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The human microbiome: A
promising target for lung
cancer treatment

Ying Sun †, Miaomiao Wen †, Yue Liu †, Yu Wang †, Pengyu Jing,
Zhongping Gu*, Tao Jiang* and Wenchen Wang*

Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University,
Xi’an, China
Lung cancer is the leading cause of cancer-related deaths worldwide, and insights

into its underlying mechanisms as well as potential therapeutic strategies are

urgently needed. The microbiome plays an important role in human health, and is

also responsible for the initiation and progression of lung cancer through its

induction of inflammatory responses and participation in immune regulation, as

well as for its role in the generation of metabolic disorders and genotoxicity. Here,

the distribution of human microflora along with its biological functions, the

relationship between the microbiome and clinical characteristics, and the role of

the microbiome in clinical treatment of lung cancer were comprehensively

reviewed. This review provides a basis for the current understanding of lung

cancer mechanisms with a focus on the microbiome, and contributes to future

decisions on treatment management.
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1 Introduction

Lung cancer has the highest morbidity and mortality worldwide, with approximately 2

million new cases and 1.76 million deaths in 2021 (1, 2). In recent years, researchers have

found that more than 16% of cancer cases are related to infections, and most infections are

caused by microorganisms (3). The relationship between microbes and cancer has attracted

considerable attention in academia. Bacteria were first discovered in tumors over a hundred

years ago, and the existence of microorganisms in various tumors has been successively

reported (4, 5). Healthy lungs are traditionally thought to be sterile, but recent studies have

found that they also harbor microbial communities, including Firmicutes, Proteobacteria,

Bacteroidetes, and Actinobacteria (6, 7). In addition, early epidemiological data have

suggested that bacterial infections are common in lung cancer patients, especially as the

disease progresses, and it is almost 50% to 70%. The pathogenic bacteria initially colonizing

the lung might persist in patients with lung cancer as the disease progresses (8). Furthermore,

the microflora residing outside the lung, such as the oral cavity, airways and gut, can also

affect the occurrence and development of lung cancer, suggesting that the human microflora
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may play a direct or indirect role in lung cancer onset and

progression. This article reviews the role of the human microbiome

in lung cancer as well as providing a basis for a potential role of the

microbiome in therapeutic methods and drug discovery of

lung cancer.
2 Distribution and function of human
microflora

Humans coexist with and host a variety of microbes, such as

bacteria, fungi, and viruses. All these microorganisms inhabiting

specific areas of the human body constitute the human microbiota,

which plays an important role in physiological activities such as

nutrient absorption, substance metabolism, and immune regulation,

and is also closely related to the occurrence of diseases such as

infectious diseases, metabolic disorders, and different cancer types.
2.1 Distribution

Oral microorganisms
The oral cavity contains more than 700 species of bacteria. Oral

microorganisms reside in biofilms throughout the mouth and form an

ecosystem that helps to maintain a healthy microenvironment. The

oral microbiota was composed of Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, Spirrochaetes, and Fusobacteria,

accounting for 94% of the total classification. The remaining phyla,

such as Saccharibacteria, Synergistetes, SR1, Gracilibacteria,

Chlamydia, Chloroflexi, Tenericutes, and Chlorobi, account for 6%

of the taxa. The oral microbiome is impressive in its breadth and

depth: one milliliter of saliva contains 1.0×108 microbial cells and 700

different prokaryotic taxa. Among these, it contains bacteria, fungi,

viruses, archaea, and protozoa, of which approximately 54% are

culturable and have been identified, 14% are culturable and not

identified, and 32% are unculturable (9).

Respiratory microorganisms
When the human microbial group plan was launched in 2007, the

lungs were not included among the sampled organs, in part as they

were thought to be sterile (10). With the increasing development and

popularity of high-throughput sequencing and sequence assembly

technology, together with databases of sequenced organisms (11, 12),

the identification and quantification of organisms from mixed

metagenomic samples has been possible through high-throughput

metagenomic sequencing, a convenient, and so far the fastest strategy

for the study of lung microbes (13). Respiratory microbes grow

rapidly in early life of the host and are influenced by the

environment, age, and immune status of the host (14). Indeed, it

has been proven that birth, the first postnatal hour, and the first 3 to 4

months of exposure to the living environment are important stages

for a stable development of respiratory flora (15).

In healthy lungs, two phyla are mainly present, Bacteroidetes and

Firmicutes, which constitute the pulmonary microbiota, whereas

Prevotella and Veillonella spp. are dominant (16–18). Compared to

the upper respiratory tract, the microbiota of the lung mucosa is
Frontiers in Immunology 02
phylogenetically diverse. In addition, the lower respiratory system is

mainly composed of Pseudomonas, Streptococcus, Fusobacterium,

Megacoccus and Sphingosphingomonas (18, 19). Some studies have

shown that the lungs are susceptible to oropharyngeal bacterial

colonies (16, 17, 20). For example, Bassis et al. compared the

microbial composition in the oral and nasal cavities, lungs, and

stomach of healthy adults and found that the microbial

communities in gastric juices and alveolar lavage fluid (BAL) were

mainly derived from the inhalation and colonization of

oropharyngeal flora (21).

Gut microorganisms
The gut provides a convenient habitat for all kinds of

microorganisms, with comprise an estimated total of 1.0×1013 ˜

1.0×10
14. The human gut microbiota is composed of at least 1000 -

1200 species of bacteria, mainly Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, Fusobacteria, Verrucomicrobia, and

others. Among these, Firmicutes (64%) and Bacteroidetes (28%)

were the main components in most individuals. Actinobacteria,

Proteobacteria, and Verrucomicrobia were minor components. The

human gut microbiome is extremely large and scientists have not

been able to determine the number of gut microbes that people may

carry. It has been estimated that a 70 kg adult (3.0×1013 cells) carries

approximately 3.8×1013 bacteria (0.2 kg) (22, 23).

The composition of the human gut microbiota varies among

populations, and the difference in individual composition is mainly

reflected in the proportion of bacteria of each phylum. The diversity

of species of gut microbiota in humans increases with time, mostly

during the first three years (approximately 100 species in the first few

weeks of life, 700 between six months and three years of age, and

1,000 in adulthood). Agedness is another stage at which the gut

microbiota changes dramatically. At this stage, the number of

facultative bacteria increases, the ratio of Bacteroidetes to Firmicutes

increases, and that of Bifidobacterium decreases. Claesson et al.

reported that, compared with young people, the differences in gut

microbiota composition especially in Ruminococcaceae family

(comprised of Ruminococcus, Sporobacter, and Faecalibacterium

species), among individuals was significantly higher in the elderly,

and the Bifidobacterium proportions, the Clostridium cluster IV, as

well as the species diversity within each individual was significantly

reduced, which is likely related to diet, health status, and immune

system decay (24, 25).

Other microorganisms
Several decades ago, concentrations of intestinal bile acid were

found to be much higher in breast cyst fluid than in serum in women

with fibrocystic breast disease (26–28). Although the mechanisms for

maintaining high bile concentrations within breast cysts remain to be

studied, these studies suggest that breast tissue, like other parts of the

body, is composed of an unique microbiome. Bacteria can also be

detected in breast milk, possibly because microbes can travel from the

surface of the skin into ducts and breast tissue. The most common

genera in milk are Staphylococcus, Streptococcus, Lactobacillus,

Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus,

Acinetobacter, Rothia, Cutibacterium, Veillonella and Bacteroides

(29). Urbaniak et al. studied the differences in microbial
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communities in 81 pairs of patients with and without breast cancer,

and found that Proteobacteria composition was different between

them, together with regional divergence (30).

The stomach has generally been considered to have fewer

symbiotic bacteria because of its highly acidic environment and

high protein hydrolase content (31, 32). However, recent studies

have shown that a wide variety of bacteria can be found in the human

stomach. Firmicutes and Proteobacteria are the major phyla, and

Streptococcus and Prevotella are the major species in the stomach of

individuals without Helicobacter pylori (HB) (33, 34) (Figure 1).

Infection with HB can disturb the microbial community in the

stomach (35).

In normal prostate, estimations concerning the microorganism

number and composition are difficult since access to non-diseased

prostate tissue is restricted. However, a number of previous studies

have characterized the microbial composition in prostate cancer and

normal surgically resected specimens, and found that no bacteria

were present in normal prostate tissue (36–38). On the contrary, one

study detected a positive result for bacteria in tissue specimens of

benign prostatic hyperplasia (BPH) (39). However, it cannot be

discarded that the positive result may owe to contamination (40). In

addition, normal prostatic fluid may prevent microbial growth

because of its highly antibacterial properties. Microbial invasion

occurs only in the prostate upon prostatitis or other pathological

occurrences (41).
2.2 Influence of microbiome on human
development and physiological function

The microbiome plays an important role in human development

and physiology. In this context, changes in the oral microbiome may

cause oral and systemic diseases (42) and an imbalance in the

respiratory microbiome may affect the occurrence of lung diseases
Frontiers in Immunology 03
(43). The gut microbiome accounts for a relatively high proportion of

the human body, and its functions have been fully studied, including

nutrient metabolism and immune regulation. The following sections

focus on the role of oral, respiratory, and intestinal microbiota in

human development and physiological function (Figure 1).
2.2.1 Oral microbiome

The human oral microecosystem contains a large diversity of

microorganisms, including bacteria, fungi, viruses, mycoplasma and

protozoa. Of these, bacteria (about 700 species) make up the majority

of the healthy oral microbiome and are mainly composed of six phyla,

including Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria,

Bacteroides and Spirochaetas (44). In addition to bacteria, about

100 fungi also make up an important part of the oral microbiome, of

which Candida is the most common. In the oral microecosystem,

microbes such as bacteria and fungi attach to the surface of teeth and

form a biofilm called plaque with the surrounding extracellular matrix

in order to protect themselves from fluctuations in the oral

environment and external drug stimuli and evade host defense

mechanisms (45).

The balance of oral microecosystem not only contributes to the

maintenance of oral health, but also has a potential impact on the

overall health. Microorganisms in oral microecosystems achieve

dynamic balance between each other and the host through complex

interspecific interactions such as symbiosis, competition and

confrontation (46). This paper summarizes the physiological

function of normal microbial flora in oral cavity.

2.2.1.1 Maintaining the microecology in the mouth
The normal microflora in oral cavity can maintain the

microecological balance well. When pathogenic bacteria such as P.

seudomonas aeruginosa invade, the oral flora inhibits their growth in
FIGURE 1

An overview of the microbial distribution in human body, and the roles of Oral, Lung, and Gut microbiomes in human development and physiological function.
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saliva by producing lactic acid (47). Therefore, the normal oral flora

plays an important role in preventing the invasion of pathogenic

bacteria. However, disturbances in oral microecology such as oral

flora imbalance or reduction of oral symbiotic bacteria provide

opportunities for the invasion and colonization of respiratory

pathogens such as Staphylococcus aureus, Pseudococcus aeruginosa,

Enterococcus faecalis and Acinetobacter (48–51).

2.2.1.2 Improving oral immunity
Natural aging, hypoplasia of parotid and submandibular glands,

and medications (antihypertensive drugs, anticholinergics) can alter

saliva composition or affect saliva secretion or flow rate, leading to dry

mouth and poor oral hygiene (52). This may lead to the transfer of

normal oral flora to communities containing more pathogens (53).
2.2.2 Respiratory microbiome

The respiratory tract is a complex organ system whose main

function is the exchange of oxygen and carbon dioxide. It is divided

into the upper respiratory tract, which includes the nasal passages,

pharynx, larynx, and lower respiratory tract, which includes the

conducting airways (trachea and bronchi), small airways

(bronchioles), and respiratory areas (alveoli). Because the

respiratory tract is connected to the outside world, a large number

of airborne microorganisms and particles, including viruses, bacteria

and fungi, continue to migrate or be removed from the respiratory

tract. The bacterial burden of the upper respiratory tract is about 100-

10000 times than that of the lower respiratory tract, and the nasal

cavity is dominated by Propionibacterium, Corynebacterium,

Staphylococcus and Moraxella. Prevotella, Vermicelli, Streptococcus,

Haemophilus, Fusobacterium, Neisseria and Corynebacterium were

predominant in oral cavity (54, 55). Prevotella, Vermicelli, and

Streptococcus colonize in the lower respiratory tract, and these

microbial compositions differ from those observed in the oral and

nasal cavities (56). As mentioned earlier, the gut microbiome of young

children stabilizes at about 3 years of age, similar to that of adults, and

this pattern of community maturation is reproduced in the upper

respiratory tract microbiome (14, 57, 58). The following is a

comprehensive summary of the physiological function of

respiratory microorganisms in human body.

2.2.2.1 Maintaining a homeostatic balance
The respiratory tract is the main site of continuous contact with

exogenous microorganisms. Airway epithelium acts as a sensor for

the presence of microorganisms, and its epithelial cells are in constant

contact with the environment. This interaction is a key factor in

maintaining stable homeostasis. The environmental conditions

necessary for microbial growth in the respiratory tract (such as PH,

temperature, nutrition, oxygen tension, and activation of

inflammatory cells in the host) are heterogeneous, so considerable

regional variation can be observed in a single healthy lung (59).

2.2.2.2 Modulating immune strength
In health conditions, the microbiome can also regulate immune

strength. Symbiotic fungi have been shown to influence the immune
Frontiers in Immunology 04
system and regulate the bacterial community, thus contributing to the

recovery of bacterial flora after antibiotic treatment (60, 61).
2.2.3 Gut microbiome

2.2.3.1 Mucosal development
Gut microorganisms can affect intestinal mucosal development

and homeostasis. Comparative studies of conventional and germ-free

animals have shown that the gut microbiota is essential for the

formation and functional realization of the intestinal mucosal

immune system during infancy (62). A poor development of villous

capillaries in the infancy of sterile mice and a consequential still

dysplasia in adulthood confirmed that the gut microbiota contributes

to the formation of the intestinal immune ultrastructure (63). The gut

microbiome also contributes to the development of intestinal

intraepithelial lymphocytes (IILs). Compared with conventionally

grown animals, the production of intestinal mucosal-associated

lymphoid tissue and antibodies was strongly reduced, and the

original center, cell lamina propria, and cell lymphoid follicles of

the mesenteric lymph node were significantly decreased in germ-free

animals. Meanwhile, gut microbiota plays an important

immunomodulatory role in intestinal mucosal homeostasis, with

direct consequences in human health (64, 65).
2.2.3.2 Metabolic
Gut microbiota improves nutrient metabolism. The gut is an

important site of digestion and absorption in the human body. Here,

gut microbiota can contribute in foor digestion and decomposition,

also could promote intestinal peristalsis and inhibit the proliferation

of pathogenic bacteria. Gut microbiota can also provide various

substrates, enzymes, and energy necessary for human metabolism,

and participate in metabolic processes. Among them, Firmicutes,

Bacteroidetes, and some anaerobic microorganisms can decompose

complex carbohydrates in the gut to produce short-chain fatty acids

(SCFAs), such as acetic acid, propionic acid, and butyric acid (65–68).

SCFAs are not only the energy source of gut microorganisms

themselves and the intestinal epithelial cells of the host,

participating in adipogenesis and gluconeogenesis, but can also

regulate the intestinal immunity of the host, reducing the pH of the

colonic environment and inhibiting harmful bacterial growth and

colonic inflammation (69).

Most pathogens cannot compete with the resident microbiome

for carbohydrate food sources and are therefore effectively excluded

from the gut under normal circumstances. Thus, disruption of the gut

ecosystem appears to play an important role in the establishment of

pathogenic bacteria. For example, antibiotic treatment disrupts the

cross-feeding network between mucinous and non-mucinous

degradants and allows for pathogenic bacteria such as Salmonella

typhimurium and Clostridioides difficile (70).

Besides playing a role in carbohydrate metabolism, gut

microorganisms also participate in bile acid metabolism,

tryptophan metabolism and other processes. Bile acids are

produced in the liver and metabolized by enzymes produced by gut

bacteria and are essential for maintaining a healthy gut microbiome,

balancing lipid and carbohydrate metabolism, as well as innate
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immunity. The ability of intestinal flora to convert intestinal bile acid

organisms into their unbound forms is critical to gastrointestinal

.metabolic homeostasis, and these unbound bile acids activate bile

acid signaling receptors (71, 72). The main bacterial genera involved

in bile acid metabolism are Bacteroides, Clostridium, Lactobacillus,

bifidobacterium and listeria (73, 74). Clinical patients with

hepatoenteric diseases often present with intestinal ecological

disorders characterized by reduced microbial diversity and a

reduced abundance of firmicutes, leading to lower levels of

intestinal secondary bile acids and higher levels of conjugated bile

acids (75–77). Therefore, bile acid metabolism and intestinal flora

interact, and when this balance is disrupted, a variety of clinical

disease phenotypes can result.

Tryptophan metabolism is another important function of

intestinal microorganisms to promote nutrient metabolism. As a

nutrient enhancer, tryptophan plays a crucial role in the balance

between intestinal immune tolerance and intestinal flora

maintenance. Tryptophan is absorbed in the small intestine, but

when it reaches the colon it can be broken down by gut bacteria

such as Clostridium sporogenes, Escherichia coli and Lactobacillus to

produce various indole derivatives that play an important role in key

aspects of bacterial ecological balance (78–80).

2.2.3.3 Immune regulation
Gut microorganisms regulate the human immune system

through immune cells and their metabolites. Recent studies have

shown that gut microorganisms can over-activate CD8+T cells,

which can promote chronic inflammation and T-cell failure (81,

82). Signals from gut microbes also provide appropriate conditions

for dendritic cell generation (83). Gut microorganisms can also

participate in immune regulation through metabolites, which

further guide or influence immune cells. For example, lactic acid

and pyruvate, metabolites derived from gut microorganisms, can

promote immune responses by inducing G-protein coupled

receptor (GPR)-31 to mediate the production of intestinal C-X3-

C Motif Chemokine Receptor (CX3CR)-1-positive dendritic cells

(84). Furthermore, Odoribacter splanchnicus and Bilophila genus

were negatively correlated with tumor necrosis factor (TNF)-a
production following lipopolysaccharide (LPS) and C. albicans

stimulation. Barnesiella was negatively associated with LPS-and

B. fragilis-induced interferon (IFN)-g production. This included

common gut commensals, such as Dorea longicatena and Dorea

formicigenerans, where higher species abundance was associated

with higher IFN-g levels in response to C. albicans hyphae. Both

species of Dorea can metabolize sialic acids, which are usually

found at the end of mucins; and the release of these acids is

associated with mucin degradation, and may increase gut

permeability. Both Streptococcus parasanguinis and Streptococcus

australis were associated with IFN-g production whereas other

species, such as Streptococcus mitis/oralis/pneumoniae, were

associated with IL-1b production. Also the correlation of

Bifidobacterium pseudocatenulatum and IFN-g was positive. In

contrast, the correlation of Bifidobacterium adolescentis and

TNF-a was negatively. In addition, P. distasonis was negatively

associated with TNF-a and IL-1b after stimulation with C. albicans

hyphae (85–88).
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3 Relationship between microbiome
and clinical features of lung cancer

3.1 Pathological types

The microbiota may be specifically related to the pathological types

of lung cancer tissues (Details in Table 1). Based on histological features,

lung cancer can be divided into small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC), which can be further divided into

adenocarcinoma (AC), squamous cell carcinoma (SCC), and large cell

carcinoma (LCC). Klebsiella, Acidovorax, Polarmonas, and Rhodoferax

have found to be more frequent in SCLC (89). This was later confirmed

by Greathouse et al. (90). Xylobacter, Eufluobacter, andClostridiumwere

also positively correlated with SCLC occurrence. However, Prevotella

and Pseudobutyrivibrio ruminis may be negatively correlated with

SCLC (91).

The microbiome can be also used as a biomarker for NSCLC

screening. Five bacterial genera showed abnormal abundance in the

sputum of patients with NSCLC compared to that of controls (92).

Also, contents of Prevotella , Lactobacillus , Rikenellaceae ,

Treptococcus, Enterobacteriaceae, Oscillospira, and Bacteroides

plebeius were significantly higher in the feces of patients with

NSCLC than in healthy controls (93). However, Leptum,

Faecalibacterium prausnitzii, Ruminococcus, and Clostridia contents

were found decreased in patients with NSCLC (94).

Furthermore, there were differences between the microbiomes of

patients with SCC and AC. Acidovorax is enriched in SCC with TP53

mutations, but not in AC (90). Significant changes were observed in

Capnocytophaga, Selenomonas, Veillonella, and Neisseria in SCC and

AC saliva samples, whereas the microbiome of patients with SCC

seemed to be more diverse than that of those with AC. Therefore,

Acidovorax and Veillonella can be used as sputum biomarkers for

SCC diagnosis (92) (95). SCC is specifically associated with

Enterobacteriaceae microorganisms (96) (97). Levels of

Capnocytophaga and Rothia were also higher in SCC than in AC.

However, increases in Capnocytophaga, Selenomonas, Veillonella, and

Neisseria were associated with AC (95). Capnocytophaga can be used

as a diagnostic biomarker for AC sputum with 72% sensitivity and

85% specificity (92). In addition, Yu et al. observed an increased

abundance of Thermus sp. and a decrease in the abundance of

Ralstonia sp. In AC (98), whereas Greathouse et al. confirmed that

Pseudomonas is specifically present in AC (89). In addition, John

Cunningham (JC) virus was observed in tumor tissues and metastatic

lymph nodes of patients with AC, suggesting that this virus may be

involved in the occurrence of AC (99). Last, Huang et al. found that

the number of Veillonella,Megacoccus, Actinomyces and Arthrobacter

was significantly higher in AC than in SCC.
3.2 Progression and prognosis

The microbiome features are closely associated with the

progression of lung cancer (Table 1). In this line, Guo et al. found

that Legionella was more abundant in patients with metastatic lung

cancer (98). Also, Phascolarctobacterium has been found to be

enriched in patients with clinical benefit and has been related to an
frontiersin.org
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extension of progression-free survival (PFS), whereas Dialister is

more common in patients with progressive disease, and its higher

abundance is related to reduction of progression-free and overall

survival (OS) (100).

Huang et al. (101) sequenced 33 cases of broncholavage fluid (14

cases of squamous cell carcinoma and 19 cases of adenocarcinoma)

and 52 cases of sputum samples (15 cases of squamous cell carcinoma

and 37 cases of adenocarcinoma). The results showed that the number

of Veillonell, Megasphaera, Actinomyces and Arthrobacter in lung

adenocarcinoma without metastasis was significantly higher than that

in lung squamous cell carcinoma without metastasis. The contents of

Capnocytophaga and Rothia in metastatic lung adenocarcinoma were

significantly lower than those in metastatic lung squamous cell

carcinoma. Streptococcus content was significantly lower in lung

adenocarcinoma with metastasis than in lung adenocarcinoma

without metastasis. The contents of Veillonella and Rothia in lung

squamous cell carcinoma with metastasis were significantly higher

than those in lung squamous cell carcinoma without metastasis.

Jungnickel et al. (102) found that the number and volume of

metastatic cancer nodules in the lung of mice exposed to

Haemophilus paraininfluenzae increased significantly. It is

speculated that Haemophilus paraininfluenzae may promote the

upregulation of TLR2 or TLR4, induce the high expression of

cytokine IL-17C, aggravate the inflammatory response of
Frontiers in Immunology 06
neutrophils and thus play a role in promoting cancer. In basic

experiments (102, 103), it was found that Hemophilus

paraininfluenzae in the lung and the imbalance of lung flora

promoted the metastasis of mouse cancer cells to the lung,

indicating that lung flora was involved in the metastasis of lung

cancer. Besides, the lung and gut microbiota may affect the prognosis

of patients with lung cancer (104). The potential relationship between

the lung microbiome and prognosis of lung cancer has been first

demonstrated by Peters. Specifically, the abundance of

Koribacteraceae in lung tissue is associated with an increase in

relapse-free survival (RFS) and disease-free survival (DFS) in

patients with lung cancer. On the contrary, the abundance of

Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae was

correlated with a decrease in RFS or DFS of lung cancer (105).

These further indicated that the dynamic changes of some

microflora might be related to the progression of lung cancer.
4 Microbiome and biological function
of lung cancer

The human microbiome significantly affects the occurrence and

development of lung cancer by regulating tumor cells and the

microenvironment (106–108).
TABLE 1 Relationship between microbiome and clinical features of lung cancer.

Clinical features Related bacteria Potential biological functions References

Clinical
Features

SCLC
Klebsiella, Acidovorax, Polarmonas, Rhodoferax More common in SCLC (56)(57)

Xylobacter, Eufluobacter, Clostridium Be associated with the occurrence of SCLC (58)

NSCLC

Five genera of bacteria Early sputum detection markers (59)

Prevotella, Lactobacillus, Rikenellaceae,
Treptococcus, Enterobacteriacea, Oscillospira,
Bacteroides plebeius

Fecal markers (60)

Leptum, Faecalibacterium prausnitzii,
Ruminococcus, Clostridia

Dysregulation of butyrate metabolism (61)

SCC

Acidovorax Enriched in squamous cell carcinoma with TP53 mutation (57)

Acidovorax, Veillonella Sputum biomarkers in SCC (59)(62)

Microorganisms of the family Enterobacteriaceae Be related with SCC (63)

AC

Capnocytophaga, Selenomonas, Veillonella,
Neisseria

Biomarkers of sputum diagnostic (59)(62)

Thermus High phylogenetic diversity (65)

Pseudomonas Specific microorganisms present in adenocarcinoma (56)

Progression and
prognosis of lung
cancer

Progression

Legionella With higher abundance in lung cancer patients with metastasis (65)

Phascolarctobacterium, Dialister
Phascolarctobacterium was enriched in patients with clinical
benefit, Dialister is more common in patients with progressive
disease

(67)

Streptococcus, There are differences between patients with metastatic and
non-metastatic NSCLC

(68)
Veillonella, Rothia

Prognosis
Koribacteraceae Associated with increased RFS and DFS in lung cancer patients

(70)
Bacteroidaceae, Lachnospiraceae, Ruminococcaceae Associated with reduced RFS or DFS
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4.1 Tumor cells

Proliferation, invasion, and metastasis are the core biological

characteristics of tumor cells (109). The human microbiome can

directly or indirectly affect lung cancer cell proliferation, invasion,

metastasis, genomic instability, and mutations (Figure 2A).

Enrichment of lower airway microbiota and oral symbiotic

bacteria frequently occurs in lung cancer, and these bacteria can

trigger the host transcriptome associated with carcinogenesis.

Compared with healthy people, extracellular signal-regulated kinase

(ERK)- and phosphoinositide 3-kinase (PI3K)-signaling pathways of

the lower airway transcriptome in patients with lung cancer are

significantly upregulated, which is related to the enrichment of

Streptococcus, Prevotella, and Veillonella oral groups in lower

airways (110). Recent studies further found that tiny Vibrio is the

most abundant microbe that drives the upregulation of interleukin

(IL)-17, PI3K, mitogen-activated protein kinase (MAPK), and ERK

pathways in the airway transcriptomes of patients with lung cancer

and is associated with poor prognosis (111). In human lung cancer,

not only is the pulmonary microflora changed, but the local adaptive

immune gamma-delta (gd)-T cells are also activated and directly

promote the proliferation of tumor cells through effector molecules

such as IL-22 and amphiregulin (103). In addition to the lung

microbiota, other bacteria such as HP and its produced urease may

also play an important role in lung mucosal proliferation and

carcinogenesis. Recently, HP urease was found to enter the lung

through gastroesophageal reflux and provide an antigenic trigger for

pulmonary granuloma, which leads to subsequent lung mucosal

proliferation and carcinogenesis (112).

Changes in the microbiota of patients with lung cancer may

contribute to advancing disease progression. The “transition” of
Frontiers in Immunology 07
microorganisms to Firmicutes in the lower lobe of the lung may be

a sign of increased pathogenicity and is associated with poorer

prognosis (113). Such low airway microbiota is more common in

stage IIIB - IV lung cancer with lymph node metastasis (111). In

addition, the gut microbiota plays an important role in the invasion

and metastasis of lung cancer. Toll-like receptors (TLRs) on the

membrane surface of intestinal epithelial cells are pathogen-related

recognition receptors that bind different microbial ligands, such as

LPS, viral double-stranded RNA, and parasites and fungi-derived

toxins (114). These enter the lungs and activate the adaptive

immunity through TLRs, leading to T-cell differentiation and

macrophage and dendritic cell activation. For example, TLR4

stimulation by heat-inactivated Escherichia coli increase the

adhesion, migration and metastatic diffusion of NSCLC cells in

vivo , mainly through p38 MAPK and ERK1/2 signaling

pathways (115).

Microorganisms and their metabolites may produce tumorigenic

effects by directly affecting epithelial cells or oncogenes (116).

Pulmonary PAH-degrading bacteria, such as Massilia and

Acidovorax, are more prevalent in smokers with lung cancer and

TP53 mutations. The enrichment of these bacteria is combined with

the trend of DNA recombination and repair pathway disorders,

suggesting that contact of lung symbiotic microorganisms with

tobacco may lead to mutations in host genes (117). An imbalance

in the composition of microbial flora produces various toxins that

lead to genotoxicity, promote the generation of free radicals, and

cause DNA damage, thereby leading to a cycle arrest and apoptosis of

cells without DNA repair systems (112). In addition, other

microorganisms and their metabolites, such as HP, intestinal

deoxycholic acid and shicholic acid, can cause DNA damage and

increase the gene mutation load, thus inducing lung cancer (112, 118).
A B

FIGURE 2

The human microbiome can significantly influence the occurrence and progression of lung cancer. (A) Human microbiota can directly or indirectly affect
the proliferation, invasion, metastasis, genomic instability and mutation of lung cancer cells. (B) Human microorganisms participate in the composition of
lung cancer microenvironment (TME) and regulate the occurrence and development of lung cancer by up-regulating the expression of immune cells
and inflammatory factors.
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4.2 Tumor microenvironment

The tumor microenvironment (TME) is an environment

composed of various physical and chemical factors surrounding

tumor cells, including neighbor tumor cells, immune cells, stromal

cells, extracellular matrix, and a variety of soluble molecules, and is an

important aspect of the tumor. TME plays an important role in the

occurrence and development of tumors (119). Figure 2B provides a

good summary of the microbial involvement in the composition of

lung TME and the mechanism of regulating the occurrence and

development of lung cancer (120–122).

In a mouse model of KRAS-TP53 co-mutation (KP) lung cancer,

airway microbiosis disorder caused by Tiny Vibrio led to the

recruitment of Th17 cells, increased IL-17 production, increased PD-

1+T cell-expression, and recruitment of neutrophils, which resulted in a

reduced survival and increased the burden of lung tumors (111). Gut

microbiota can also activate B cells, T cells, and other immune cells,

which inflate the lungs through hemato-vascular or lymphatic

pathways and activate the immune response to affect lung

inflammation (114, 123–125). It has been reported that an imbalance

in intestinal flora may regulate the TLR4/NF-KB signaling pathway of

the lung immune system bymodulating the intestinal barrier, activating

pulmonary oxidative stress, and mediating the response to lung injury

(126). Intestinal symbiotic bacteria and their metabolites, short-chain

fatty acids (SCFAs), such as propionic acid and butyric acid in patients

with NSCLC directly stimulate intestinal-epithelial cells to regulate the

release of T-regulatory (Treg) cells (127). Treg cells can inhibit airway

inflammation by stimulating SCFAs, suggesting that immune cells play

an important role in microbial-mediated inflammation (125). In
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addition, HP produces some relevant adaptive immune effects on T

cells, in addition to inducing extensive innate immune signal

transduction effects in the lungs (128, 129).

Studies have shown correlations between lung cancer cell growth

and unbalances in the airway microbial community. This locally

dysregulated microbiome stimulates the production of IL-1b and IL-

23 in myeloid cells, which in turn induce the proliferation and

adaptive activation of lung-resident Vg6+Vd1+gdT-immune cells.

Activated gdT cells produce IL-17, which promotes neutrophil

infiltration and inflammation in the TME (103, 108). The theory of

IL-17-mediated inflammatory pathway has also been confirmed in

other studies and animal models (130, 131). Therefore, IL-17

produced by adaptive immune gdT cells plays a role in mediating

the inflammatory pathways. In addition, increasing evidence suggests

that HP contributes to inducing lung tumors. HP-derived LPS

induces the production of pro-inflammatory factors, including IL-1,

IL-6, and TNF. This inflammation can develop into chronic

bronchitis which can be often accompanied by lung cancer (132).
5 Research and application of
microbiome in the treatment
of lung cancer

Currently, the application of microbiomal knowledge to clinical

research is a matter of extensive research. From the perspective of

nutritional intervention, prebiotics and probiotics play indispensable

roles. They can not only restore homeostasis of visceral organs or lower

airways but also reduce microbial-induced inflammation, genotoxicity,
FIGURE 3

Research and application of microbiome in lung cancer treatment. (A) Nutritional intervention with prebiotics and probiotics can not only restore the
homeostasis of internal organs or lower airway, but also reduce microbial-induced inflammation, genotoxicity and cell proliferation, thus improving the
treatment of lung cancer. (B) Fecal microbiota transplantation (FMT) can also restore host homeostasis and reduce microbial-induced inflammation.
Preclinical studies have shown that FMT therapy may have certain advantages in combating immunotherapy resistance in lung cancer. (C)
Chemotherapy, targeted therapy or immunotherapy combined with microbial therapy can improve the clinical treatment effect of lung cancer patients.
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and cell proliferation (133, 134) (Figure 3). Lee et al. found that

Bifidobacterium was abundant in the intestinal tract of patients with

NSCLC who responded to clinical treatment. Further, when a

commercial Bifidobacterium strain was used to treat mice tumors with

the same genotype the tumor load could be reduced by inducing the host

immune response and cooperating with immunotherapeutic or

chemotherapeutic drugs (135). Yusuke Tomita et al. used 588 strains

of Clostridium butyricum (MIYAIRI 588 strain) to ameliorate symptoms

associated with ecological disturbance caused by antibiotics (ATBs),

suggesting that probiotic Clostridium butyricum therapy (CBT) has a

positive effect on improving immune checkpoint blockade (ICB) in

patients with cancer (136). On the other hand, oral administration of

Lactobacillus acidophilus enhanced the antitumor effect of cisplatin,

reduced tumor size, and improved the survival rate of mice (137).

Therefore, prebiotics and probiotics can improve lung cancer treatment.

In addition to nutritional intervention of prebiotics and

probiotics, fecal microbiota transplantation (FMT) also restored

host homeostasis and reduced microbial-induced inflammation

(138, 139) (Figure 3). Although there is currently a lack of clinical

application of FMT in lung cancer or other tumor types, previous

preclinical studies have found that FMT could reverse the response to

immunotherapy of drug-resistant patients by increasing the

recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor

lesions in mice. These results indicate that FMT may have some

advantages in battling resistance to lung cancer immunotherapy.

A number of studies have found that the gut microbiome of

patients with lung cancer who respond to clinical treatment is

significantly different from that of patients who do not respond,

indicating that some favorable/unfavorable microorganisms are

enriched in responders and non-responders respectively, thus

implying a potentially predictive value for lung cancer clinical

treatment (140–142) (Figure 3). Concerning chemotherapy, patients

with advanced lung cancer treated with Enterococcus and Human

Bariniella combined with immunochemotherapy showed longer PFS

(143). In terms of targeted therapy, the role and therapeutic effects of

the microbiota are very optimistic according to preclinical studies

(144). In a mouse lung cancer model, Bacteroides ovatus and

Bacteroides xylanisolvens were positively correlated with the

treatment results. Oral or intragastric administration of these

responsive bacteria could significantly improve the efficacy of

Erlotinib and induce CXCL9 and IFN-g expression (144). In

immunotherapy, combined microbial therapy can improve the

response to and effect of immune checkpoint inhibitors (ICIs). A

recent study explored the role of gut microbes in the effectiveness of

immunotherapy (145). The intestinal microbial community can affect

the immune regulation mechanism by regulating T cell differentiation

and significantly improve the therapeutic effect of ICI (140, 146–149).

Mice using stool samples from patients who responded positively to

immunotherapy, whereas mice using stool samples from patients who

did not respond did not. A retrospective study reported that

Clostridium butyricum treatment (CBT) before or after ICI

treatment significantly extended patients’ progression-free survival

(PFS)non-progressive survival and overall survival (OS) (136).

Improved survival in these patients can be attributed to more

efficient immunomodulatory effects.
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6 Future perspectives

The microbiome characteristics have significant effects in tumor

development, however, how the microbiome responds to lung cancer,

in particular, how lung cancer cells and TME shape the local

microbial community of the lungs, is unknown. However, it has

been shown that in colorectal cancer (CRC), loss of surface barrier

function can cause tumor inflammation induced by symbiotic

bacteria. In particular, the breakdown of tight connections between

colon tumor cells allows bacterial degradation products such as LPS,

to enter the tumor stroma, causing bone marrow-derived cells to be

recruited to the TME. Therefore, understanding the interaction

between the human microbiome and lung cancer cells, and

identifying the cellular and molecular mediators involved in this

interaction are relevant issues to be explored in order to find future

potential targets for lung cancer treatment.

In addition, when considering the influence of microbiome on the

efficacy of chemotherapy, targeted therapy, and immunotherapy for

lung cancer, it is necessary to distinguish between the specific roles of

the local lung microbiome, the distal gut microbiome, and oral

bacteria in tumor growth and related immune responses (111). It is

possible that selectively targeting one of these compartments may lead

to different effects on lung cancer progression and treatment, thus

providing new strategies for lung cancer treatments in the future.
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