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Background: Global patterns of immune cell communications in the immune

microenvironment of skin cutaneous melanoma (SKCM) haven’t been well

understood. Here we recognized signaling roles of immune cell populations

andmain contributive signals. We explored howmultiple immune cells and signal

paths coordinate with each other and established a prognosis signature based on

the key specific biomarkers with cellular communication.

Methods: The single-cell RNA sequencing (scRNA-seq) dataset was downloaded

from the Gene Expression Omnibus (GEO) database, in which various immune

cells were extracted and re-annotated according to cell markers defined in the

original study to identify their specific signs. We computed immune-cell

communication networks by calculating the linking number or summarizing

the communication probability to visualize the cross-talk tendency in different

immune cells. Combining abundant analyses of communication networks and

identifications of communication modes, all networks were quantitatively

characterized and compared. Based on the bulk RNA sequencing data, we

trained specific markers of hub communication cells through integration

programs of machine learning to develop new immune-related prognostic

combinations.

Results: An eight-gene monocyte-related signature (MRS) has been built,

confirmed as an independent risk factor for disease-specific survival (DSS).

MRS has great predictive values in progression free survival (PFS) and

possesses better accuracy than traditional clinical variables and molecular

features. The low-risk group has better immune functions, infiltrated with

more lymphocytes and M1 macrophages, with higher expressions of HLA,

immune checkpoints, chemokines and costimulatory molecules. The pathway

analysis based on seven databases confirms the biological uniqueness of the two
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risk groups. Additionally, the regulon activity profiles of 18 transcription factors

highlight possible differential regulatory patterns between the two risk groups,

suggesting epigenetic event-driven transcriptional networks may be an

important distinction. MRS has been identified as a powerful tool to benefit

SKCM patients. Moreover, the IFITM3 gene has been identified as the key gene,

validated to express highly at the protein level via the immunohistochemical

assay in SKCM.

Conclusion: MRS is accurate and specific in evaluating SKCM patients’ clinical

outcomes. IFITM3 is a potential biomarker. Moreover, they are promising to

improve the prognosis of SKCM patients.
KEYWORDS

skin cutaneous melanoma, single-cell, tumor immune microenvironment, monocyte,
machine learning, IFITM3
Introduction

Skin cutaneous melanoma (SKCM) is the most aggressive type

of all skin malignancies. Worldwide, an increase in the morbidity of

SKCM has particularly raised alarm (1). For localized lesions,

surgery is the most recommended treatment modality, perfectly

able to assure wound healing, and is warranted in all stages of the

disease (2, 3). Once the aggressive dissemination happens, other

forms of therapies (chemotherapy, immunotherapy, targeted

therapy and radiotherapy, or integrated combinations of them)

must be provided simultaneously (4, 5). However, the overall

prognosis of SKCM patients still stays poor (6) due to drug

resistance, distant metastasis and high recurrence rate, etc.

Therefore, more specific molecular biomarkers with prognostic

and therapeutic significance are required.

In solid cancer, tumor microenvironment (TME) has been

reckoned as an important structure. TME encompasses multiple

cell types (stromal cells, fibroblasts, endothelial cells, innate and

adaptive immune cells, etc.) and extracellular components (growth

factors, cytokines, extracellular matrix, hormones, etc.) that

surround cancerous cells (7). TME co-opts innate immune cells

for tumor promotion (8). Abundant studies have given the

importance of immune compositions in TME that can

dynamically regulate cancer progression and influence therapeutic

outcomes, which has made TME a promising therapeutic target (9–

11). Tumor immune microenvironment (TIME) refers to the

highly-heterogenous immune context in TME, and great attention

has been drawn on understanding its potential role in

tumorigenesis. Though ICI therapy has exhibited astonishing

efficacy because of the high immunogenicity in SKCM (12), not

all patients can be benefited. What’s more, the available tumor

staging system is inadequate for a qualified screening of patients

who are suitable to accept ICI therapy. Thus, it is necessary to

explore novel biomarkers and to understand their roles in the TIME

of SKCM, which helps to uncover the potential biology background

behind SKCM.
02
Single-cell RNA-sequencing (scRNA-seq) provides unprecedented

opportunities to deconvolve immune system heterogeneity by

uncovering novel distinct immune cell subsets, characterizing

stochastic heterogeneity within a cell population and building

developmental ‘trajectories’ for immune cells (13). This

technique can overcome the limitations of traditional RNA-

sequencing methods. Another classic population-based RNA-

sequencing approach (bulk RNA-seq) is also important in

deciphering genome-wide transcriptome variations (14, 15), and

it may mask the transcriptional trends of distinct subpopulations

with the most abundant cell types or states (16). The organic

combination of scRNA-seq and bulk RNA-seq has been applied in

studying onco-immunology (17). For example, Joanito I et al. (18)

used it to identify two epithelial tumor cell states and refine the

consensus molecular classification of colorectal cancer. Kang

B et al. (19) revealed key features of the gastric tumor

microenvironment through it. Gong L et al. (20) used it to reveal

the stromal dynamics and tumor-specific characteristics in the

microenvironment of nasopharyngeal carcinoma. Tumor

heterogeneity and prognosis-related signatures have been

explored with the integrative combination of the two approaches

in uveal melanoma (21, 22). However, there is a lack of excavation

of the TME in SKCM using scRNA-seq along with bulk RNA-seq.

Besides, machine learning is an else indispensable tool, leveraging

sophisticated algorithms in processing big, heterogeneous data

automatically, professional at prediction problems by revealing

useful patterns (23, 24). With the development of bioinformatics,

machine learning has become a routine tool for assessing the risk

and treatment needs of specific patients. At present, Lasso-Cox is

the mainstream algorithm used for generating massive prognosis

signatures (25, 26). However, limitations of relying on a single

machine learning algorithm may hinder its ability to deliver

optimal clinical care to patients, because of the uncertainty to

ensure whether the data information of the current algorithm is

sufficiently employed, let alone to compare whether the results have

reached the population optimal solution. Such inadequate practices
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1094042
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1094042
can lead to potential overtreatment or undertreatment. Integrated

approaches based on various algorithm combinations can fit a

consensus model in predicting prognosis, which means the

generated model could provide a more personalized evaluation

methods to implement clinical decisions.

In the present study, we innovatively integrated afore-

mentioned methods. A novel prognostic signature was described

and validated to be a potential biomarker. Moreover, as scRNA-seq

enables inference of cell-cell communication between tumor cells

and their microenvironment (27), we also probed into the profiles

of communication networks in SKCM and depicted the specific

markers and the indispensable cell–monocyte. The results were

confirmed to provide insights in deciphering TME and unveil

biological mechanism in SKCM.
Materials and methods

Collection of SKCM sample data

The scRNA-seq dataset was obtained with accession number

GSE115978 from the Gene Expression Omnibus (GEO) database.

Immune cells in it were extracted according to cell markers defined

in the original study and 2106 cells were included from 16 pre-

immunotherapy patients (28). Raw mapped reads were normalized

with counts per million (CPM) and analyzed with quality control

using the “Seurat” R package from the normalized. The

“FindVariableFeatures” function was performed on the scaled

data to screen out the top 2000 genes with higher intercellular

coefficient of variation for the downstream analysis (29, 30). The

Bulk RNA-seq datasets (TCGA-SKCM, GSE65904 and GSE54467)

were acquired from the TCGA and GEO databases respectively. The

HTSeq-FPKM gene expression data and related clinical information

of SKCM patients were downloaded from the TCGA database as the

training group. We enrolled 446 samples whose follow-up time was

greater than 0 days with full expression information. For further

verification, we adopted the same inclusion criteria. The GSE65904

dataset included 210 SKCM patients, and the GSE54467 dataset

included 71 SKCM patients. Via the “Combat” algorithm of the R

package “sva”, the possibility of batch effects caused by abiotic bias

among the TCGA-SKCM, GSE65904 and GSE54467 datasets was

correspondingly reduced (31). It should be noted that both TCGA

and GEO databases are open to the public, free of charge. Therefore,

this study strictly complies with the data extraction policy of the

databases and does not require ethical review and approval from the

ethics committee.
ScRNA sequencing and cell-cell
interaction analysis

Principal components analysis (PCA) was conducted on the

expression matrix of variable genes. The “FindClusters” function

was used with a 0.8 resolution to identify clusters. Also, we

performed the “RunTSNE” function to accomplish the
Frontiers in Immunology 03
dimensionality reduction and visualization processes of t-

Distributed Stochastic Neighbor Embedding (t-SNE). The

“singleR” package was applied and the cluster-specific markers

(log2 |Fold Change| threshold of 1 and FDR threshold of 0.05)

were recognized by “FindAllMarkers” function to automatically re-

annotate all immune-cell clusters. Immune cells were annotated

using the Monaco Immune Database in the Celldex package (1.3.0)

(32). The “CellChat” R package (1.1.3) was utilized to infer the

immune cell-immune cell communication in the tumor

microenvironment (TME) of SKCM on the basis of receptor-

ligand interactions (33). The linking numbers were calculated and

the communication probability was collected to compute

communication networks. The interacting times and total

strength of interactions between two arbitrary cell groups were

visually displayed. Scatter plots were drawn in order to visualize the

dominant sender (signal source) and receiver cells (target) in 2D

space, which could help identify the largest contributor signals to

the efferent or afferent signals in immune cell sets. We adopted a

pattern recognition approach, the global communication model, to

discern the way how multiple immune cell types and signaling

pathways work in coordination. The “select” function was applied

to infer the quantity of patterns, which was comprehensively

determined according to two indexes, Cophenetic and Silhouette

based on the “non-negative matrix factorization (NMF)” R

package (34).
Signature derived from machine learning-
based integrative approaches

Considering the unquestioned importance of monocytes to cell

communication, we exploited the monocyte-related signature

(MRS). Warranting validations were conducted to make sure

MRS has satisfying accuracy, stability and repeatability. We

integrated up to 10 machine learning algorithms including

random survival forest (RSF), elastic network (Enet), Lasso,

Ridge, stepwise Cox, CoxBoost, partial least squares regression for

Cox (plsRcox), supervised principal components (SuperPC),

generalized boosted regression modeling (GBM), and survival

support vector machine (survival-SVM). Upon these methods, a

consensus model was produced. Altogether 101 algorithm

combinations were performed to match prediction models based

on the leave-one-out cross-validation (LOOCV) framework. The

TCGA-SKCM dataset was set as a training dataset, the GSE65904

and GSE54467 datasets were set as external validation datasets.

Further, the concordance index (C-index) in each pattern in all

validation datasets was calculated (35). In total, eighty-seven genes

with higher expression level in monocytes than in other immune

cells based on scRNA were included in the analysis (log2| Fold

Change| threshold of 2 and FDR threshold of 0.05). In line with

included gene expression levels from different patterns, we used the

linear combination function of each pattern to calculate risk scores.

The combined pattern pair from the two external validation

datasets with the highest average C-index value was ultimately

considered as the most superior one.
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Verifying the accuracy of the signature

After determining the best pattern pairs, we set the median

value of the risk scores based on the training dataset as the cutoff to

divide patients in both training and validation datasets into either

high- or low-risk group. Kaplan-Meier (KM) survival analysis and

log-rank test were used on the two groups via the “survival” and

“survminer” R packages. Receiver operating characteristic

(ROC) curves were depicted to evaluate the accuracy of this

signature. What’s more, we performed both the univariate and

multivariate cox analysis to prove the independence of the

signature. Time-dependent C-index was applied to compare the

efficacy of this signature versus traditional clinical variables. In

addition, decision curve analysis (DCA) was conducted to judge if

the signature can benefit patients in clinical practice. The

specific or preponderant cell type that the hub genes from MRS

are expressed on were further verified in three independent single-

cell datasets (GSE123139, GSE120575, GSE72056) using the

“RunUMAP” function.
Immune microenvironment analysis

Seven different software were utilized to quantify the abundance

of immune infiltration of SKCM patients, compare differences of

the abundance between the high- and low-risk group, and calculate

the Pearson correlations between analysis scores and immune cell

contents (36–42). Furthermore, we employed the single sample

gene set enrichment analysis (ssGSEA) enrichment scores to assess

immune functions. Also, differences of the functions between the

high- and low-risk group were then compared using the “wilcox”

test (43). Additionally, Thorsson V et al. (44) rendered

immunogenomics analyses of more than 10,000 cancers,

identifying six immune subtypes that encompass multiple cancer

types and are assumed to define immune response patterns

influencing prognosis. Four types consist in the TCGA-SKCM,

namely wound healing, IFN-gamma dominant, inflammatory and

lymphocyte depleted. Subsequently, we focused on the distribution

of each subtype in the high- and low-risk group.
Gene expression, pathway activity and
transcriptional heterogeneity analyzes

On account of the training dataset, we compared expression

differences of immune checkpoints, costimulatory molecules,

chemokines and HLA related genes between the high- and low-

risk group. The Molecular Signatures Database (MSigDB) is the

most broadly used and comprehensive resource of >10,000

annotated gene sets for use with GSEA software, divided into

Human and Mouse collections (45). Nine categories (H, C1-C9)

are embodied in Human collections. We chose C2-C8 gene sets to

conduct the gene set enrichment analysis (GSEA) for a thorough

exposition in differential pathway activities between the high- and

low-risk group. To expound on transcriptomics differences a bit

further, we analyzed regulon activities of 18 kinds of transcription
Frontiers in Immunology 04
factors to speculate differential regulation modes in the high- and

low-risk group (46).
Identifying hub genes in the signature

It’s typically believed that if two gene products have similar

functions, then terms annotated by them in the Gene Ontology

(GO) tree would be close to each other and have high semantic

similarity too. The “mgeneSim” function was used to gauge

similarity by calculating geometric means of molecular functions

and cellular components. Furthermore, we evaluated the

importance of each gene by calculating its average similarity to

other genes in the signature (47). In addition, we expounded hub

gene expression in immune and nonimmune cells in ten SKCM

single-cell datasets with the aid of tumor immune single-cell hub

(TISCH) database (48, 49). On a final note, the Human Protein

Atlas (HPA) database was used to verify whether the expression of

hub genes in SKCM was different from that in normal skin at the

protein level.
Statistical analysis

All data processing, statistical analysis, and plotting were

performed in R 4.2.0 software. Correlations between two

continuous variables were assessed by Pearson’s correlation

coefficients. Differential analysis was realized via the wilcox test. P

< 0.05 was regarded as statistically significant.
Results

T cells and B cells are main cellular
components in immune microenvironment
of SKCM

We applied the scRNA-seq dataset (GSE115978) and selected

16 samples from untreated patients for further investigations. Strict

quality control measures were taken to obtain 2106 immune cells

from predetermined samples, which had 23686 different features.

After that, we used the t-SNE algorithm on those 2186 cells to

achieve dimension reduction and unsupervised clustering. To

decide a desirable resolution parameter for cell clustering, we

produced a cluster tree using various resolution values. It was

noticed that along with the increase of the resolution, clusters

weren’t intertwined much. Therefore, we chose 0.8 as the best

resolution because maximum fork clusters were observed

(Figure 1A). From the t-SNE algorithm, 13 various cell clusters

were revealed (Figure 1B). Using the “singleR” function, 7 kinds of

immune cells were annotated, and the “plotScoreHeatmap”

function showed the scores of all cells in all reference labels to

check the confidence of the predictive labels throughout the dataset

(Figure 1C). Among all immune cells, 5 types were annotated as

main labels of the cluster. That is, the 0, 6, 8, 11 cell clusters were

annotated as CD8+T cells, the 1, 4, 9 cell clusters were annotated as
frontiersin.org
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CD4+T cells, the 2, 3 cell clusters were annotated as B cells, the 5, 10

cell clusters were annotated as monocytes and dendritic cells and

the 7-cell cluster was annotated as NK cells (Figure 1D). It is

interesting to note that, the number and proportion of the five main

types of immune cells showed a high degree of similarity among 16

samples, suggesting that T and B cells were the major compositions

of the SKCM immune microenvironment (Figures 1E, F).
Monocytes are major contributors to both
incoming and outgoing signals in immune
communication networks

We observed over-expressed ligands or receptors and their

interactions in seven immune cell groups to identify interactions
Frontiers in Immunology 05
between immune cells (Figure 2A). Circle diagrams showed the

interaction times and general strengths of interactions (proportion)

between any two cell groups to visualize the integrated cell

communication networks. Compared to other immune cells,

monocytes were found to contribute the most to both incoming

and outgoing signals in immune communication networks

(Figures 2B–D). Different immune cell groups had obviously

different contributive signals on the incoming and outgoing

signals (Figure 2E). Then the cophenetic and silhouette indexes

were combined to recognize 6 efferent and 5 afferent patterns

(Figures 3A, D). Also, the incoming and outgoing signals were

cell-specific. Notably, incoming signals of T cells, CD8+ T cells and

NK cells bore similarity (Figures 3B, E). At last, Figures 3C, F

displayed how much diverse signals in efferent and afferent patterns

contributed to various cell groups.
D

A B

E F

C

FIGURE 1

Profiles of immune cells in the TIME of SKCM on the scRNA transcriptome level. Clustering tree for the immune cells clustered using various
resolution parameters and the best resolution was 0.8 (A). The t-SNE algorithm helped visualize 13 various cell clusters (B). 7 kinds of immune cells
were annotated in the plotScoreHeatmap (C). 5 types of immune cells were annotated as the main labels of the cluster (D). T and B cells were the
major compositions of the TIME in SKCM (E, F).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1094042
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1094042
MRS exhibits robust and stable DSS
predictive performances

In view of the dominant position of monocytes in cell

communication, 87 biomarkers in the TCGA-SKCM that are

specifically highly expressed in monocytes compared with other

immune cells were fitted to 101 prediction models by the LOOCV

framework. The C-index of each model was calculated in all

validation datasets. An interesting fact was noticed that the best

model combination was CoxBoost and stepCox (both) with the

highest average C-index (0.638) (Figure 4A). Ultimately, an 8-gene

monocyte-related signature (MRS) was accordingly established. In

the training dataset TCGA-SKCM, we found that the low-risk

group owned a relatively longer progression-free survival (PFS)

(Figure 4B). The high-risk group had a significantly lower disease-

specific survival (DSS) in the training dataset (Figure 4C), external

validation datasets GSE65904 (Figure 4D) and GSE54467

(Figure 4E). Besides, the area under curve (AUC) values of the 1-,

3- and 5- year PFS (Figure 4F) and DSS (Figures 4G–I) identified by

the MRS proved that MRS was a potent prediction tool with
Frontiers in Immunology 06
stability and strength. MRS had satisfactory specificity and

sensitivity. Samples in GSE54467 with DSS within 1 year were too

few, hence we chose to evaluate the AUC value of the 2-year DSS.

Univariate Cox regression analysis showed that MRS, age, stage, T

staging and N staging had close relation to DSS (Figure 4J). And the

multivariate Cox regression analysis showed that MRS could be

treated as an independent prognostic factor for SKCM patients (P<

0.001) (Figure 4K). This time-dependent C-index indicated that

MRS outperformed conventional clinical variables (Figure 4L).

Speaking of DCA, it explained that MRS could exactly

benefit patients in contrast with conventional clinical variables

(Figure 4M). All these indicators declared that MRS was

stable and robust in the training queue. The classification of

different risk groups could be repeated and verified in two

independent validation datasets which manifested that MRS was

hardly a spurious finding due to technique artifacts, chances or

deviations of the sample eligibility criteria in TCGA. Moreover, the

cell type that eight MRS-genes were expressed most intensively

on was confirmed as monocyte in three single-cell external

datasets (GSE123139 (Figure 5A), GSE120575 (Figure 5B),
D

A B

E

C

FIGURE 2

The landscape of immune cell-cell communication. The bubble chart shows overexpressed ligand–receptor interactions. Bubble size represents P
value generated by the permutation test, and the color represents the possibility of interactions (A). The circle diagrams show the interaction
strength (B) and number (C) between immune cells. The dot plot shows dominant senders and receivers. The X and Y axes are the total outgoing or
incoming communication probabilities associated with each cell group, respectively. The size of the dots is positively related to the number of
inferred links (both outgoing and incoming) associated with each cell block. The colors of the dots represent different cell groups (D). The heatmap
shows the efferent or afferent contributions of contributions of all signals to different groups of immune cells (E).
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GSE72056 (Figure 5C), which further proved that MRS was stable

and repeatable.
Transcriptome-defined subclasses are
biologically distinct and immune infiltration
is statistically associated with a more
favorable prognosis

Seven immune infiltration algorithms exerted consistence in

which the high-risk group was always infiltrated with less immune

cells (Figure 6A). Risk scores were significantly positively related to

the cell contents of lymphocytes and M1 macrophages (Figure 6B).

Among immune subtypes of SKCM, we observed that in the low-

risk group, there were significantly more patients with IFN-gamma

Dominant subtype, but less patients with Lymphocyte Depleted

subtype (Figure 6C). Besides, ssGSEA results consistently showed

that the low-risk group had better immune functions (Figure 6D).

Immune filtration statistically correlated with better prognosis.

The pathway analyzes on the seven datasets vigorously

confirmed biological uniqueness of the high- and low-risk

group. In the low-risk group, lymphocyte activation,

antigen presentation and other related pathways were activated.

While in the high-risk group, melanogenesis, keratinization and

other related pathways were significantly enriched (Figure 7A).

HLA, immune checkpoints, chemokines and costimulatory

molecules were highly expressed in the low-risk group

(Figure 7B). Moreover, the cell-regulon activity profiles

encompassing 18 types of transcription factors highlighted the

possible differential accommodative patterns between the high-

and low-risk group (Figure 7C).
Frontiers in Immunology 07
IFITM3 has been identified as the core
gene in MRS with its high expression
in SKCM

Using the “mgeneSim” function, we uncovered the key gene

IFITM3 in MRS (Figure 8A). We employed the TISCH database to

locate the expression situations of IFITM3 in immune and

nonimmune cells in all ten SKCM single-cell datasets. It was

found that IFITM3 not only was highly expressed in

mononuclear macrophages, but also in those nonimmune and

melanoma cells in the microenvironment (Figure 8B). Learning

from the immunohistochemical data in the HPA database, we

discovered that the expression of IFITM3 in SKCM at protein

level was also higher than that in normal skin (Figures 8C, D). To

sum up, all these results provided corroborative evidence for the

exploration value of IFITM3 in the future study of SKCM.
Discussion

Due to the high rate of metastasis, invasiveness, and annually

increasing morbidity, skin cutaneous melanoma (SKCM) is

regarded as one of the most lethal skin malignancies globally

(50). Conventional histopathology is the mainstay of the

diagnosis of SKCM (51), immunohistochemistry and molecular

testing have also been introduced to assist with diagnosis (52).

Generally speaking, the present staging system for SKCM refers to

the 8th edition of TNM classification issued by the American Joint

Committee on Cancer (AJCC) in 2017 (53). After the diagnosis

confirmed, timely and appropriate staging is of utmost significance,

with which an accurate prognostic prediction along with an
D
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FIGURE 3

Identifying patterns of outgoing and incoming signals. Numbers of outgoing (A) and incoming (D) signals based on the Cophenetic and Silhouette
indexes. The sankey diagram shows the relations between cell groups and outgoing communication patterns, outgoing communication patterns and
signals (B). And relations between cell groups and incoming communication patterns, incoming communication patterns and signals (E). The dot plot
shows the contributions of different signals to cell groups in the outgoing communication patterns (C), and incoming communication patterns (F).
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individualized treatment protocol shall be then provided (54).

However, this traditional staging method uses a limited range of

parameters equally for all patients, irrespective of clinical context

(55) and person-specific heterogeneity. Therefore, sometimes there

are limitations on proper treatments and the prognosis may be

estimated imprecisely. The emergence of immune checkpoint

inhibitors (ICIs) therapy, has made milestone advances in the

treatment of SKCM in the last decade, benefiting thousands of
Frontiers in Immunology 08
SKCM patients and their survival has been prolonged (56, 57).

However, only a subset of patients can benefit from ICI therapy.

Further still, immune-related toxicities can be a more dangerous

dilemma where up to 55% of the patients in the ipilimumab and

nivolumab combination trail experienced grade 3 or 4 toxicities

(58). As a result, development of a robust biomarker or gene

signature to predict response and/or resistance and clinical

outcomes is in dire need in SKCM patient management.
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FIGURE 4

Establishment and validations of a consensus MRS via the machine learning-based integrative procedure. A total of 101 types of prediction models
using the LOOCV framework and further calculated the C-index of each model in all validation datasets (A). KM curves of PFS (B) and DSS
(C) between the two risk groups in the training dataset TCGA-SKCM. KM curves of DSS in GSE65904 (D) and GSE54467 (E) datasets. ROC curves
show the 1-, 3- and 5- year PFS in the TCGA-SKCM (F) and DSS in the TCGA-SKCM, GSE65904 and GSE54467 datasets (G–I). Univariate (J) and
multivariate Cox regression analysis (K) illustrated that the MRS could be used as an independent prognostic factor for SKCM patients (P< 0.001).
Time dependent C-index curves (L), DCA curves (M) show the MRS has the good potency in predicting prognosis of SKCM patients.
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In this research, sophisticated, integrated multi-parameter

analysis was conducted. We used PCA and t-SNE to cluster

massive immune cells, utilizing the “singleR” to annotate them

and eventually specific markers of each type of immune cell were

identified. Significant specificity existed in the afferent and efferent

signals of every immune cell. Monocytes, however, was discovered

as a dominant contributor to immune cell-cell communications.

Based on the LOOCV framework, we further screened out

monocyte-specific markers, on which 101 combination patterns

derived from 10 machine learning methods were fitted to ultimately

establish a consensus monocyte-related signature (MRS). MRS was

subsequently validated in two independent datasets, and the result

showed that the best combination pattern consisted of CoxBoost

and stepCox (both). MRS was then proved to have negative impact

on DSS and PFS, namely the high-risk group identified by the MRS

possessed relatively lower DSS and PFS. Our MRS had an excellent
Frontiers in Immunology 09
and stable performances in clinical use. It was an independent,

superior index compared to other traditional clinical variables, and

could be served as a good complement to them and their limitations

shall be offset in a certain degree. The time-dependent C-index and

DCA showed that MRS was a prominent prognosis prediction tool

in contrast with those clinical variables, and can benefit patients in

an actual way. What’s more, its repeatability was also verified on

two external independent queues.

Patients in the high- and low-risk group showed significant

biological distinctness too. Hot and cold tumors, are an informal

notion to reflect tumor immunogenicity, and the former is highly

infiltrated (59). The very reverse, cold tumors is characterized by the

lack or low presence of lymphocytes in the TME, resulting in non-

responsiveness to ICI therapy (60). Therefore, recent studies have

concentrated on the possibility and actuality to turn cold to hot

tumors which shows the dynamic changes in the TIME (61), in
A
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FIGURE 5

Using three single-cell datasets GSE123139 (A), GSE120575 (B), and GSE72056 (C) to verify eight MRS-gene expression location in different cell
types. UMAP respectively displays dimension reduction clustering of the dataset. The violin map displays characteristic genes and cell annotation.
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order to enhance the efficacy of ICI therapy. Notably, the low-risk

samples demonstrated phenotypes of hot tumors, infiltrated with

abundant lymphocytes and M1 macrophages, significantly enriched

with immune-related pathways, and expressed highly of immune-

related molecules. This consistently supported that the patients in

the low-risk group may be more prone to respond to ICI therapy.

The MRS was composed of 8 genes (C1QA, DAB2, F13A1,

FCGR2A, FCGRT, HMOX1, IFITM3, SOD2). Among the 8 hub

genes, some have been demonstrated as prognostic biomarkers of

cancers already. For example, FCGR2A has been experimentally

validated as a positive factor for OS in SKCM (62). Heme

Oxygenase 1 (HMOX1) is also regarded as a tumorigenesis-

related regulator and is being explored also as a therapeutic target

(63). After a comprehensive assessment of the relative importance

of each gene, interferon induced transmembrane protein (IFITM3)
Frontiers in Immunology 10
was recognized as the one with a strong academic exploring value.

IFITM3 belongs to the family of interferon induced antiviral

proteins. IFITM3 is a well-studied gene in multiple diseases, and

has close relation to cancers because it overexpresses in various

types. Min J et al. once testified IFITM3’s promotion influences on

hepatocellular carcinoma (HCC) invasion and metastasis by

regulating MMP9 through p38/MAPK signaling (64). Also in

HCC, IFITM3 was demonstrated to facilitate proliferation by

upregulating c-myc expression via the ERK1/2 signal pathway

(65). Moreover, an investigation led by Chu PY et al. has revealed

that the IFITM3 can expand malignant progression, promote

cancer stemness and chemoresistance of gastric cancer by

targeting MET/AKT/FOXO3/c-MYC axis (66). In addition, high

expression of IFITM3 represents adverse prognosis in acute

myeloid leukemia (67), and it can cause B-cell malignancies by
D
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FIGURE 6

Immune infiltration profiles. Seven immune infiltration software exhibit different numbers of immune cells between the high- and low-risk group (A). The
bubble plot shows the correlation between different immune cells and risk scores (B). The block diagram shows the proportion of the high- and low-risk
samples in four TCGA-SKCM representative immune subtypes (C). Comparisons of ssGSEA scores between the high- and low-risk group (D). *** means
P<0.001.
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motivating PI3K pathway (68). Considering that IFITM3

participates in diverse signaling pathways that are likely to cause

for oncogenesis and tumor development, it is deemed as a new

therapeutic biomarker. Nevertheless, the potential role of IFITM3

in SKCM has not been fully understood yet. In the single-cell

research, it is common to respectively study immune cells,

nonimmune cells, and tumor cells, to avoid the situation where

important information of life beings are mutually obscured by

different types of cells. Our research aimed at the immune cell,

hence we further evaluated the expression of IFITM3 in

nonimmune and tumor cells based on the 10 single-cell datasets

in the TISCH database. And the results showed that IFITM3 was

highly expressed in the fibroblasts, myofibroblasts, endothelial cells

and tumor cells. Via the HPA database, again IFITM3 was proved to
Frontiers in Immunology 11
express highly in SKCM at the protein level than in normal skins.

The synthesis findings helped verify that IFITM3 is of great

exploring values and more studies of it as a novel biomarker

are needed.

The MRS can be duplicated via some basic PCR-based detection

methods, making MRS an attractive tool for clinical transformation

and implementation. But it is important to admit that our research

has certain limitations as well. To begin with, this study was

retrospective. The data and corresponding clinical information

were obtained from public accessible TCGA and GEO databases,

pretty limited sample size, absence of partial treatment and

recurrence records and other artificial errors may potentially

distort the findings. Secondly, since the role of IFITM3 in SKCM

was not clear, more real-world studies enrolling more tumor
A B

C

FIGURE 7

Exploration of the potential risk mechanism. The bar charts show GSEA results in seven gene sets (A). Differential expressions of HLA, immune
checkpoints, chemokines and costimulatory molecules between the high- and low-risk group (B). The heatmap shows the cell-regulon activity
profiles between the high- and low-risk group (C). *** means P<0.001.
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specimens and more experiments in vitro or in vivo should be

performed in the future to reveal its actual function. Finally,

the current algorithm was based on transcriptome analysis. In the

future, the exploration from a global perspective is needed on the

law of organism’s life activity. It’s believed that multi-omics

integration analysis can promote the deep understanding of life

processes and physiological mechanisms, and improve the stability

and accuracy of the algorithm to make it gradually perfect, because

it provides more features for learning. Additionally, deep learning,

as a special kind of machine learning, will automatically find the

features that are important for classification, while in machine

learning we have to provide these features manually. Therefore,

developing new deep learning algorithms and combining multi-

omics data can be a powerful and promising tool to help us improve

clinical outcomes for individual SKCM patients.
Conclusions

Our study is the first to establish an 8-gene monocyte-related

signature based on abundant machine learning methods. Through

adequate validations, the signature has been proved to have stability

and strength as a promising predictive biomarker and therapeutic

target for SKCM patients. Also, the IFITM3 gene is identified from
Frontiers in Immunology 12
the signature, and its potential exploring values have been

preliminarily confirmed, which may give new inspirations in

future clinical use.
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10. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor
microenvironment. Cancer Discov (2021) 11(4):933–59. doi: 10.1158/2159-8290.CD-
20-1808

11. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett
(2017) 387:61–8. doi: 10.1016/j.canlet.2016.01.043

12. Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P, et al.
Immunotherapy in the treatment of metastatic melanoma: current knowledge and
future directions. J Immunol Res (2020) 2020:9235638. doi: 10.1155/2020/9235638

13. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell
heterogeneity. Nat Rev Immunol (2018) 18(1):35–45. doi: 10.1038/nri.2017.76

14. Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related
computational data analysis. Front Genet (2019) 10:317. doi: 10.3389/fgene.2019.00317

15. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M,
et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell (2017) 65
(4):631–643.e4. doi: 10.1016/j.molcel.2017.01.023

16. Slovin S, Carissimo A, Panariello F, Grimaldi A, Bouché V, Gambardella G, et al.
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SKCM skin cutaneous melanoma

GEO gene expression omnibus

MRS monocyte-related signature

DSS disease specific survival

PFS progression free survival

HLA human leukocyte antigen

ICIs immune checkpoint inhibitors

TME tumor microenvironment

TIME tumor immune microenvironment

scRNA-seq single-cell RNA sequencing

CPM counts per million

TCGA the cancer genome atlas

PCA principal component analysis

t-SNE t-Distributed Stochastic Neighbor Embedding

NMF non-negative matrix factorization

RSF random survival forest

Enet elastic network

(Continued)
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plsRcox partial least squares regression for Cox

SuperPC supervised principal components

GBM generalized boosted regression modeling

survival-SVM survival support vector machine

LOOCV leave-one-out cross-validation

ROC receiver operator characteristic curve

DCA decision curve analysis

ssGSEA single sample gene set enrichment analysis

MsigDB Molecular Signatures Database

GSEA gene set enrichment analysis

GO Gene Ontology

TISCH tumor immune single-cell hub

IFITM3 interferon induced transmembrane protein

AJCC American Joint Committee on Cancer

HMOX1 Heme Oxygenase 1

HCC hepatocellular carcinoma
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