome activation induced by other stimuli need

further investigation.

A recent study has identified TWIK2 as the potassium efflux

channel required for ATP-induced NLRP3 inflammasome activation

downstream of the ATP ligand, P2X7 receptors (13). However, the

mechanism by which ATP enhanced potassium efflux via TWIK2

remains elusive. Our work here adds to the knowledge that ATP can

stimulate potassium efflux by increasing the plasma membrane

trafficking of TWIK2 without affecting the expression of P2X7

receptors. We also find that inhibition of S1PR3 limited the

expression of TWIK2 on the cell membrane induced by ATP.

Experimental data from Madin-Darby canine kidney (MDCK) cells

show that exogenous expressed TWIK2 preferentially expresses in the

Lamp1-positive lysosomal compartment, and functional relocates at

the plasma membrane when its lysosomal targeting C terminal

trafficking motifs are inactivated (17). Whether S1PR3 signaling

engages with ATP-induced TWIK2 membrane trafficking by

modulating this trafficking motif remains to be determined.

NLRP3 inflammasome activation is a double-edged sword in

bacterial infection. On the one hand, a large number of

inflammatory factors released after inflammasome activation can

cause tissue damage; on the other hand, inflammasome activation

and cell pyroptosis help to confine bacteria within macrophages, and

the release of IL-1b facilitates the recruitment of neutrophils to clear

bacteria (29). Previous studies have consistently demonstrated that

Nlrp3 deficiency protects mice from lethal sepsis, which is associated

with lower levels of IL-1b (3, 4). In contrast, the benefit of Nlrp3

deficiency in bacteria clearance in the septic mice remains

controversial, which was possibly due to variations in experimental

protocols (3, 4, 30, 31). Recent data has indicated that maintaining a

certain amount of IL-1b prevented mice from death after sepsis in the

long term (32). Clinical data shows that septic patients present an

early impairment of the NLRP3 inflammasome is associated with a

higher late-death rate (33). In our study, the antagonist of S1PR3 was

used to investigate the effects of S1PR3 inhibition on CLP-induced

septic mice. The dose of TY52156 we used, 10mg/kg, is also widely

used in previously published studies (34, 35). In our results, this dose

of TY52156 did not lead to the death of mice in the sham surgery

group, which demonstrates that no significant toxicity of TY52156 is

shown with this dose. Though inhibition of S1PR3 suppressed IL-1b
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activation in the lungs of septic mice, it also led to higher mortality

and bacterial burdens, which were consistence with the results

reported by Hou et al. in S1pr3-/- mice. Hou et al. have also

reported that S1PR3 had a critical role in the bactericidal activity of

macrophages (36). Compared with the healthy controls, the S1PR3

mRNA levels were higher in ICU controls and septic patients than

that in healthy controls (36). However, the S1PR3 mRNA levels were

negatively associated with the Sequential Organ Failure Assessment

scores of the septic patients, and it was lower in septic non-survivors

than that in septic survivors (36). Concerning the role of S1PR3 in

promoting the bactericidal activity of macrophages, inhibition of

S1PR3 can hamper both inflammation response and bacteria

clearance, leading to poor outcomes.
Conclusions

In conclusion, we report that suppression of S1PR3 has a specific

inhibitory role in ATP-induced NLRP3 inflammasome activation in

macrophages. Mechanically, inhibition of S1PR3 suppresses the

expression of IL-1b and NLRP3 during LPS priming and attenuates

NLRP3 inflammasome act ivat ion induced by ATP via

downregulating membrane expression of TWIK2 and potassium

efflux. Although inhibition of S1PR3 decreases IL-1b maturation in

the lungs, it increases bacterial load and mortality of CLP mice.
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