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The Interleukin-2 Family contains six kinds of cytokines, namely IL-2, IL-15, IL-4,

IL-7, IL-9, and IL-21, all of which share a common g chain. Many cytokines of the

IL-2 family have been reported to be a driving force in immune cells activation.

Therefore, researchers have tried various methods to study the anti-tumor effect

of cytokines for a long time. However, due to the short half-life, poor stability,

easy to lead to inflammatory storms and narrow safety treatment window of

cytokines, this field has been tepid. In recent years, with the rapid development of

protein engineering technology, some engineered cytokines have a significant

effect in tumor immunotherapy, showing an irresistible trend of development. In

this review, we will discuss the current researches of the IL-2 family and mainly

focus on the application and achievements of engineered cytokines in

tumor immunotherapy.
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Introduction

Interleukin (IL)-2 is a member of the cytokine family. In common with other receptors

in the family, namely IL-4, IL-7, IL-9, IL-15 and IL-21, IL-2 shares a common receptor g
chain (i.e., IL-2Rg). IL-2 family cytokines are pleiotropic, type I four a-helix-bundle
cytokines secreted by hematopoietic cells and stromal cells (1, 2). They are indispensable

for the functioning of innate immunity, adaptive immunity, and some actions beyond

immune systems, especially playing vital functions in the development of T, B, and natural

killer (NK) cells. Typically, the g chain, as the common receptor of the IL-2 family, forms

heterodimers or heterotrimers with other subunits, for example IL-2Ra/b, IL-15Ra, IL-
21Ra, IL-4Ra, IL-7Ra, IL-9Ra (3). Moreover, g chains can transmit signals through the

Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways (2).

IL-2, IL-15, IL-21, IL-7 and IL-9 can induce the phosphorylation and activation of STAT1,

STAT3 and STAT5 proteins. However, IL-21 induces a higher level of pSTAT3 expression,
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while the other cytokines activate mostly STAT5. IL-4 leads to the

activation of both STAT5 and STAT6 (4). The IL-2 family cytokines

also regulate specific genes involved in the phosphoinositide 3-

kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR)

pathway and in mitogen-activated protein kinase (MAPK)

signaling (5) Figure 1.

A deficiency of tumor infiltrating lymphocytes (TIL) in the

tumor microenvironment is an important obstacle for those

patients with tumors resistant to cancer immunotherapy. Several

studies on IL-2 family cytokines have elucidated their biological

functions and anti-tumor effects. In particular, IL-2 plays a large

role in activating anti-tumor immune responses in the tumor

microenvironment (6, 7). Thus, IL-2 family cytokines profoundly

affect the survival, proliferation, differentiation and function of T

lymphocyte subsets, including CD8+, CD4+, and NK-T cells, which

play central roles in anti-tumor responses (8, 9). Dating back to the

1990s, IL-2 was approved as the first cancer immunotherapy drug

for metastatic renal cell carcinoma and metastatic melanoma. To

date, IL-2 and interferon-a (IFN-a) are the only two cytokine drugs
for the treatment of cancers approved by the U.S. Food and Drug

Administration (FDA). Yet, more IL-2 family cytokines, such as IL-

15, IL-21, IL-7 have been reported to play a synergistic and unique

role in mediating the activation, proliferation and differentiation of

T and NK cells during immune response. For example, IL-21

strongly drives proliferation and expression of the effector

molecules of NK cells (10). However, in practical applications, use

of the IL-2 family cytokines faces three difficulties. First, cytokines

typically have a small molecular weight and short half-life that can

limit drug distribution and metabolic rate. Second, cytokines are

immune agonists and lead to systemic side effects. Third, cytokines

used individually as a single drug typically fail to target tumors and

thus cannot effectively activate the anti-tumor immune response in

the tumor microenvironment. Accordingly, extensive efforts have

been focused on producing engineered proteins with desired

beneficial properties to address the limitations of these natural

molecules (11). Most notably, two exciting directions in cytokine
Frontiers in Immunology 02
drug development include improving its binding affinity using

designated receptors and regulating its bias in recognition with

key signaling molecules. This article reviews the latter type of

engineering strategy. In addition, some researchers have tried to

conjugate polyethylene glycol (PEGylation) to cytokines to prolong

its in vivo half-life. Some researchers have also constructed

antibody-cytokine fusion proteins to achieve half-life extension

and allow tumor targeting (8, 12, 13).

In this article, we provide an overview of the structural

composition and functional characteristics of each member of the

IL-2 family of cytokines, briefly discussing their potential value in

tumor immunotherapy. We then summarize the diversity,

promising prospects and the stage of clinical application of

engineered IL-2 family cytokine-based immunotherapies. Of note,

the structure of this article is not sorted by IL-2 family number size

but is instead presented based on the number of studies for that

family member, from most to least. The aim of this study is to

review the molecular characteristics of the IL-2 family of cytokines,

the research progress in tumor immunotherapy and the current

status of clinical research, with the goal of providing a

comprehensive and broad vision to guide researchers or drug

research institutes in future studies and to promote the clinical

application of IL-2 family cytokine drugs in tumor immunotherapy.
IL-2

IL-2 was first discovered in the supernatant of activated T cells in

1976 and initially named T-cell growth factor (14). Its receptor

contains three different chains, the IL-2 receptor a chain (IL-2Ra,
CD25), the IL-2 receptor b chain (IL-2Rb, CD122) and the IL-2

receptor g chain (IL-2Rg, CD132). These receptors have different

affinities with IL-2. IL-2Ra is expressed on activated lymphocytes and

binds to IL-2 with low affinity. IL-2Rb and IL-2Rg combine to form

the IL-2Rb/g complex, typically on the surface of memory T cells and

NK cells, and this complex binds to IL-2 with medium affinity. When
FIGURE 1

Signaling network of the IL-2 cytokine family. Receptors of IL-2, IL-15, IL-21, IL-4, IL-7 and IL-9 share a common g chain subunit. They
phosphorylate various STAT proteins downstream by activating JAK/STAT signaling pathway.
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the three receptors IL-2R a/b/g are co-expressed on activated T cells

and regulatory T (Treg) cells, IL-2 binds to them with high affinity to

form a 4-membered complex. Analysis of the three-dimensional

structure of this quaternary complex revealed that IL-2 is initially

associated with IL-2Ra and then recruits IL-2Rb and IL-2Rg. The
medium affinity and high affinity receptor forms can transmit IL-2

signals and perform corresponding functions (15). The g-chain is

encoded by the IL-2RG gene, and mutations in this gene cause X-

linked severe combined immunodeficiency disease (XSCID), which is

characterized by decreased or absent T cells, NK cells and non-

functional B cells (16, 17). Surprisingly, T and NK cell numbers are

normal in IL-2 deficient patients and IL-2 knock out mice (18, 19).

This led researchers to hypothesize that there must be cytokines

sharing the IL-2Rg, which was later confirmed and includes IL-4, IL-

7, IL-9, IL-12, and IL-21 (20). Given this, these six cytokines are

placed into the common cytokine receptor g-chain family, also

known as the IL-2 family of cytokines.

The function of IL-2 has been widely investigated. IL-2 is

required for the generation of Treg cells, namely the

CD4+Foxp3+CD25+CD127low population in the thymus, and is

required for Foxp3+ T cells to exert survival and suppressive

functions in autoimmune diseases (21), such as chronic graft-

versus-host disease (cGVHD), type 1 diabetes (T1D) and systemic

lupus erythematosus (SLE). The primary role of IL-2 is to induce

immune responses by stimulating the proliferation and

differentiation of effector T cells, memory T cells and NK cells

(22). Since the emergence of biotechnology, IL-2, as a biological

agent for the treatment of cancer, has laid the foundation for the use

of other recombinant cytokines to treat tumors. High-dose IL-2 is

crucial to expand cytotoxic lymphocytes but its therapeutic value is

limited by the need for frequent dosing, which can lead to harmful

side effects such as hematologic and hepatic toxicity, mental

confusion, hypoxia and respiratory distress (23, 24). Therefore, a

variety of methods have been developed to prolong the half-life and

weaken the limitations of the treatment window, while harnessing

the immunostimulatory effects and overcoming unfavorable Treg

toxicity of IL-2 for patients suffering from malignant tumors. A

summary of IL-2-based therapies used for cancer treatment follows.

In the 1990s, IL-2 (Aldesleukin) was approved by the FDA for

the treatment of metastatic kidney cancer (1994) and melanoma

(1998). Aldesleukin has a certain anti-cancer effect but has not been

widely used because of its toxic side effects. To address potential

clinical side effects, much research has focused on engineered IL-2

cytokines. Some engineered IL-2 are mutated to silence the binding

activity to CD25, only exposing the IL-2-binding sites of CD122 and

CD132 to selectively stimulate CD8+ memory T cells and NK cells.

Those types of cells only express high levels of IL-2Rbg dimer with

intermediate affinity (25).

Alternatively, for the treatment of autoimmune diseases,

investigators sought to expand Treg cells that efficiently express

IL-2Rabg by masking the binding sites of IL-2 to CD122 and

CD132, only exposing the binding sites to CD25 (26). Solomon et al.

designed an optimized antibody, anti-CD25NIB that selectively

depletes Treg cells without affecting IL-2-STAT5 signaling and

can thus enhance effector activation and antitumor immunity

(27). Arenas-Ramirez and colleagues designed a monoclonal
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NARA1-IL-2 complex. This antibody occupies the CD25 epitope of

IL-2, blocking the interaction between IL-2 and CD25 and

effectively stimulating CD8+ memory T cells and NK cells. More

interestingly, to address the issue of IL-2 clinical therapeutic

mutations, Silva and colleagues constructed a completely new

functional protein structure similar to IL-2/IL-15, called Neo2/15,

by de novo design. The protein contains 100 amino acid residues

and has a completely different topology and sequence from human

and mouse IL-2, which means it can only bind and activate IL-2Rb
and IL-2Rg but cannot bind and activate IL-2Ra; this binding

property has enhanced its therapeutic properties and reduced its

side effects. Compared with native IL-2 and engineered Super-2 (29)

(also called IL-2 superkine; it ablates the interaction between CD25

and IL-2 by mutation), Neo2/15 is better able to activate human and

mouse primary T cells. A single dose of Neo-2/15 showed dose-

dependent delayed tumor growth in melanoma and colon cancer

mouse models (30).

At present, several engineered IL-2 molecules or antibodies are

in the clinical research stage. Currently, two phase I clinical trials

are ongoing to evaluate the safety and toxicity of RO7296682 (a

Treg cell depleting antibody) as a single agent (NCT04158583) and

in combination with Atezolizumab for participants with advanced

solid tumors (NCT04642365). Moreover, the engineered fusion

protein ALKS 4230, consisting of a circular arrangement of IL-2

and IL-2Ra extracellular domains, has been designed to target and

activate effector cells expressing medium affinity for IL-2Rbg. ALKS
4230 does not bind to IL-2Ra on the cell-surface, unlike

recombinant interleukin (rIL)-2, and thus has a milder activating

effect on immune cells. In both preclinical mouse models and in in

vitro experiments with primary human cells from healthy people

and advanced cancer patients, ALKS 4230 induced greater

expansion and activation of NK cells and memory-phenotype

CD8+T cel ls and decreased levels of Treg cel ls and

proinflammatory cytokines, such as IL-6 and tumor necrosis

factor (TNF). ALKS 4230 exerted better anti-tumor efficacy

relative to rIL-2 or a vehicle control in a B16F10 melanoma

implanted lung model (31). In addition, in a pharmacokinetic and

pharmacodynamic study in cynomolgus monkeys, administration

of ALKS 4230 resulted in superior expansion of immune-protective

cells, including CD56+ NK cells, terminal effector CD8+ cells and

effector memory cells (32). These data provide further support of

the clinical evaluations of ALKS 4230. For the moment, ALKS 4230

as a monotherapy or a combination with immune checkpoint

inhibitors are being tested in clinical trials (Table 1).

In addition to changing the binding properties of IL-2 receptors

by mutation or computer-aided design, PEG modification is another

main direction in IL-2 drug development. NKTR-214

(bempegaldesleukin) is a new generation of pegylated IL-2 drugs

(33) (Figure 2). It innovatively links six PEG molecules with IL-2 to

form a prodrug known as NKTR-214, which has no drug activity of

its own. In the human body, the PEG group is irreversibly shed to

release the active components of 2-PEG and 1-PEG. Both have a high

affinity for IL-2Rbg receptors and low affinity for the IL-2Rabg
receptors, thus reducing the promotion of Tregs proliferation while

stimulating the immune system (activating CD8+T cells andNK cells)
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(34). At the same time, pegylated modification prolongs the drug

half-life. This induced upregulation of the expression of programmed

cell death protein 1 (PD-1) molecules on CD8+ tumor-reactive T cells

in the first human study. Nonetheless, an objective response rate

(ORR) of zero was observed in 28 recruited patients with advanced

metastatic renal cell carcinoma and melanoma treated with NKTR-

214 (35). In contrast, patients in another study treated with standard

IL-2 had positive ORR values of 57.14% ORR for patients with

metastatic melanoma and 100% ORR for patients with metastatic

kidney cancer (36). Since NKTR-214 alone has little effect, it has been

speculated that NKTR-214 and immune checkpoint inhibitors (anti-

PD-1, anti-CTLA-4) have a synergistic effect in resisting tumor, and

this has been strongly supported in some preclinical (37, 38) and

clinical experiments (Table 1).

Another IL-2 drug candidate, THOR-707 (SAR 444245), is a

“non-a” recombinant protein of IL-2 variants that, through specific

modifications, allows polyethylene glycol chains (PEGs) to adhere
Frontiers in Immunology 04
to specific sites, preventing it from binding to immune receptors IL-

2R-a (CD25). This specifically elicits large-scale accumulation of

infiltrating CD8+ lymphocytes and NK cells in tumor tissues,

leading to a dose independent reduction in tumor growth in

C57BL/6 mice bearing B16-F10 tumors (39). Thus, THOR-707, as

a single drug or combined with immune checkpoint inhibitors

(CPI), is also being developed for use with a variety of solid

tumors (Table 1).

Antibody-cytokine fusion proteins are a new class of biologics that

target cytokines to tumor cell sites, increasing leukocyte infiltration in

the tumor microenvironment (40). The first antibody-cytokine fusion

proteins were reported as early as the 1990s, fusing IgG antibodies with

multiple interleukins, tumor necrosis factors, and interferons (41–43).

The L19-IL-2 fusion protein delivers IL-2 to fibronectin targeted by L19

monoclonal antibodies (Figure 2). Fibronectin is expressed in the

extracellular matrix of vascular endothelial in most solid tumors and

malignant blood diseases, so the infusion of L19-IL-2 improves the
TABLE 1 Generalization of the clinical trials of engineered IL-2 cytokines.

Drug Cytokine NCT Number Phase Immunotherapy
Combinations

Conditions

ALKS 4230
(Nemvaleukin Alfa)

IL-2 NCT04592653 NCT03861793
NCT02799095 NCT04144517
NCT04830124 NCT05092360

1,2,3 Anti-PD-1 Antibody
(Pembrolizumab)

Advanced Solid Tumors

THOR-707
(SAR 444245)

IL-2 NCT04009681 NCT05104567
NCT05179603 NCT04913220
NCT05061420 NCT04914897

1,2 Anti-EGFR antibody
Cetuximab
Checkpoint inhibitor
Pembrolizumab
(Keytruda®)
Carboplatin

Metastatic solid tumors
Gastrointestinal cancer
B cell lymphoma
Advanced skin cancers
Lung cancer

NKTR-214
(Bempegaldesleukin)

IL-2 NCT04936841 NCT02983045
NCT03785925 NCT03635983
NCT04955262 NCT03745807
NCT04730349 NCT04969861
NCT03835533 NCT03729245
NCT02983045 NCT04646044
NCT03138889 NCT04209114
NCT04540705 NCT04052204

1,2,3 Anti-PD-1
(Nivolumab
Pembrolizumab)
Anti-CTLA-4
(Ipilimumab)
Tyrosine Kinase
Inhibitor
(Abozantinib)
Chemotherapy

Advanced Solid tumors
High-grade Glioma
Metastatic Head and
Neck Cancer
Coronavirus Disease 2019

L-19-IL-2 IL-2 NCT05329792 NCT02076633
NCT02086721 NCT02076646 NCT01198522
NCT01253096 NCT02938299 NCT01058538
NCT04362722 NCT01055522 NCT03567889

1,2,3 Gemcitabine
Dacarbazine
L19TNF

Basal Cell Carcinoma
Squamous Cell
Carcinoma
Malignant Melanoma
Solid tumors

RO6895882 IL-2 NCT02004106 NCT02350673 1 Atezolizumab Neoplasms
Solid Tumors

RO7284755 IL-2 NCT04303858 1 Anti-PD-1
Atezolizumab

Advanced and/or
Metastatic Solid Tumors

FAPIL2v (Simlukafusp
alfa、RO6874281)

IL-2 NCT03386721 NCT03875079
NCT02627274 NCT03063762

1,2 Anti-PD-L1
Anti-PD-1
Trastuzumab
Cetuximab
Atezolizumab
Bevacizumab

Solid Tumor
Breast Cancer
Renal Cell
Cancer of Head and
Neck

hu14.18-IL2 IL-2 NCT03209869 NCT00590824 NCT03958383
NCT00109863
NCT00003750 NCT00082758 NCT01334515

1,2 Anti-PD-1
(Nivolumab
Anti-CTLA-4
(Ipilimumab)
Radiation Therapy
Isotretinoin

Neuroblastoma
Osteosarcoma
Melanoma
Unspecified Childhood
Solid Tumor
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cytokine index within tumor tissue and increases the median survival

in mouse models of sleeve cell lymphoma (44). L19-IL-2 has also been

proposed, and is being evaluated, clinically as a single agent or in

combination with other tumor-targeted monoclonal antibodies in

many solid tumors (Table 1). Slightly different from what was

reported above, Klein and colleagues designed an IL-2 mutant (IL-

2v) that does not bind to CD25 (45) but fuses with the antibody

CH11A 1-2F1, targeting the carcinoembryonic antigen (CEA) to form

the antibody-cytokine fusion protein CEA-IL-2v (RG7813). This

immune protein preferentially binds to CEA rather than IL-2R,

making it highly accumulated at the tumor site, preferentially

activating CD8+ T cells and NK cells. Moreover, CEA-IL-2v

(RO6895882) as a drug in combination with Atezolizumab has been

applied to CEA-positive solid tumor Phase I clinical trials (Table 1).

The PD-1-IL-2v fusion protein (RO7284755), a PD-1 targeted IL-2

variant immunocytokine developed by the company Hoffmann-La

Roche, can deliver IL-2 mutants to PD-1+ T cells. PD-1-IL-2v

treatment leads to greater expansion of proliferative and cytotoxic

effector cells compared to non-PD-1-targeted IL-2v and anti-PD-1.

Clinically, a phase IA/IB study is in progress to estimate the safety and

anti-tumor activity of RO7284755 both alone and in combination with

Atezolizumab in patients with advanced and/ormetastatic solid tumors

(Table 1). Another novel immunocytokine designed by Hoffmann-La

Roche is simlukafusp alfa (FAP-IL-2v). Here, an IL-2v mutein is fused

with the high-affinity fibroblast activation protein a (FAP) human

IgG1 antibody 4B9, allowing this fusion protein to deliver the IL-2

variant to the surface of cancer-associated fibroblasts and pericytes that

highly express FAP, without preferential activation of Treg cells. In

murine models, FAP-IL-2v accumulates in tumors and activates CD8+

T cells, NKp46 NK cells, and CD68-positive macrophages. It is effective

at controlling tumor growth and prolonging the median survival of

tumor-bearing mice when used in combination with other therapeutic

antibodies, such as anti-mPD-L1, anti-mCD40 and antibody-

dependent cellular toxicity (ADCC)-competent antibodies (46).

Currently, there are four clinical trials related to this drug (Table 1).

Hu14.18-IL-2 is an immunocytokine (IC) fusion protein

consisting of a humanized anti-disialoganglioside (GD2)
Frontiers in Immunology 05
monoclonal antibody and human recombinant IL-2 (hrIL-2)

developed to exert superior anti-tumor activity against melanoma

and neuroblastoma. As expected, targeted IL-2 enhanced the ADCC

of hu14.18 mAb (anti-GD2) to efficiently inhibit tumors in murine

models (47, 48). A phase II trial of the hu14.8-IL-2 fusion protein

for the treatment of refractory or recurrent neuroblastoma disease

had a 21.7% complete response rate in 23 patients, which is

promising. Other related clinical trial results are given in Table 1.

In summary, we have made a brief overview of some

representative engineered IL-2 cytokines that are expected to be

candidates for the next generation of immunotherapies. In reality,

there are also an increasing number of experiments focusing on IL-2

cytokine in combination with adaptive cell transfer (ACT), cancer

vaccines (49), chemotherapeutic drugs and surgical operation.

Those studies will not be covered in detail in this review.
IL-15

IL-15 was first reported as an important cytokine of the IL-2

family in the 1990s, when it was found in the supernatant of two cell

lines, CV-1/EBNA and HTLV-1-associated HuT-102. IL-15 has a

molecular size of 14-15 kD and can stimulate T cell proliferation

and induce NK cell activation (50). It is widely expressed by various

cells, including myeloid cells, fibroblasts and epithelial cells but,

surprisingly, not by T cells (51). The IL-15 mature protein is a 114

amino acid peptide, with 97% and 73% homology to the IL-15

sequences of monkeys and mice, respectively (52). IL-15 has similar

biological properties to IL-2 because they share the same receptor

signaling components. IL-15 receptors consist of a specific IL-15Ra,
a transmembrane protein and a common intermediate affinity IL-

15Rbg (also known as IL-2Rbg) receptor. Soluble IL-15 can bind to

IL-15Ra alone with high affinity (10-11 M) and is found on the cell

surface in the form of IL-15/IL-15Ra complexes. In fact, IL-15Ra
serves as a repository for IL-15 by recycling the free IL-15 protein

and making it available for cis- or trans- expression (53). IL-15 has a

unique mechanism of action. It typically interacts with its receptors
FIGURE 2

Representative engineering cytokine patterns.
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in cis- and trans- ways. For cis-presentation, IL-15 binds to the

receptors co-expressed on T cells, NK cells, natural killer T (NKT)

cells and B cells; this is necessary for survival and proliferation of

CD8+ memory phenotype T cells and antigen-specific memory

CD8+ T cells, among others (54). For trans-presentation, IL-15Ra
from one subset of cells (such as dendritic cells) present IL-15 to

adjacent NK and CD8+ T cells expressing only IL-15Rbg.
Compelling evidence suggests this is the main mechanism by

which IL-15 generates biological activities in vivo. Such binding

mediates functional effects similar to those of IL-2, including

stimulating proliferation of CD8+ T cells, NK cells, cytotoxic

lymphocytes and induction of immunoglobulin synthesis by B

cells through the JAK-STAT pathway (JAK 1 and JAK 3, STAT3

and STAT5) (55). IL-15 can also activate the MAPK pathway and

the PI3K/Akt/mTOR pathway. Since IL-15 does not bind to IL-2Ra
(CD25), it does not lead to the proliferation and activation of Treg

cells, but it does stimulate the expansion of NK and effector T cells,

and especially supports the survival of CD8+ memory T cells (56).

Unlike the unique role of IL-2 in activation-induced cell death

(AICD), a major mechanism underlying peripheral self-tolerance,

IL-15 has a competing role in inhibiting IL-2-mediated T cell death

that contributes to enhanced immune memory (57). Moreover, IL-

15 can protect neutrophils from apoptosis, promoting the

maturation of dendritic cells (58, 59). In all, IL-15 can promote

cellular expansion, enhance the functions of effector and cytotoxic

immune cells, and promote the secretion of effector molecules, such

as IFN-g, TNF-a, XCL1, granzyme and perforin (60). This suggests

that IL-15 is an attractive candidate for cancer immunotherapy.

Soluble IL-15 (sIL-15, monomer IL-15) is secreted at very low

levels with a half-life of less than 40 minutes (61). In addition, high-

dose injection of this single agent can cause toxicities. Since IL-15

appears in the form of a heterodimer in the circulation after binding

with the soluble IL-15Ra (62), various attempts have been made to

use the concept of natural trans-presentation of IL-15 to ameliorate

the biological activity of IL-15. For example, when soluble IL-15 is

injected simultaneously with the fusion protein sIL-15Ra-Fc
(formed by the IL-15Ra and IgG1 Fc regions), its ability to

activate proliferation of mouse memory phenotype CD8+ T cells

is 50 times greater than that of IL-15 alone (63). The construction of

a complex of sIL-15/IL-15Ra co-expressed on engineered cells by

gene therapy significantly extends the half-life of sIL-15. Much

greater bioactivity is displayed by sIL-15/IL-15Ra because it creates

a conformational change that potentiates IL-15 recognition by the

bg receptors on T cells. The sIL-15/IL-15Ra complex can thus

rapidly induce strong and selective amplification of CD44high

memory CD8+ cells and NK cells (64). Furthermore, fusion

proteins (RLI and ILR), in which IL-15 and IL-15R alpha-sushi

domain (Ile 31 to Val 115) are attached by a flexible linker, are even

more potent than the combination of IL-15 with sIL-15R alpha-

sushi (65). In many experimental murine models, the fusion protein

used alone or in combination with checkpoint inhibitors, such as

anti-PD-1 Abs, delays tumor growth, can induce tumor regression

and prolongs survival in mice (66).

A recombinant chimeric protein consisting of IL-15, IL15Ra
sushi domain, and the apolipoprotein A-I (Sush-IL15-Apo) has

also been developed. The scavenger receptor type I class B receptor
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(SR-B1) expressed on the surface of tumor cells is a receptor for

ApoA-I and this allows SR-B1 to aggregate chimeric proteins on

the surface of tumor cells to deliver IL-15 to NK and CD8+ T cells.

Furthermore, simultaneous infusion of this chimeric protein with

anti-EGFR antibodies can increase the ADCC effects of

monoclonal antibodies and reduce the number of colon cancer

tumor cells in the abdominal cavity (67). Many more examples of

the combined use of IL-15 and other cytokines in tumor treatment

exist. IL-15 and IL-21 may synergistically stimulate NK-92 cells,

release more immune cell-derived exosomes, and mediate

stronger cell killing activity of NK cells (68). IL-15 and IL-2 can

upregulate the expression of the NKG2D activating receptor on

immune lymphocytes and augment NKG2D-relevant NK cells

anti-tumor cytotoxicity in melanoma patients (69). Recombinant

human(rh)IL-15, with rhIL-12 and rhIL-18 may prime blood NK

cells to differentiate into memory-like NK cells and potentiate

their responses against cancer (70).

Another next generation drug of IL-15 in preclinical trials is

tumor-conditional IL-15 pro-cytokine (Pro-IL-15), designed by the

team of Professor Fu Yangxin of Tsinghua University (Figure 2).

Pro-IL-15 consists of an extracellular domain of IL-15Rb fused to

the N-terminus of sIL-15-Fc via a matrix metalloproteinase (MMP)

cleavable linker. This keeps Pro-IL-15 inactive until it accumulates

in the tumor and is cleaved by the high MMP environment of the

tumor microenvironment. This pro-cytokine reduces on-target off-

tumor toxicity and induces greater regression of MC-38-bearing

tumors in murine models (71). Recently, Lu et al. (72) constructed a

new immunocytokine (LH01) by fusing the IL-15 receptor alpha-

sushi domain/IL-15 (IL-15N72D) complex with the antibody

against programmed death-ligand 1 (PD-L1). LH01 not only had

a prolonged half-life and improved the tumor-targeting distribution

of IL-15, it also overcame resistance to PD-L1 blockade and reduced

both CT-26 and MC-38 tumor burden in mouse models. This may

be attributed to LH01 increasing the activation of cells involved in

innate immunity and adaptive immunity.

More projects are modifying the IL-15 molecule to overcome its

limitations (in vivo short half-life, no trans-presentation by IL-

15Ra) in clinical applications. For example, the IL-15 super-

agonist, N-803 (formerly ALT-803), developed by ImmunityBio

assembles an IL-15 mutant protein (IL15N72D), an activating

mutation of IL-15Ra sushi domain, and IgG1-Fc together to

allow trans-presentation and decreased renal clearance.

IL15N72D induces stronger phosphorylation of the JAK1 and

STAT5 proteins and anti-apoptotic activity, resulting in a four to

five times increase in biological activity over natural IL-15 (73). N-

803 effectively boosts CD34+ hematopoietic progenitor cell (HPC)-

NK cell proliferation in a dose-dependent manner, induces IFN-g
production, and augments tumor cell death in mice bearing human

ovarian cancer cells (74). In addition, N-803 treatment increases the

expression of PD-L1 in immune cells in vivo, so N-803 combined

with anti-PD-L1 is well-tolerated by intraperitoneal infusion. Due

to the increase in the number of immune cells in the lungs and

spleen, the MC38-CEA tumor load is reduced, the lung metastasis

of 4T1 triple negative breast cancer is significantly inhibited, and the

survival period is prolonged (75). We have found 28 studies for N-

803 in clinical trials and made display in Table 2.
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BJ Bioscience, Inc. has developed the first tumor targeting IL-15

fusion protein, BJ-001, with a global patent. BJ-001 is a fusion

protein of IL-15 and RGD (Arg-Gly-Asp-D-Phe-Lys, an integrin

receptor antagonist polypeptide), which enables it to be enriched in

tumors with high expressions of avb3, avb5 and avb6 integrin.

Pharmacodynamic studies show that BJ-001 has obvious anti-

tumor effects in the subcutaneous transplantation tumor model of

hucct1 human cholangiocarcinoma cells in BALB/C nude mice.

Currently, a phase I study is ongoing to assess the safety and

tolerability of BJ-001, as a single agent and in combination with

PD-1 or PD-L1 inhibitor in adult patients with locally advanced or

metastatic solid tumors (Table 2). Another IL-15 candidate drug is

NKTR-255, a conjugate of a novel polyethylene glycol-recombinant

human IL-15 (rhIL-15). Compared to rhIL-15, NKTR-255 induced

a 2.5- and 2.0-fold increase in NK and CD8+ T cells, respectively, in

multiple cancer models. NKTR-255 can also utilize IL-15Ra for cis-

presentation on CD8+ T cells acting as an IL-15Rb agonist and

potentially advancing immunotherapies for cancer treatment (76–

78). The first phase I human clinical trial is currently underway to

examine the efficacy of NKTR-255 as monotherapy or in

combination with daratumumab or rituximab for hematologic

malignancies. The study includes 46 patients and will evaluate the

safety, toxicity and maximum tolerated dose (MTD) in the dose-

escalation phase that minimizes side effects. Another 72 patients

will be enrolled to explore the recommended Phase II dose (RP2D)

(79) (Table 2). At the same time, approved combinations of rIL-15

with other agents in the clinic, such as the combination of
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monoclonal antibody alemtuzumab and rhIL-15, can further

improve the therapeutic efficacy of adult T-cell leukemia (ATL)

(NCT02689453). A phase I study combining IL-15 expressing

autologous NKT cells and GD2 specific CAR (chimeric antigen

receptor) is being evaluated for its efficacy in treating children with

neuroblastoma (NCT03294954).

In conclusion, IL-15-based agents are potent cancer

immunotherapies, especially with the emergence of next-

generation IL-15 cytokines. However, we need more attempts to

obtain IL-15 engineered drugs with better clinical therapeutic value.
IL-21

IL-21, a multifunctional type I cytokine belonging to the IL-2

family, was discovered in 2000. The IL-21-coding gene is localized

on the long arm of human chromosome 4 (4q26-q27). After

transcription and translation, the precursor molecule containing

162 amino acids is formed; the mature functionally active molecules

with 131 amino acids of 14 kD are formed once cleaving occurs at

position Gly 31. IL-21 is produced by CD4+ T cell subsets, such as

Th17, T-follicular helper cells (Tfh), NKT cells, and by CD8+ T cells

in some viral infections. IL-21R is a heterodimeric complex

composed of a specific IL-21Ra chain and the common shared g-
chain (CD132) of the IL-2 family. As the unique receptor of IL-21,

the IL-21Ra encoding gene encodes 583 amino acid residues that

form a transmembrane glycoprotein of 75 kD. The structure of the
TABLE 2 Summary of clinical trials involving IL-15 and IL-7.

Drug Cytokine NCT Number Phase Immunotherapy
Combinations

Conditions

N-803
(IL-15-Superagonist,
IL15N72D, ALT-803)

IL-15 NCT04808908 NCT04340596
NCT04505501 NCT02989844
NCT04385849 NCT03022825
NCT03853317 NCT04247282
NCT02138734 NCT03493945
NCT03520686 NCT04927884 NCT04491955
NCT05096663
NCT04898543 NCT03563157 NCT03563170
NCT03228667 NCT04290546 NCT03387085

1,2,3 Anti-PD-1
(Pembrolizumab,
Nivolumab)
TriAd vaccine
Bacille Calmette-Guérin
vaccine
NHS-IL12
Chemotherapeutic
drugs

HIV Infections, COVID-19
Acute Myelogenous Leukemia
(AML)
Bladder Cancer,
Head and Neck Neoplasms
Colorectal Cancers
Solid Tumors

BJ-001 IL-15 NCT04294576 1 PD-1 or PD-L1
inhibitor

Locally Advanced/Metastatic
Solid Tumors

NKTR-255 IL-15 NCT04616196 NCT04136756
NCT05327530

1,2 Rituximab, Avelumab
Daratumumab,
Sacituzumab Govitecan
Cetuximab, M6223

Non-Hodgkin Lymphoma
Multiple Myeloma
Head and Neck Squamous
Cell Carcinoma
Colorectal Cancer
Locally Advanced or
Metastatic Urothelial
Carcinoma

NT-I7/GX-I7
(Efineptakin alfa)

IL-7 NCT05075603 NCT04332653
NCT04588038 NCT04594811
NCT03901573 NCT05191784
NCT04810637 NCT04730427
NCT04588038 NCT04893018
NCT04501796 NCT04984811

1,2 Anti-PD-1
(Pembrolizumab,
Nivolumab)
Anti-PD-L1
(Atezolizumab)
Anti-VEGF
(Bevacizumab)

Advanced Solid Tumors
Refractory Diffuse Large B-cell
Lymphoma
Triple Negative Breast Cancer
Non Small Cell Lung Cancer
Recurrent Head and Neck
Squamous Cell Carcinoma
Recurrent Glioblastoma
HIV Infection, COVID-19
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IL-21Ra-chain is similar to that of the IL-2Rb-chain and IL-4Ra-
chain (80, 81). IL-21R is located in normal lymphoid tissues such as

the thymus, lymph nodes, and splenocytes. Interestingly, expression

of IL-21R has also been detected in other non-lymphoid tissues,

such as bone marrow cells, thyroid cells (82) and keratinocytes.

Both IL-21Ra-chain and g-chain are important signal subunits of

IL-21. The IL-21-IL-21R signaling pathway induces an increase in

phosphorylation of the Janus family tyrosine kinases JAK1 and

JAK3, and further activates downstream STAT3, STAT1 and, to a

lesser extent, STAT5 proteins. The dimerization of phosphorylated

STAT proteins are transferred to the nucleus and modulate the

expression of IL-21 related genes, such as cMyc, Bax (STAT3-

dependent proapoptotic genes), Bcl-2 and Bcl-XL (two anti-

apoptotic genes) (83), and INFG (repressor of cytokine signaling

3 and 1 (SOCS3 and SOCS1) that negatively regulates the JAK-

STAT pathway) (84). STAT3 and STAT1 synergistically activate IL-

21 downstream gene expression, but in some cases this

phenomenon is reversed. For example, IL-21-mediated activation

of STAT1 can inhibit STAT3-dependent IL-21 expression (84).

Simultaneously, IL-21 can also activate two different pathways,

PI3K-AKT and MAPK, to regulate the differentiation and

polarization of immune cells and related non-immune cells.

Generally speaking, IL-21 exerts pleiotropic functions on

various immune cells. On the one hand, IL-21 can induce Th17

and mediate the development of autoimmune diseases (85). On the

other hand, IL-21 can induce Tfh cell differentiation, and Tfh can

induce germinal center formation, long-lived plasma cell (LLPC)

production (86), and eventually induce memory B cells to secrete

high-affinity antibodies (87). In addition, IL-21 may promote the

maturation of memory CD8+ T cells, and then sustain and enhance

the anti-tumor cytotoxicity of effector CD8+ cells and NK cells. This

is closely related to the IL-21 signaling pathway downstream

transcription factor basic leucine zipper ATF-like transcription

factor (BATF) (88, 89). Moreover, IL-21 promotes the conversion

of macrophages from the M2 phenotype to the M1 phenotype.

Unlike IL-2, IL-21 does not expand Treg cells via the suppression of

Foxp3 expression (90). Thus, the same dose of IL-21 in clinical

practice has lower lethal toxicity and systemic side effects compared

to other members of the IL-2 cytokine family (IL-2, IL-15).

Nevertheless, IL-21 reduces the expression of MHC class II

molecules in dendritic cells (DCs), further inhibiting the

activation and maturation of DCs at the early phase of the

immune response (91).

IL-21 has dual roles in tumor therapy. Although IL-21 enhances

the development of colitis-associated colon cancer and leads to

inflammation in head and neck squamous cell carcinoma (92, 93),

several clinical phase I/II studies (94–96) and preclinical results

continue to indicate that IL-21 can stabilize disease and induce

stronger anti-tumor activity in many cancers, including B-cell

Hodgkin’s lymphoma, melanoma, renal cancer, metastatic

colorectal cancer, ovarian cancer and non-small cell lung cancer

(97). Moreover, a recent preclinical study suggests that IL-21 can

potentiate the ability of granulocyte-macrophage colony-

stimulating factor (GM-CSF) to stimulate anti-tumor immunity

in mice to resist bladder cancer (98). IL-21 is required for the

generation of tumor-infiltrating CD8+ T cells expressing CX3CR1
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characterized by cytolytic function and enhanced secretion of

effector molecules such as interferon-g and granzyme B (99). IL-

21 may enhance NK cell-mediated antibody-dependent cell-

mediated cytotoxicity more than IL-2 and IL-15 (100). Overall,

preclinical studies have begun focusing on the development of IL-21

as an adjuvant drug for tumor treatment. Infusion of high-dose (200

µg) IL-21 does not lead to the production of inflammatory cytokines

or endothelial tissue damage in mice, and only generates minimal

vascular leakage. However, an equivalent dose of IL-2 leads to

vascular leakage in mice as manifested by the infiltration of

inflammatory cells and increase of cytokines, such as TNF-a, IL-6
and IFN-g in serum (101). Although IL-21 has a wider safety dose

window, it has the following problems as an antineoplastic agent.

First, recombinant human IL-21(rhIL-21) has a short half-life;

reports suggest half-life is only 2 hours in the human body.

Second, rhIL-21 has a systemic profile and a high affinity for IL-

21R, making it difficult to achieve effective enrichment at the tumor

site; thus, safety and efficacy are not well balanced. Lastly, rhIL-21

has a certain immune activation effect in theory and as its single-

agent anti-tumor effect is limited, a risk of inducing autoimmune

diseases exists.

To counterbalance the high affinity binding of IL-21 to non-

tumor tissues expressing IL-21R, researchers have tried fusing IL-21

with tumor-targeting or T cell-targeting antibodies to form fusion

proteins. This improves anti-tumor efficiency by decreasing off-

target cytotoxicity and extends the survival of clinically advanced

cancer patients. Several examples exist in the literature. In a recent

study, IL-21 fused with anti-EGFR or anti-CD20 exerted a more

effective anti-tumor effect (102, 103) (Figure 2). Tumor-targeting

antibodies can effectively deliver drugs to the tumor location, and

cytokines have certain chemotaxis and activation functions that can

more effectively activate the anti-tumor activity of the immune

system and improve the tumor microenvironment immune

infiltration. Consider aCD20-IL-21 as an example. This drug

format not only prolongs the serum half-life of IL-21, but also

effectively overcomes single-drug resistance, promotes NK-cell

activation and cytotoxic function facilitating IFN-g secretion and

inducing stronger apoptosis of lymphoma cells. The investigators

also reported on an antibody-cytokine fusion protein drug, PD-

1Ab21, that combines anti-PD-1 antibody with IL-21 in a

bifunctional drug format. It is precisely because this form of

medicine can more effectively direct IL-21 to tumor-specific T

cells and promote the formation and proliferation of memory

stem cell-like T cells with CD44low-CD62Lhigh phenotype that the

therapeutic effect is greatly improved and the side effects

reduced (104).

Combining an engineered design of a highly attenuated IL-21

mutein variant (R9E:R76A) and a PD-1 blocking antibody prolongs

the half-life and allows a longer duration between clinical treatment

cycles (105). IL-21-aHSA, an engineered immunocytokine in which

a nanobody targeting human serum albumin (HSA) is fused to the

carboxyl terminal of recombinant human IL-21 (rhIL-21), has half-

life extended and stability increased compared to rIL-21. Whether

used as a monotherapy or in combination with immune checkpoint

blockades (PD-1, T cell immunoglobulin, or ITIM domain

(immunoreceptor tyrosine-based inhibitory motif)), enhanced
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anti-tumor efficacy results (106). In addition, IL-21 stimulates NK

cells and leads NK cells to have stronger ADCC effects on

cetuximab-treated pancreatic cancer cells (107). Phase I/II clinical

trials include the IL-21/PD-L1 fusion protein AMG-256

(NCT04362748) initiated by Amgen, BMS-982470 (rIL-21) in

combination with BMS-936558 (anti-PD-1) for solid tumors

(NCT01629758) and rIL-21 combined with rituximab or

sorafenib for non-Hodgkin’s lymphoma (NCT00347971) or

metastatic renal cell carcinoma (NCT00389285). Shanghai Junshi

Biopharmaceutical recently extended the half-life of IL-21 by fusing

an anti-HAS single-domain antibody to improve the distribution of

the drug in the tumor microenvironment. This drug, JS401 (rhIL-

21-HAS single-domain antibody fusion protein), has been approved

for clinical trials. Lastly, a patient presenting with stage III

melanoma refractory to the monotherapy of adoptive transfer of

CD8+ cytotoxic T lymphocytes (CTLs) and anti-CTLA-4 achieved a

complete remission (CR) and remains disease-free 5 years later after

infusion with IL-21-primed polyclonal CTL plus CTLA-4 blockade

(108). Lamentably, so far, none of these next-generation candidate

IL-21 drugs have entered the clinical stages.

To summarize, IL-21, the most recently discovered of the IL-2

family cytokines, has great anti-tumor potential and has attracted

considerable attention from the biomedical community. Yet, the

clinical development of IL-21 lags compared with other cytokines in

the IL-2 family, such as IL-2 and IL-15. Hence, finding a way to

ensure that IL-21 can achieve higher and more effective therapeutic

effects under the premise of using the maximum biosafety dose

requires more effort. Collectively, IL-21 as a monotherapy and in

combination or fusion with other vaccines, cytokines or antibodies

can increase the function of NK and CD8+ T-cells in the tumor,

suggesting drug development based on IL-21 has a bright future.
IL-4

IL-4, also known as a pleiotropic type 2 cytokine (the others

include IL-5 and IL-13), was first discovered in 1982 as a 4-a helix

bundle pleiotrophin secreted by CD4+ T cells, Th2 cells, basophils,

eosinophils and mast cells (myeloid cells) (109). hIL-4 cDNA

encodes 153 amino acid residues and yields a 129 aa-secreted

protein, with a molecular weight of 12-20 KDa depending on the

degree of N-terminal glycosylation (110). The human IL-4 and

mouse IL-4 gene are located on chromosome 5 and chromosome

11, respectively. The related receptor IL-4R has three different

forms. The type I IL-4R consists of an IL-4Ra chain and a

common IL-2Rg chain and is expressed in endothelial cells,

epithelial cells, and liver and brain tissue; it binds exclusively to

IL-4. The type II IL-4R is expressed only on non-hematopoietic

tissues is composed of an IL-4Ra chain and an IL-13Ra1 chain that

can simultaneously bind to IL-4 and IL-13, respectively (111–113).

Type III IL-4R includes the above three types of receptors (IL-4Ra,
IL-13Ra1, IL-2Rg). IL-4Ra is a cytokine-binding receptor for IL-4.

Once IL-4 and IL-4Ra combine with high affinity, the IL-4/IL-4Ra
complex then binds to the second receptor, either IL-2Rg or IL-

13Ra1 to form a functional receptor complex (114).
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IL-4 binding to receptors can also activate multiple signaling

pathways, such as the JAK-STAT, insulin receptor substrate (IRS)

2/PI3K/Akt/mTOR signaling pathways. It is worth noting that the

STAT6 protein of a downstream signaling pathway is recruited

and phosphorylated to mediate the majority of IL-4 functions

(115). Ligand (IL-4 or IL-13) binding to IL-4Ra and IL-13Ra1
correlate with the differentiation of naïve T cells into Th2 effector

cells [the major contributor to B-cell help and IgE antibody

production (116)] and eosinophil cells, which are highly related

to some autoimmune diseases, including asthma (117) and

multiple sclerosis patients (118). IL-4 also boosts survival and

proliferation of mast cells and polarizes macrophages to M2

macrophages. These functions all suggest that IL-4 plays a

significant role in propagating its pathogenesis in the occurrence

and development of allergies or tumors (119). Therefore, many

anti-IL-4 drugs are designed to treat related diseases by inhibiting

the IL-4-IL-4R signal pathway.

In cancer, however, IL-4 was originally used as an

immunotherapeutic drug against malignant tumors. IL-4 elicited

a potent antitumor response in plasmacytoma, mammary

adenocarcinoma and Hodgkin lymphoma in murine models (120,

121). IL-4 and CpG oligonucleotide therapy enhanced expression of

MHC and co-stimulatory molecules in DCs, promoting the

production of IFN-g and suppressing the outgrowth of established

melanoma tumor cells (122). Moreover, a variant of IL-4, Super-4,

developed for higher affinity binding to the g chain, has increased
potency and activation of T cells and B cells. This kind of IL-4

superkine was aimed to be used as a super agonist to treat cancer

(123). However, in recent years, an increasing number of clinical

data suggest that IL-4 primarily plays a tumor-promoting effect in

most tumors (115, 124–127).

Overall, the pleiotropy and complexity of IL-4 limits its clinical

development as a candidate drug for tumor therapy. On the

contrary, many attempts are being made to treat various allergic

diseases or/and autoimmune diseases by reducing the level of IL-4

and blocking the binding of IL-4 to its receptor.
IL-7

IL-7 differs from other members of the IL-2 cytokine family in

that it is mostly produced by non-haematopoietic stromal cells

instead of leukocytes, although small amounts are produced by

DCs. IL-7, with a molecular weight of 25 kD of fractional soluble

globular proteins is abundantly expressed in thymic cells. The

human IL-7 gene encodes a protein of 177 amino acids and

shares 55% homology with the murine IL-7 gene, which encodes

a 154 amino acid protein of 18 kD (128). IL-7R is an iso-dimer

complex consisting of an IL-7Ra (CD127) chain and the common

IL-2Rg chain (129–131). IL-7Ra belongs to the hematopoietin

receptor family and is widely expressed throughout the lymphatic

system, except in mature B cells and in developing T and B cells

(132). IL-7Ra can bind to IL-7 and thymic matrix-derived

lymphopoietin (TSLP) (133). The g chain is expressed on all

hematopoietic cell types and integration of IL-2Rg and IL-7 is
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necessary for the signaling and functioning of IL-7 (134). The IL-7-

IL-7R signaling pathways include JAK/STAT, PI3K/Akt and MAPK

pathways (135).

IL-7 has pleiotropic functions and elicits different regulatory

ac t ions depending on i t s loca l i za t ion and ad jacent

microenvironment. In this review, we focus on characteristics

related to the use of IL-7 as a therapeutic drug in the context of

tumors. As an anti-tumor therapy, IL-7 can further the survival,

growth and differentiation of T cells, maintain internal

environmental stability and boost the development of memory

precursors (7). In viral infections, IL-7 promotes the production

of memory-type T cells, and in the presence of IL-15 and the

blocking of IL-2, IL-7 can accelerate the proliferation of T cells

expressing the CD44 memory phenotype (136). In addition, IL-7

stimulation increases cytolytic and noncytolytic activity and

cytokine production of CD8+ T cells purified from patients with

hepatocellular carcinoma, by suppressing the expression of PD-1

(137). IL-7 can also prevent apoptosis in vitro with an increase in

Bcl-2, an anti-apoptotic protein (138).

Clinically, a completed phase I trial supported by National

Institutes of Health Clinical Center used recombinant IL-7 (CYT 99

007) to treat patients with refractory solid tumors since IL-7 may

stimulate white blood cells to kill tumors (NCT00062049). In a

phase II study, recombinant glycosylated human IL-7 (CYT107)

combined with vaccine therapy treatment stopped tumor growth in

patients with castration-resistant prostate cancer (NCT01881867).

Another ongoing study is assessing the best dose of recombinant IL-

7 to promote T, NK, and B cell recovery in patients after

transplantation of cord blood (NCT03941769). A randomized

phase II clinical trial to observe the regeneration of lymphocytes

and various T cell populations in lymphopenic sepsis patients

intravenously injected with human recombinant glycosylated IL-7

(CYT107) is documented (NCT03821038); however, this clinical

trial was terminated in October of last year.

The research and development situation of IL-7 as the next-

generation anti-tumor drugs in recent years is not optimistic. The

exception is one experiment that found the co-expression of IL-7

and CCL19, a chemoattractant for T cells and DCs, in CAR-Tcells

can extend cell survival and enhance the anti-tumor efficacy of

CAR-T cells in mice (139). Simultaneously, a clinical follow-up

study of CD19 CAR-T cells expressing IL-7 and CCL19 for relapsed

or refractory B cell lymphoma in humans has been launched

(NCT04833504). Subsequently, a phase I clinical trial combining

this therapy with PD-1mAb was conducted in patients with

relapsed or refractory diffuse large B cell lymphoma (DLBL)

(NCT04381741). The long-term remission rate of DLBL was

greatly improved. In addition, efineptakin alfa (NT-17/GX-17),

the only next-generation drug of IL-7 developed by NeoImmune

Tech (Figure 2), and the world’s first and only long-acting

recombinant human IL-7 (rhIL-7), can augment cytotoxic CD8+

T cells expansion, increase IFN-g production, decrease the number

of Treg cells and prolong the survival of C57BL/6 mice glioma

models (140). Moreover, more than ten clinical trials are studying

the safety, tolerability, and anti-tumor activity of NT-17 as a single

drug or in combination with immune checkpoint inhibitors and

other monoclonal antibodies in patients with glioblastoma, B-cell
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lymphoma, breast cancer, non-small cell lung cancer and the recent

Covid19 (Table 2).

Finally, IL-7 involves a variety of diseases, including autoimmune

diseases, infections and cancers (141, 142). It plays different roles in

different tumors, either promoting or inhibiting the occurrence and

development of cancer cells (135). As a result, it is difficult to modify

IL-7 to design the next generation of engineered IL-7 cytokines

against tumor growth. We still have a long way to go to

understand the immune protective effects of IL-7 in various tumors

and the optimal dose in clinical cancer patients without side effects.
IL-9

In 1988, a “T cell growth factor” secreted by T helper cells (Th9)

was discovered and called P40 glycoprotein, now called IL-9 (143).

IL-9 is a 14 kD glycoprotein with 144 amino acids. The human IL-9

gene is located on chromosome 5, while the mouse IL-9 gene is in a

syntenic region on chromosome 13 (144). IL-9 can be produced by

activated naïve CD4+ T cells, mast cells, group 2 innate lymphoid

cells (ILC2s), Treg cells, T follicular helper cells and TH17 cells,

among others (145–150). IL-9R consists of a unique IL-9Ra chain

and the common IL-2Rg chain (151). IL-9 needs to bind to these

two receptor subunits at the same time to mediate further effects.

The downstream signaling pathways include the phosphorylation of

JAK, STAT1, STAT3, and STAT5 transcription factors, all related to

the multiple biological functions of IL-9. Two other pathways,

MAPK and PI3K-AKT, have been reported but are not well

studied (152). IL-9 is reported as a multifunctional cytokine.

Previous studies have shown that IL-9 has the ability to stimulate

cell proliferation, so it is not surprising that IL-9 plays certain roles

in allergic inflammation, tumorigenesis and the development of

cancers such as lung, breast, thyroid, and colon cancer (153, 154).

Specifically, IL-9 can promote cancer cell proliferation and protect

tumor cells from apoptosis. But recently, evidence increasingly

suggests that IL-9 also exerts anti-tumor effects. For example, Th9

cells produce IL-9 in solid tumors and enhance tumor-specific

cytotoxic T lymphocyte (CTL) responses in vivo (155). Another

study found that IL-9 inhibits subcutaneous colon cancer and

prolongs survival time in BALB/C mice by recruiting tumor

infiltrating lymphocytes (such as tumor-specific CD8+ T cells and

CD8+ granzyme B+ cells) to the tumor microenvironment, where

they regulate T-cell function and kill tumor cells (156). In addition,

IL-9 can suppress tumor development; injection of recombinant IL-

9 into wild-type mice bearing melanoma or lung carcinoma leads to

reduced tumor mass (157). Further, in IL-9 receptor-deficient

murine models, B-16 melanoma grows faster. Moreover, Fang

et al. (158) found that IL-9 could promote HTB-72 or SK-Mel-5

cell apoptosis by upregulating expression of the anti-proliferation

molecule p21 and the pro-apoptosis molecule TNF-related

apoptosis-inducing ligand (TRAIL) in human melanoma, thus

controlling melanoma growth. IL-9 can also act directly on tumor

cells expressing IL-9R, such as squamous cancer (SqC) cells and

cervical cancer, to directly kill these tumor cells (159).

Overall, although IL-9 plays a beneficial role in some cancers

(such as melanoma) by inducing not only innate immunity but also
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adaptive immunity, its tumor-promoting and inflammatory effects

limit its clinical development. To date, no clinical trial has been

approved to analyze the anti-tumor efficacy of IL-9 in patients with

cancer. Greater exploration and research into IL-9 is clearly needed.
Future perspective

Although engineering cytokines have made breakthroughs in

recent years, such as improving the tumor targeting or reducing the

systemic toxicity of systemic drug delivery, as far as I know, the

application of engineering cytokines in tumor treatment still faces the

following problems. Firstly, different types of tumors (such as breast

cancer, gastric cancer, and pancreatic cancer) have different shapes,

densities, margins, relationships with surrounding tissues, and

malignancies. Therefore, it is urgent to study the molecular

mechanisms of different types of tumor microenvironments and

their sensitivity to drug therapy. And design targeted drug delivery

strategies or develop new drug delivery technology platforms to exert

the maximum anti-tumor effect of drugs. Secondly, considering that

tumor cells have strong heterogeneity and relatively complex tumor

microenvironment, the application of those engineered drugs will still

face the risk of drug resistance, and more combined therapies (such as

immune checkpoint blockade, oncolytic viral therapy, adoptive T cell

therapy, and tumor vaccines) need to be developed and tested urgently.

Lastly, different types of cytokines have different activation effects on

immune cells. For example, IL-2 cytokines tend to activate CD8+ T cells

proliferation to produce effector function, while IL-21 cytokines better

activate cells with central memory phenotype, which are more

persistent and have higher anti-tumor activity in vivo. Therefore, in

the process of engineering cytokine design and clinical application, the

activation bias of cytokines on immune cells should be fully considered

to determine the specific application scenarios and precautions of

different engineering cytokines. Moreover, it is more noteworthy that

the undisclosed mechanism behind the different functional responses

of IL-2, IL-15, IL-21and IL-7 needed to be further explored.
Conclusion

In recent years, cancer immunotherapy has become standard

therapy in clinical setting, benefitting more cancer patients.

Cytokine-based immunotherapy is preferred among the

immunotherapy strategies and has become an important area of

drug research and development. In particular, members of the IL-2

cytokine family have received considerable attention since the

1990s. IL-2, IL-15, and IL-21 in the IL-2 cytokine family play a

positive role in anti-tumor effects, and IL-4, IL-7 and IL-9 possess

pleiotropic functions, with diverse roles in cancer immunity as they

can have pro-tumorigenic functions as well as anti-tumorigenic

characteristics. The surveillance and clearance of malignant cells are

closely related to the dynamic balance of various cytokines in the IL-

2 cytokine family. The early application of these natural cytokines

faced numerous challenges, such as a short half-life, fast clearance

rate and narrow safe dose window (with high-dose infusion causing
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systematic toxicity). Fortunately, the development of next-

generation of cytokine therapeutic drugs has improved the

physiological defects of these cytokines. The strategy of

combining cytokines with other therapies, such as CAR-T cells,

vaccines and immune checkpoint inhibitors, have proven

promising in their ability to completely eliminate tumors.

Current FDA-approved cytokine therapeutics only include IL-2

and IFN-a (160), which have been shown to have significant

objective survival remission rates in patients with metastatic renal

cancer and melanoma. The remaining cytokines were terminated

when were used as single drugs or combined with adoptive T-cell

immunotherapy, vaccines, and other therapeutic agents because no

obvious clinical effects were observed in phase I and II clinical trials.

Thus, in future, we need to make more efforts to address the

common and individual problems, such as the drug-making

properties of cytokines, improving the half-life of cytokine drugs,

tumor targeting, and, especially, activating anti-tumor immunity

while effectively balancing the safety of drugs in vivo. Related forms

of drug development models include, but are not limited to, biased

IL-2 family protein drugs, low-affinity cytokine drugs, and

antibody-cytokine fusion proteins. These forms of drug are

expected to solve some of the current challenges with cytokine

drug development, but it is not enough. We are certain more

innovative cytokine drug design and development will bring

about greater changes. We look forward to this.
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