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Complement is involved in the pathogenesis of neuroimmune disease, but the

detailed pathological roles of the complement pathway remain incompletely

understood. Recently, eculizumab, a humanized anti-C5 monoclonal antibody,

has been clinically applied against neuroimmune diseases such as myasthenia

gravis and neuromyelitis optica spectrum disorders (NMOSD). Clinical

application of eculizumab is also being investigated for another neuroimmune

disease, Guillain-Barré syndrome (GBS). However, while the effectiveness of

eculizumab for NMOSD is extremely high in many cases, there are some cases of

myasthenia gravis and GBS in which eculizumab has little or no efficacy.

Development of effective biomarkers that reflect complement activation in

these diseases is therefore important. To identify biomarkers that could predict

disease status, we retrospectively analyzed serum levels of complement factors

in 21 patients with NMOSD and 25 patients with GBS. Ba, an activation marker of

the alternative complement pathway, was elevated in the acute phases of both

NMOSD and GBS. Meanwhile, sC5b-9, an activation marker generated by the

terminal complement pathway, was elevated in NMOSD but not in GBS.

Complement factor H (CFH), a complement regulatory factor, was decreased

in the acute phase as well as in the remission phase of NMOSD, but not in any

phases of GBS. Together, these findings suggest that complement biomarkers,

such as Ba, sC5b-9 and CFH in peripheral blood, have potential utility in

understanding the pathological status of NMOSD.

KEYWORDS
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Introduction

The complement system plays important roles in the innate

immune system, which protects the body from foreign pathogens

(1). However, when the regulatory mechanisms of complement

activation are disrupted, dysregulated complement activation

damages autologous cells and causes diseases such as paroxysmal

nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic

syndrome (aHUS) (2, 3). Eculizumab, a humanized anti-C5

monoclonal antibody, is effective against PNH and aHUS (3). It

specifically inhibits production of anaphylatoxin C5a and

subsequent formation of the membrane attack complex (MAC),

suppressing pathological complement activation. Its effectivity has

been shown against neuroimmune diseases such as myasthenia

gravis (MG) and neuromyelitis optica spectrum disorders

(NMOSD) (4).

In MG (5) and NMOSD (6, 7), autoantibodies against

acetylcholine receptor and aquaporin-4 (AQP4), respectively,

activate the complement system, causing neurological symptoms

due to destruction of the nervous system by the terminal

complement pathway. Eculizumab is effective against these

diseases and has been clinically applied (8, 9). Guillain-Barré

syndrome (GBS) is also a neuroimmune disease, in which anti-

ganglioside autoantibodies are produced after infection with

Campylobacter jejuni or other organisms, and damage to the

myelin sheath causes peripheral neuropathy (10). Clinical

application of eculizumab for GBS is currently under

investigation (11). Although eculizumab is effective in MG and

GBS, some cases are non-responders, and the basis for non-

response is unknown (4).

In these diseases, autoantibody titers do not correlate with

disease pathology, and accurate biomarkers for complement

activation could be useful not only in determining disease

severity, but also in determining the potential utility of anti-

complement drugs. However, biomarkers that accurately reflect

complement activation in the pathogenesis of neurological diseases

have not yet been identified. NMOSD and GBS are characterized by

activation of the classical complement pathway. In the present

retrospective cohort study, however, we measured serum levels of

complement-activated markers and complement regulators

involved in the alternative or terminal complement pathway in

NMOSD and GBS for three reasons. First, eculizumab, which blocks

the C5 cleavage involved in the initiation of the terminal

complement pathway, is effective in these diseases, so activation

of the alternative complement pathway and the formation of MAC

in the terminal complement pathway would be expected to cause

development of these diseases. Second, although the autoantibodies

in NMOSD constantly exist in blood and may always activate the

classical complement pathway, symptoms of NMOSD appear

suddenly and recurrently, suggesting that the appearance of

symptoms requires further complement activation by the

alternative complement pathway in addition to the classical

complement pathway. Third, in transplant-associated thrombotic

microangiopathy (TA-TMA), which is thought to be a disease

involving the classical and lectin complement pathways, our
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group previously demonstrated that abnormally high levels of

plasma complement factor Ba fragment (Ba), a biomarker of

activation of the alternative pathway, can be used to predict TA-

TMA development and non-relapse mortality (12). We examined

whether biomarkers that predict activation of the alternative and

terminal complement pathways could therefore also be associated

with disease pathogenesis, prognosis, and status.
Methods

Patients and healthy controls

Patients with NMOSD and GBS treated at Wakayama Medical

University Hospital or Kindai University Hospital between 2016 and

2021 were included, and cases with both acute- and remission-paired

sera archived were retrospectively selected and enrolled. Medical

information was collected from medical charts. Diagnostic criteria

were the 2015 international diagnostic criteria for NMOSD (13) and

the Asberry diagnostic criteria for GBS (14). Seventy healthy Japanese

adults, consisting of 35 males (age, mean ± SD: 45.7± 10.3 years;

range: 26-68 years) and 35 females (age, mean ± SD: 44.7± 12.3 years;

range: 27-75 years) were enrolled as healthy controls (15).
Definitions of acute and remission phases
of NMOSD

NMOSD relapse was defined based on criteria from previous

clinical studies (8). Briefly, new onset or worsening neurologic

symptoms must persist >24 hours and should not be attributable

to confounding clinical factors. Remission was defined as a period

when neurologic symptoms were stable for at least one month, and

no new lesions shown on MRI imaging.
Evaluation of acute and remission phases
of GBS

The acute phase of GBS was defined as the peak of symptoms

prior to treatment. The stable phase was defined as a time when

symptoms became mild and stable following treatment. Disabilities

were evaluated using the Hughes functional grade scale (11).
Measurement of anti-AQP4 and anti-
ganglioside antibodies

Anti-AQP4 antibodies titers were analyzed using a cell-based

assay with live human embryonic kidney 293 cells stably transfected

with the M23 isoform of AQP4. Goat anti-human IgG Fc labelled

with DyLight 488 (Thermo Fisher Scientific, Waltham, MA) was

used as a secondary antibody after the transfected cells were

exposed to the patients’ diluted sera. Anti-ganglioside antibodies

were examined by ELISA. Serum IgG antibodies to 11 glycolipid
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antigens (GM1, GM2, GM3, GD1a, GD1b, GD3, GT1b, GQ1b,

GT1a, Gal-C, and GalNAc-GD1a) were analyzed.
Complement measurement

Serum samples obtained from patients and healthy controls

were stocked until analysis at -80°C. Serum levels of sC5b-9 and Ba

were measured using MicroVue SC5b-9 Plus EIA and MicroVue Ba

EIA, respectively (Quidel, San Diego, CA). Serum levels of

complement factor H (CFH) and complement factor I (CFI) were

measured using ELISA kits (Abnova, Taipei, Taiwan). Complement

data from 70 healthy Japanese volunteers (age: 26–75 years) were

used as healthy controls, and reference ranges of complement

markers (average levels ± 2 S.D.) in their serum were defined as

previously described (15). The normal ranges of serum for sC5b-9

and Ba have been found to be greater than that of EDTA plasma,

but the ranges in serum stored at -80 °C until analysis confirmed

stability, even after five freeze-thaw cycles. In the present study, we

compared the patients data with previous data of 70 healthy

Japanese adults as controls.
Statistical analysis

Statistically significant differences were evaluated between three

groups (healthy controls, patients with NMOSD and patients with

GBS) using a one-way analysis of variance (ANOVA) and a Tukey-

Kramer test as a post hoc test, and between two groups (the acute

and remission phases) using a paired t-test. P < 0.05 (two-tailed)

was considered significant for all results. Pearson correlation

analysis was performed using JMP pro 16.0 software.
Frontiers in Immunology 03
Results

We retrospectively analyzed 21 patients with NMOSD (19

females and 2 males) and 25 patients with GBS (14 females and 11

males) (Table 1). The mean age at the time of blood collection in

the acute phase of NMOSD was 48.0 years, mean duration of

illness was 5.1 years, and mean expanded disability status scale

(EDSS) was 5.3. Mean EDSS during NMOSD remission was 4.5.

The mean age at GBS onset was 50.8 years, and the mean severity

of illness was Hughes functional grade scale 3.4. Mean Hughes

functional grade scale during the remission phase of GBS (at

discharge) was 1.7. Anti-AQP4 and anti-glycolipid autoantibodies

were positive in 81% patients with NMOSD and 88% patients with

GBS, respectively.

sC5b-9, an activation marker generated by the terminal

complement pathway, was significantly higher in the acute phase

of NMOSD compared with in the acute phase of GBS (Figure 1A).

Activation of the complement system was thus indicated to have

progressed to the terminal complement pathway in the acute phase

of NMOSD. Serum Ba, an activation marker of the alternative

complement pathway, was also higher in the acute phases of both

NMOSD and GBS compared with healthy controls (Figure 1A).

Subsequently, we measured complement regulatory protein

levels in NMOSD and GBS. CFH was within the reference range

but significantly lower in patients with NMOSD than in healthy

controls or in patients with GBS (Figure 1A). However, CFI,

another complement regulatory protein, was higher in patients

with NMOSD and in patients with GBS than in healthy controls.

To determine the correlations of these biomarkers with each

other in NMOSD, we performed a correlation analysis

(Figure 1B). Ba and sC5b-9 levels (r=0.824, p<0.00010), and

CFH and CFI levels (r=-0.554, p=0.0092) showed positive and
TABLE 1 Patient backgrounds.

NMOSD
(n = 21)

GBS
(n = 25)

p-values

Sex (female/male) 19/2 14/11 < 0.01

Age, mean ± SD
[range] (y)

48.0 ± 2.5
[17–74]

50.8 ± 4.4
[14–77]

NS

Disease duration, mean ± SD [range] (y) 5.1 ± 1.2
[0–14]

NA

Anti-aquaporin 4 antibody-positive 17 (81%) NA

Anti-glycolipid antibody-positive NA 22 (88%)

Lesions according to MRI findings

Optic nerve 4 (19.0%) NA

Spinal cord 17 (81.0%) NA

Brain 2 (9.5%) NA

EDSS,
Mean ± SD [range]

Acute phase 5.3 ± 2.1 [2–8.5] NA

Remission 4.5 ± 2.2 [2–8.0] NA

Functional grade,
Mean ± SD (AU)

Acute phase NA 3.4 ± 1.0

Remission NA 1.7 ± 0.8
fro
NMOSD, neuromyelitis optica spectrum disorders; GBS, Guillain-Barré syndrome; SD, standard deviation; EDSS, expanded disability status scale; MRI, magnetic resonance imaging; NA, not
applicable; NS, not significant.
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negative correlations, respectively. However, no other correlations

were detected in samples obtained from patients in the acute phase

of NMOSD.

The above-mentioned complement factors examined in the

acute phase were also analyzed for changes in the remission

phase. The main laboratory data did not change between the

acute and remission phases (Table 2). The sC5b-9 and Ba

markers, which were elevated in the acute phase of NMOSD,

decreased significantly in the remission phase (Figure 2).

Although CFH levels were increased in the remission phase of 12

patients with NMOSD, the average levels of CFH still remained

lower than the healthy control level during the remission phase as

well as during the acute phase. Moreover, in some patients, CFH

levels were markedly reduced in the remission phase. The levels of

CFI were decreased in 10 patients in the remission phase of

NMOSD, but the average levels of CFI were still higher than

those of healthy controls during the remission phase. To rule out

these changes of complement markers being due to previously-

received treatments, we analyzed complement markers in 10

patients that had not received any treatment at the time of

the first-episode of NMOSD and obtained similar results

(Supplementary Table 1, Supplementary Figures 1, 2). However,

in patients with GBS, sC5b-9, Ba, CFH, and CFI did not change

between the acute and remission phases, and Ba and CFI in the

remission phase remained higher than those in the healthy

controls (Figure 2).

We detected no correlations between levels of complement

markers and most of the clinical manifestations, disease severity,

or cerebrospinal fluid test values in the acute phase of NMOSD.
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There was, however, a moderate positive correlation between levels

of CFI and disease duration (r=0.520) (Supplementary Table 2).
Discussion

In the present study, we measured serum levels of Ba, sC5b-9,

CFH, and CFI in the acute and remission phases of NMOSD and

GBS. In NMOSD, we identified that sC5b-9 and Ba levels

correlated significantly with clinical stage, suggesting that

activation of the alternative and terminal complement pathways

contributes to exacerbation of NMOSD. The levels of sC5b-9 and

Ba may be influenced by the types of treatments and whether they

were obtained at the time of the first-episode or after some

treatments, but similar results were also obtained in the 10

patients who had not received any treatment at the time of the

first-episode. Furthermore, the increased levels of Ba and sC5b-9

were strongly correlated, suggesting that activation of the classical

complement pathway by autoantibodies in the periphery led to

activation of the alternative and terminal complement pathway. In

addition to increased levels of C5a in cerebrospinal fluid that were

previously reported as a biomarker of NMOSD (16), the present

findings suggest that sC5b-9 and Ba levels in peripheral blood

could be useful markers in determining whether NMOSD is in the

active stage. NMOSD is known to be caused by injury to astrocytes

which express AQP4 (17). Circulating anti-AQP4 antibodies must

destroy the brain-blood barrier (BBB) in order to reach astrocytes.

IL-6 (18), anti-glucose-regulated protein 78 autoantibodies (19),

and polymorphonuclear leukocytes (20) have been reported to be
FIGURE 1

(A) Serum levels of complement markers in the acute phases of neuromyelitis optica spectrum disorders and Guillain-Barré syndrome. Serum levels
of sC5b-9, Ba, complement factor H, and complement factor I in the acute phases of neuromyelitis optica spectrum disorders and Guillain-Barré
syndrome, together with those of healthy controls, are shown by box plots. **p < 0.01, and ***p < 0.001, ANOVA and Tukey-Kramer test as a post
hoc test. (B) Correlation analysis of complement markers in the acute phase of neuromyelitis optica spectrum disorders. The relevance of serum
levels of sC5b-9, Ba, complement factor H and complement factor I in the acute phase of neuromyelitis optica spectrum disorders were analyzed.
Ba and sC5b-9 (r=0.824, p<0.00010), and complement factor H and complement factor I (r=-0.554, p=0.0092) showed positive and negative
correlations, respectively.
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TABLE 2 Laboratory data and treatments of the patients with NMOSD.

Acute phase Remission p-values

Blood Tests

White Blood Cells (/mL) 7223 ± 2187 7499 ± 3132 0.912

Neutrophils (/mL) 5138 ± 2169 4803 ± 2735 0.849

Lymphocytes (/mL) 1420 ± 639 2019 ± 1527 0.364

Monocytes (/mL) 544 ± 354 548 ± 253 0.983

Albumin (g/dL) 4.2 ± 0.4 3.8 ± 0.6 0.807

CRP (mg/dL) 0.367 ± 0.666 0.199 ± 0.485 0.410

Cerebrospinal fluid test

Cell count (/mm3) 13.7 ± 28.7 3.0 ± 3.0 0.621

Protein (mg/dL) 46.8 ± 37.4 36.6 ± 20.7 0.144

Treatments at blood collection

None 10 (47.6%) 8 (38.1%)

Steroids 6 (28.6%) 6 (28.6%)

Immunosuppressants 1 (4.8%) 2 (9.5%)

Steroids + Immunosuppressants 3 (14.3%) 4 (19.0%)

Plasma exchange 1 (4.8%) 1 (4.8%)
F
rontiers in Immunology
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Data are shown as mean ± standard deviation. CRP, C-reactive protein; NMOSD, neuromyelitis optica spectrum disorders.
FIGURE 2

Changes of complement markers during the acute and remission phases of neuromyelitis optica spectrum disorders and Guillain-Barré syndrome.
Changes of serum levels of sC5b-9, Ba, complement factor H and complement factor I during the acute and remission phases of neuromyelitis
optica spectrum disorders and Guillain-Barré syndrome were analyzed. The dotted lines indicate changes in individual cases, and solid lines indicate
changes in average levels. The gray shadow indicates reference ranges in healthy Japanese adults (sC5b-9: 181–1266 ng/ml, Ba: 438–1546 ng/ml,
complement factor H: 238–663 µg/ml, complement factor I: 11–42 µg/ml) (15). *p < 0.01, paired t-test.
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involved in the disruption of BBB. Complement activation in the

periphery may also contribute to the destruction. The involvement

of peripheral complement activation in the pathogenesis of

NMOSD using animal models should be clarified in future studies.

CFH was decreased during both acute and remission phases of

NMOSD. There are three possible reasons for these decreased levels.

First, AQP4 is expressed not only in astrocytes, but also in muscle

and renal tubules, and anti-AQP4 antibodies react with them to

activate complement in the periphery. CFH may therefore be

consumed and reduced in NMOSD to control activation of the

complement system. In the present study, CFH levels in 12 patients

were increased in the remission phase. A second possible reason for

the decreased levels is that NMOSD could be originally caused in

individuals with low CFH levels and activation of alternative and

terminal complement pathways initiated by anti-AQP4

autoantibodies might not be adequately suppressed by low CFH

levels. Eculizumab, which blocks the C5 cleavage involved in the

initiation of the terminal complement pathway, is an effective

treatment for almost all NMOSD cases with anti-AQP4

autoantibodies (8). In patients with NMOSD, low CFH levels may

be a significant cause of complement activation in the periphery. A

third possible reason for the decreased levels could be that CFH

production may be suppressed by steroid or immunosuppressive

therapies. In some patients, remarkably decreased levels of CFH

were observed in the remission phase.

In NMOSD, modest increase of CFI levels was also observed, and

the levels of CFH and CFI had negative correlation.We detected a

moderate positive correlation between CFI levels and disease duration,

so CFI may increase by inflammation induced in the acute phase to

block activation of the complement system in the periphery.

In GBS, there were no significant differences in sC5b-9, Ba, CFH,

or CFI levels between the acute and remission phases. In addition, in

the acute phase of GBS, Ba was increased but sC5b-9 was unchanged,

suggesting that activation of classical complement pathway by

autoantibodies led to activation of the alternative pathway in the

periphery, but did not progress to the terminal complement

pathway. The levels of CFH and CFI remained high in both acute

and remission phases of GBS, suggesting that their regulatory functions

would be maintained. Therapies targeting complement pathways other

than the terminal complement pathway could therefore be effective in

cases of GBS without elevated sC5b-9 levels. Alternatively, anti-C5

antibodies could be effective in cases of GBS with elevated sC5b-9.

Comprehensive measurement of complement biomarkers such as

Ba, sC5b-9, and CFH could contribute to delineating the

pathogenesis and pathological status of NMOSD. The complement

biomarkers in cerebrospinal fluid should also be measured to clarify

the contribution to the pathogenesis of NMSD. We will also analyze

the complement biomarkers in patients treated with eculizumab in a

future study to determine whether these could be predictive

biomarkers for response to eculizumab treatment. The present

study was performed retrospectively using previously collected

serum samples, so the reference ranges were too broad to

determine valid cut-off values of Ba and sC5b-9 for prediction of

acute and remission phases. However, this study suggests that the

results should be validated in a future prospective study using plasma

treated with ethylenediaminetetraacetic acid-disodium salt.
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