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Introduction: Identification of tumor specific neoantigen (TSN) immunogenicity

is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive

T-cell immunotherapies; thus, accurate in-silico classification/prioritization

proves critical for cost-effective clinical applications. Several methods were

proposed as TSNs immunogenicity predictors; however, comprehensive

performance comparison is still lacking due to the absence of well

documented and adequate TSN databases.

Methods: Here, by developing a new curated database having 199 TSNs with

experimentally-validated MHC-I presentation and positive/negative immune

response (ITSNdb), sixteen metrics were evaluated as immunogenicity

predictors. In addition, by using a dataset emulating patient derived TSNs and

immunotherapy cohorts containing predicted TSNs for tumor neoantigen

burden (TNB) with outcome association, the metrics were evaluated as TSNs

prioritizers and as immunotherapy response biomarkers.

Results: Our results show high performance variability among methods,

highlighting the need for substantial improvement. Deep learning predictors

were top ranked on ITSNdb but show discrepancy on validation databases. In

overall, current predicted TNB did not outperform existing biomarkers.

Conclusion: Recommendations for their clinical application and the ITSNdb are

presented to promote development and comparison of computational TSNs

immunogenicity predictors.

KEYWORDS
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1 Introduction
Tumor specific neoantigens (TSNs) are unique antigenic peptides

that emerge from genomic alterations covering single nucleotide

variants (SNVs), nucleotide insertions or deletions, alternative

splicing and/or gene fusion events (1–4), among others. These

alterations may produce dysfunctional proteins by non-synonymous

mutations, changes to the open reading frames as well as fusion

proteins that may give rise to neopeptides at the junction (2, 3).

These proteins, when processed by the proteasome, may generate

different neopeptides that are presented on the cell surface bound to the

MHC-I molecules (i.e., neoantigens), and be recognized by T cell

receptors, thus potentially triggering an immune response (5). Among

the current advances in immune checkpoint blockade immunotherapy

(ICB), personalized neoantigen-based cancer vaccines have been

shown to prime host immunity against tumor cells and are under

clinical trials. Presently, neoantigen discovery comprises of integration

of next generation sequencing (NGS), immunology and computational

biology and screening the genomes/exomes/transcriptomes for somatic

sequence changes that may produce putative neoantigens. After

prioritization, if considered immunogenic, they are synthesized as

mRNA, DNA or peptides and administered by vaccination.

Therefore, improving identification of TSNs and definition of its

formulation for delivering to the immune system are needed to

increase tumor-specific T-cell responses and thus the benefit from

current cancer ICB (6). Themost complex step in neoantigen discovery

processes is their computational prediction of immunogenicity, which

is done by testing a repertoire of variants identified by NGS. As

concluded by the European Society for Medical Oncology (ESMO),

improvements in their identification, selection and prioritization are

needed to increase the scope of benefit of cancer vaccines and adoptive

T-cell therapies. Moreover, ongoing clinical trials will cast light over

those cancer types and therapy combinations that could increase

benefit from neoantigen-based immunotherapies (7). Currently,

several computational pipelines for neoantigen prediction are

available (8–12). Most TSNs immunogenicity predictors, if not all,

are based on predictions of the peptide-major histocompatibility

complex (p-MHC-I) binding affinity (BA) by software like

NetMHCpan (13), MHCFlurry (14) or MixMHCpred (15) where

BA is used as the main prediction for MHC-I presentation, but also

as immunogenicity predictor. Recent approaches incorporate

additional features like variant allele fraction, gene expression, and

clonality of mutations. However, these concepts have led to an

excessive number of putative neoantigens with low experimental

immunogenicity validation rates, making their use impractical and

financially ineffective for personalized vaccine development. Despite

using predicted p-MHC-I affinity as the main concept, methods like

PRIME (16), DeepImmuno (17) and DeepHLApan (18) calculate an

immunogenicity score; the first one, through a logistic regression and

the others including a deep learning based fine tuning immunogenicity

step, trained over non-tumoral immunogenic peptides.

A thorough evaluation of existing immunogenicity prediction

tools would require knowledge of surface-presented TSNs with

proven MHC-I binding and positive or negative TCR recognition

(immunogenic and non-immunogenic TSNs). Despite several
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attempts to develop useful tumor specific neoantigens databases,

none of these databases make full use of existing information. For

instance, Cancer Antigenic Peptide Database (CAPD) (19) and

DbPepNeo (20), lack of truly non-immunogenic peptides, limiting

the evaluation of false positive rates. The TANTIGEN database (21),

incorporates tumor T cell antigens, but information regarding

exper imenta l MHC-I binding , va l idat ion method or

immunogenicity classification is not clearly accessible. The

caAtlas, containing tumor immunopeptidomics and incorporating

neoantigens (22), lack information about peptide immunogenicity,

making it impractical for predictor performance assessment. The

TSNAdb (23) provides predicted neoantigens arising from SNVs in

different cancer types, however, they are putative neoantigens

without experimental validation thus it cannot be used as “the

truth” in software evaluation. The NEPdb (24) is a promising

database although not all of the immunogenic neoantigens are

proved to be presented on cell surface (they may elicit an in-vitro

immune response, but they would not be processed and

consequently not presented). Another drawback of current

neoantigens databases is that not all negative examples were

proved to bind to an HLA. To mention, the CEDAR database

(25), does not allow searching for epitopes that simultaneously meet

positive MHC-I ligand assay with negative T cell assay. In the same

way, in order to know if the neoantigen is processed and presented,

a one by one analysis should be conducted or it requires choosing

the “in-vivo” category, losing a big amount of data. Recently, the

Tumor Neoantigen Selection Alliance to improve cancer vaccines

and therapy through Artificial Intelligence, acknowledging the need

of curated datasets to train better models, launched its TESLA

neoantigen database (26), but the processing and presentation of

their positive peptides were not experimentally validated. In

addition, for the negative peptides, despite having experimentally

measured binding affinity, they do not present the wild type (WT)

sequence or the gene name, at least in its public version. Despite

such database diversity and the lack of neoantigen cell processing,

presentation and immunogenicity validation, several benchmark

studies were conducted in recent years. For instance, Schaap-

Johansen et al. (27) explored different algorithms by comparing

results from the original publications, thus not allowing a fair

comparison since each publication uses a different database.

Buckley et al. (28) performed a comprehensive analysis of

different immunogenicity predictors mainly affording the

difference between pathogen and neoantigen immunogenicity

using two different datasets: the TESLA database and an in-home

glioblastoma HLA-A*02:01 neoantigens database, both without

experimental validation of the neoantigen cell processing and

presentation. Such heterogeneity of databases and approaches

yields difficult to reach unbiased and comprehensive comparison

in immunogenicity predictors/prioritizators.

In order to fulfill this gap and to provide a comprehensive

framework for immunogenic predictor/prioritizator evaluation, the

following datasets are presented here: i) the new Immunogenic

Tumor Specific Neoantigen database (ITSNdb), a manually curated

neoantigen database, created using a novel approach, including only

neoantigens meeting the following inclusion criteria (Figure 1A): (a)

peptides derived from non-silent somatic SNVs with WT sequence,
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proved present in the referenced protein sequence; (b) with

experimentally validated binding to the MHC-I molecules (by mass

spectrometrymethod -MS- or through competition binding assays); (c)

validated positive or negative immunogenicity reaction tested on

immunogenic assays (i.e., tetramer titration and IFN-g or TNF

ELISPOT®) and d) positive and experimentally validated processing

and presentation (byMS or through transfection of mutated genes into

adequate Antigen-Presenting Cells) over immunogenic ones. As result

the proposed ITSNdb enables the analysis of immunogenicity without

the interference of BA and processing (already proven), being the main

improvements against current TSN databases. ii) the use of data

emulating true patient derived neoantigens scenario as a validation

strategy for prioritization and iii) predicted neoantigens used to build

the tumor neoantigen burden predictors from ICB cohorts with tumor

mutation burden and outcome associations in order to evaluate the

impact on biomarker definitions. Finally, non-immunogenic peptides

from the TESLA database were used to further evaluate false positive

rates, but left it out from the evaluation algorithm since the TSNs

selection procedure is not reproducible in a clinical setting. Through

this new database as well as the proposed validation datasets, a

comprehensive immunogenicity predictor’s assessment was

performed by using the most referenced and state of the art

methods, elucidating the current challenges in predicting/prioritizing
Frontiers in Immunology 03
immunogenic tumor neoantigens for biomarker and vaccine

development. Finally, we summarize the results, and highlight

potential areas requiring future research.
2 Results

2.1 The Immunogenic Tumor
Neoantigen database

The Immunogenic Tumor Neoantigen database was built,

currently having 199 nine and ten-mer SNV-derived neoantigens

with their WT counterparts, restricted HLA information, gene,

tumor tissue, peptide length, mutation position type (i.e., MHC-I

anchor position if the amino acid change is located at position 2 or 9

in the sequence or MHC-I non-anchor position otherwise)

immunogenicity reaction and references (available at github/

elmerfer/ITSNdb). They were curated from more than 70

publications based on the inclusion criteria depicted in Figure 1A,

according to Riley et al. recommendations (29), who highlighted the

necessity of knowledge about non-immunogenic epitopes that bind

to MHC-I molecules but do not elicit a T cell response. Therefore,

ITSNdb only includes neoantigens with MHC-I presentation and
B

C

D

A

FIGURE 1

Benchmark workflow scheme. (A) The algorithm of inclusion criteria for the tumor specific neoantigens (immunogenic not immunogenic) into the
ITSNdb. (B) The seven predictive software (three neoantigen binder predictors: netMHCpan, MHCFlurry and MixMHCPred, and four neoantigen
immunogenicity predictors: CIImm, Prime, DeepImmune, DeepHLApan) with their associated metrics (R, Rank; BA, Binding Affinity; DAI, Differential
Agretopicity Index; P, Percentile; S, Score) and thresholds (DOP, Distance to the Optimal Point; SB, Strong Binder; WB, Weak Binder; Author, Autor
method suggested threshold) evaluated in the present study. (C) Evaluation pipeline with the used datasets and characteristics evaluated over each
method. (D) Prediction performance for each method according to different performance metrics ranks. DOP, DOP rank; F1, F1-Score rank; FPR,
False Positive Rate rank; FNR, False Negative Rate rank; FDRR, False Discovery Rates Rank; CR, Classification Rank; AR, Average Rank.
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positive/negative immunogenic reaction experimentally validated,

resulting in 129 immunogenic and 70 non-immunogenic TSNs. The

HLA-A*02:01 represents 80/199 (40.2%) of the HLA restricted

peptides (Figure S1).
2.2 A comprehensive comparison of seven
software programs and their different
metrics for immunogenicity prediction
evaluated over ITSNdb, validation and
clinical ICB cohorts databases design

Seven software programs (three neoantigen binding predictors

and four immunogenic predictors) with their associated metrics

and proposed thresholds, leading to 19 methods (Figure 1B), were

evaluated as depicted in Figure 1C. The ITSNdb was used to

calculate the classification performance metrics (see Statistical

analysis section). In order to evaluate TSN prioritization, a

validation dataset comprising 120 peptide-HLA pairs emulating a

real patient scenario (i.e. total neoantigens predicted for a patient by

means of RNAseq or whole exome sequencing), was used; and a set

of 99480 predicted neoepitopes for TNB calculation from four

different ICB cohorts with outcome association (30–33), were

used for biomarker analysis (all the samples, data and code are

available at github/elmerfer/ITSNdb).

Figure 1D, a graphical representation of Table 1, illustrates the

performance of each method-metric-threshold predictor
Frontiers in Immunology 04
combination (Figure 1B) accounting for classification and

prioritization (Figure 1C). Each combination is sorted considering

the average ranks (AR) of the following performance metrics: DOP

(Distance to the Optimal Point which accounts for performance,

certainty and event incidence) (34), F1-score (which accounts for

positive detection and certainty) calculated onto ITSNdb and the

FPR and FNR (False Positive and Negative Rates respectively)

calculated over the validation dataset. In addition, the

Classification Rank (CR, average between DOP and F1-score

ranks) and False Detection Rates Rank (FDRR, average over FPR

and FNR ranks) are shown. It can be seen that DeepHLApan was

the top performing method.
2.3 A deep learning-based immunogenicity
predictor ranked as the top performer

Figure 2A shows the Receiver Operating Curve (ROC) plots for

each evaluated method and metrics where the ROC Areas Under

the Curves (AUCs) ranged between 0.52 and 0.60 (by using the

ITSNdb), suggesting a difficulty in distinguishing immunogenicity

over TSNs known to bind to MHC-I for all methods.

In Table 1, the performance metrics reached by all methods

over the ITSNdb and over the validation dataset are shown. The

latter includes 113 non-immunogenic neopeptides-HLA pairs (with

unvalidated MHC-I presentation) and 7 immunogenic, non-SNV

derived, neoantigens-HLA pairs with both MHC-I presentation and
TABLE 1 Performance values calculated for each metric.

Method
Classification ITSNdb Validation Ranks ITSNdb Ranks Validation Order

Metric Thr DOP F1 auc FPR FNR DOP F1 FPR FNR AR ARsd

DeepHLApan I DOP 0,88 0,69 0,57 23,89 28,57 4 5 3 2 3,5 1,29

MHCflurry B DOP 0,83 0,67 0,6 36,28 42,86 2 7 7 6 5,5 2,38

PRIME SI DOP 0,82 0,7 0,58 53,98 42,86 1 4 12 6 5,75 4,65

DeepHLApan I A 0,92 0,65 NA 23,89 28,57 9 10 3 2 6 4,08

DeepImmune I DOP 0,95 0,64 0,52 16,81 14,29 12 12 1 1 6,5 6,35

NetMHCpan R SB 1,04 0,71 NA 75,22 28,57 14 3 14 2 8,25 6,65

PRIME RI DOP 0,84 0,66 0,57 47,79 71,43 3 8 10 13 8,5 4,20

MHCflurry P DOP 0,88 0,68 0,53 49,56 71,43 4 6 11 13 8,5 4,20

NetMHCpan R WB 1,1 0,77 NA 95,58 28,57 15 1 16 2 8,5 8,10

NetMHCpan B DOP 0,88 0,61 0,57 23,01 85,71 4 13 2 16 8,75 6,80

MixMHCpred S DOP 0,92 0,61 0,52 34,51 57,14 9 13 6 10 9,5 2,89

MixMHCpred R DOP 0,93 0,66 0,54 57,52 42,86 11 8 13 6 9,5 3,11

NetMHCpan B WB 1,2 0,74 NA 75,22 42,86 16 2 14 6 9,5 6,61

NetMHCpan B SB 1,03 0,65 NA 38,05 57,14 13 10 8 10 10,25 2,06

CIImm I DOP 0,9 0,6 0,55 39,82 57,14 7 15 9 10 10,25 3,40

NetMHCpan R DOP 0,9 0,59 0,56 33,63 71,43 7 16 5 13 10,25 5,12
frontie
Thr, Threshold; DOP, Distance to the Optimal Point; FPR, False Positive Rate; FNR, False Negative Rate; AR, Average Rank; ARsd, Average Rank standard deviation; B, Binding; R, Rank; P,
Percentile; I, Immunogenicity; S, Score; SB, Strong Binder; WB, Weak Binder; A, Authors’ proposed threshold; NA, Not Applicable.
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immunogenicity experimentally validated. This dataset emulates a

real scenario of NGS derived candidate neoantigens with known

true positive cases.

The high heterogeneity observed on Sensitivity (Se), Specificity

(Sp), Positive Predictive Value (PPV) and Negative Predicted Value

(NPV) performance metrics for each method over ITSNdb as well

as the FPR and FNR on the validation dataset, did not allow a clear

identification winner or top performer (Table S1). Therefore, in

order to identify the top performers (i.e best performer in

Figure 1C) the following total score was built for each method-

metric-threshold predictor combination: the average and standard

deviation of the ranks (AR and ARsd respectively) of the DOP and

the F1-score (calculated on the ITSNdb) and of the FPR and FNR

(calculated over the validation dataset). So, the methods in Table 1

and Figure 1D were ordered according to the lowest AR and lowest

ARsd resulting DeepHLApan the top ranked immunogenicity

predictor, followed by MHCflurry affinity score. The classification

thresholds of these methods were the one that minimize the DOP

(see Statistical analysis section). The top performers were both Deep

Learning (DL)-based methods and the first was specifically

developed to predict immunogenicity.

Although DeepHLApan was not the top performer when

evaluated over the ITSNdb, surpassed by the PRIME score (Table

S1), it shows lesser false positive rates. On the other hand, when

ranked by false detection rates on the validation dataset, the top
Frontiers in Immunology 05
performer was DeepImmuno which had the worst performance

with ITSNdb; implying that DeepHLApan achieved a balance

between classification and prioritization as suggested by the

average rank order.
2.4 Almost no overlapping among
predicted immunogenic peptides was
observed between methods

To evaluate the overlapping between prediction results over the

ITSNdb, the top performers between each method were chosen

based on their performance ranks. In the heatmap shown in

Figure 2B, neoantigens (immunogenic and non-immunogenic)

are represented on rows and methods in columns. Analyzing

column dendrograms, two main groups separate immunogenicity

predictors from binding predictors, except PRIME that is grouped

with binding predictors showing a very similar behavior to

MixMHCpred (PRIME is built on top of it). Besides, it can be

observed that the immunogenicity classification overlapping is very

poor across methods, suggesting that each method uses a different

view of the TSNs immunogenicity. This low overlap reflects the

variability between immunogenic peptides and explains the

difficulty in selection. Only 7 immunogenic neoantigens were

predicted as such by all the methods.
B C

D E

A

FIGURE 2

Benchmark results. (A) ROC curves for different software programs and direct metrics over mutated peptides. (B) Heatmap of methods predicted
classification over neoantigens. BA, binding affinity; R, rank; S, score; DOP, distance to the optimal point; SB, strong binder. (C) Number of
immunogenic peptides between: I top 10-ranked peptides, and II top 20-ranked peptides, according to each method. (D) I ROC curves for
difference DAI and ratio DAI over anchor and non anchor position mutated peptides. II distribution of ratio DAI in logarithmic scale, for anchor and
non-anchor position mutated peptides comparing negative and positive immunogenicity peptides. DAI, Differential Agretopicity Index. (E) P-values
of association between TNB and clinical response to ICB distribution over ICB cohorts for TNB calculated according to each evaluated method.
TNB, Tumor Neoantigen Burden; ICB, Immune Checkpoint Blockade.
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2.5 False positive rates over TESLA´s
non-immunogenic neoantigens

To further investigate the false positive rate, one of the main

challenges towards neoantigen clinical application, 9 and 10 mer,

non-immunogenic, MHC-I binder neoantigens were extracted from

TESLA database (26). Over this negative dataset, with 297 peptides,

the amount of neoantigens predicted as immunogenic by each of

the software metrics, were calculated. The best performers were

score from MixMHCpred with 30% (90) and rank from

NetMHCpan with 31% (92) of FP; on the other hand, the ones

who predicted the highest FP rate were DeepHLApan with 100%

(297) and DeepImmuno with 79% (234) (all of them by using the

DOP classification threshold). Suggesting that variability between

databases is huge and performance of each method is dependent on

the database used. In particular, in this negative dataset, each of the

neopeptide was selected through different prioritization pipelines,

so if the software looks for the same features, overlapping

predictions would be expected.
2.6 Prioritizing candidates TSNs

Another widely applied approach (17, 18) to evaluate different

neoantigen prediction software is, instead of using a classification

cut-off threshold, to select the top ranked peptides from a list of

candidate TSNs, usually designated through a somatic mutation

discovery process followed by a mutated peptide-MHC-I

presentation prediction. The validation dataset, containing 113

non-immunogenic neopeptides and 7 immunogenic neoantigens

was used to feed all methods. Then, candidate TSNs were ranked

according to the different method scores. In addition, the originally

proposed rank method of DeepHLApan (18), which includes

peptides with immunogenicity score ≥0.5 and ordered by means

of integrative binding prediction across population alleles, was

also evaluated.

Figure 2C shows the number of true immunogenic peptides that

were included in the top 10 and top 20 ranked TSNs for each

method (I and II respectively). It can be seen that the best method in

prioritizing the immunogenic peptides was DeepHLApan

(Immunogenicity score), followed by DeepImmuno identifying

four and three out of seven of the immunogenic peptides in the
Frontiers in Immunology 06
top 10, respectively. DeepImmuno ranked six immunogenic TSNs

followed by DeepHLApan with five in the top 20. These results are

in accordance with the FNR in Table 2 as well as the rank over

validation dataset highlighting prioritization performance. It is

worth noting that the DeepHLApan prioritizer method proposed

by its authors (based on an integrative binding score over

population alleles) only prioritized one immunogenic neoantigen

between the top 10 and top 20 ranked TSNs, suggesting that its

immunogenicity score is better for prioritizing TSNs than their

proposed rank method to choose TSN candidates for clinical

experimentation. Another remarkable fact is that DeepHLApan,

DeepImmuno and CIImm (35) developed for predicting

immunogenicity instead of binding strength, were the only

methods prioritizing immunogenic peptides in the top 10 of the

120 ranked TSNs of the validation dataset.
2.7 Relative binding affinity is not an
immunogenicity predictor

The Differential Agretopicity Index (DAI) or relative binding

affinity, is a popular, but controversial, concept within the field,

developed as an indicator of immunogenicity over anchor positions

(positions that allow peptide-MHC-I binding) mutated peptides,

which compares BA predictions for WT and mutated peptides pairs

(26, 36, 37).

Here, ROC curves and AUCs were calculated for difference-

DAI over NetMHCpan BA predictions and ratio-DAI over

NetMHCpan R predictions for two different datasets: one

containing all mutated anchor position TSNs from ITSNdb, and

the other with non-anchor position peptides; resulting in four ROC

curves, as shown in Figure 2D, panel I.

The best performance in terms of AUC was for ratio-DAI

anchor position (0.59), followed by ratio-DAI non-anchor position

(0.56). Consequently, Figure 2D, panel II shows the distribution of

the ratio-DAI for anchor and non-anchor mutation position,

between immunogenic and non-immunogenic TSNs. As expected,

the non-anchor position DAI is near 1 (same predicted R for

mutated and WT pairs) without differentiating between positive

and negative TSNs. However, in contrast to previous reports, no

significant difference was found between immunogenic and non-

immunogenic TSNs according to DAI values (P=0.25).
TABLE 2 P-values of TMB and TNB association with ICB response through clinical cohorts and methods utilized for TNB calculation.

Cohort Year Cancer N° patients TMB TNB Method

Rizvi (30) 2015 NSCL 34 P = 0.0008 P = 0.0018 netMHC WBBA v3.4

Van Allen (31) 2016 Melanoma 110 P = 0.0076 P = 0.028 netMHCpan WBBA v2.4

Synder Discovery (32) 2014 Melanoma 25 P = 0.01 NS netMHCpan WBBA v3.4

Synder Validation (32) 2014 Melanoma 39 P = 0.009 P = 0.017 netMHCpan WBBA v3.4

Riaz ipi-naïve (33) 2017 Melanoma 33 P = 0.06 NS netMHC WBR v4.0

Riaz ipi-prog (33) 2017 Melanoma 35 NS NS netMHC WBR v4.0
TMB, Tumor Mutation Burden; TNB, Tumor Neoantigen Burden; NSCL, Non-Small Cell Lung cancer; P, Wilcoxon test P-value; WBBA, Weak Binder definition using BA < 500nM; v, version;
WBR, Weak Binder definition using R < 2%; NS, Non-Significant.
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2.8 TNB calculated over TNS predicted as
immunogenic were not superior to TMB as
an ICB biomarker

Tumor Neoantigen Burden (TNB) has been suggested as an ICB

biomarker as the Tumor Mutation Burden (TMB) (5, 38).

Originally, the TNB is derived from the TMB by counting those

neoantigens predicted to be bound to the MHC-I molecules by BA

predictors. Here, the TNB was calculated by using TSNs predicted

as immunogenic by each method, presented in Table 1, on each

subject from six clinical cohorts from four different studies (30–33).

Table 2 shows the P-value (Wilcoxon test) of the difference between

responders and non-responders to ICB for TMB and TNB from the

original publication.

TNBs calculated with benchmarked methods were evaluated

through their association with clinical response. Figure 2E shows

the P-values of the TNBs contrasted between the different outcomes

of each clinical cohort presented in Table 2. It can be seen that the

original observed association between TNB and outcome loses

significance upon the immunogenicity predictor used; meanwhile

TMB, according to Table 2, resulted in significant differences in

differentiating responder vs non-responders in all cases except for the

Riaz ipi-prog cohort. This suggests that, despite immunogenicity

predictors diminish the amount of candidate TSNs, which may result

in being positive for vaccine development, the derived TNB may

result in an inappropriate ICB biomarker, which may be impacted by

the fact that most of the predictors resulted in high false

discovery rates.
3 Discussion

It has been stated that not every MHC-presented peptide is an

immunogenic T cell epitope (39) and even WT peptides have also

been found bound to an MHC-I complex (40), being binding

affinity a necessary but not sufficient condition to exert an

immune response. It has also been suggested that the binding

strength of immunogenic neoantigens should neither be too

strong nor too weak. Moreover, it has been argued that a

constant and strong binding may induce T cells exhaustion and

peripheral tolerance (41). Another biological process involved is

central tolerance during negative selection of self-reactive T cells in

thymic development. It may be responsible for the lack of

recognition of p-MHC complex by TCR, as a result of the

deletion of cross reactive TCRs between WT and mutated

peptide; this may occur due to their high sequence similarity,

which is what makes neoantigens different from pathogens

epitopes (30, 41). These mechanisms support that binding affinity

strength seems not to be a decisive factor in cancer context. Thus, in

order to evaluate neoantigen immunogenicity predictors, it turns

crucial to account for neoantigens with experimental validation of

the whole processes (i.e. cell processing, MHC-I binding and TCR

recognition). This goes in line with current efforts focused on

deciphering what makes a single amino acid change lead to

immunogenic neoantigen recognition by TCR.
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In this work, to overcome the aforementioned limitation, the

Immunogenic Tumor Specific Neoantigen database - ITSNdb was

created. A new database with experimental validation of positive

cell processing and peptide-MHC-I binding and positive/negative

immunogenicity, thereby encompassing both non-immunogenic

and immunogenic neoantigens that are known to bind to MHC-I

molecules . Consequently , al lowing the assessment of

immunogenicity prediction. Then a comprehensive evaluation of

seven state-of-the-art methods for predicting neoantigen

immunogenicity was performed. Three of them, MHCflurry,

NetMHCpan and MixMHCpred, were developed to predict the

binding affinity between the peptide and MHC-I molecules, which

is considered as the first step for the identification of candidate

peptides. For the second step, peptide immunogenicity has been

assessed based on features such as binding strength, neoantigen

relative abundance and sequence similarity to viral epitopes (e.g.

foreignness), among others (26, 42). In this scenario, binding

affinity predictors were used for both neoantigen definition and

immunogenicity classification/prioritization. The other four

methods were developed to predict immunogenicity; PRIME and

DeepHLApan being specific for neoantigen prediction unlike

CIImm and DeepImmuno (developed to predict general

immunogenicity). With ITSNdb only positive vs negative

immunogenicity could be evaluated in a fairly manner, leaving

binding affinity performance out of the scope of the present study.

The evaluation revealed that none of the methods could be

considered the best immunogenicity predictor, since they show

very low AUCs and loss of Specificity in favor of Sensitivity.

Therefore, to sort predictors through fair criteria, the average and

standard deviation of the ranks order of DOP and F1-score

considering ITSNdb and the ranks order of the FPR and FNR over

a validation dataset was used. This ordering criteria resulted in

DeepHLApan as the best performer predicting immunogenic

neoantigens. Notoriously, the only DL method created specifically

to predict neoantigen immunogenicity. PRIME score with DOP

threshold, was the best in classifying immunogenic vs non-

immunogenic neoantigens (also developed to predict neoantigen

immunogenicity), a desirable characteristic for the development of

new biomarkers. DeepImmuno was the best over the validation set,

predominantly due to its capability in recognizing negative peptides

and reducing FPR, an essential requisite for vaccine development.

DeepHLApan achieved a balance between those characteristics, and

was the best at prioritizing positive peptides between the ranked top

10 predicted TSNs based on its immunogenicity score which resulted

superior against their originally proposed prioritization method

based on an integrative binding affinity across allele population

rank score (18).

Surprisingly, most of the methods, in particular DeepHLApan,

provide high FPR when evaluated over TESLA negative examples.

This may happen since all the TESLA candidate neoantigens were

previously selected as immunogenic by means of in-silico

prioritization pipelines but resulting non immunogenic by

posterior experimental validation. This may imply that current

software methods require well curated neoantigens with proven

positive/negative immunogenicity, as proposed with the ITSNdb

selection protocol, among other features, to train them.
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Immunogenicity predictions were not shared between methods

over the ITSNdb, meaning that each method takes into account

different peptide characteristics; which could be explained by the

prediction purpose (binding vs immunogenicity) and by the way

each method codified peptides amino acid sequences to feed the

model. A clear example is that DeepImmuno codified the peptide

through an AAindex (amino acid index) accounting for

physicochemical properties with a principal component analysis

encoding strategy, whereas DeepHLApan uses a one-hot encoding

strategy to codify the peptide amino acids.

Our findings indicate that relative BA over neoantigens with

anchor mutations fails in detecting immunogenicity, in opposition

to previous reports that assume as immunogenic those neoantigens

whose WT counterpart was predicted as no binder, since no

tolerance process would have been carried against it.

The effects of classifying TSNs to be used for TNB calculation

and biomarker definition or responders’ vs non-responders’

association was inconsistent and method-dependent. They never

outperform the TMB. Thus, TMB is still a superior biomarker than

TNB. A more accurate neoantigen prediction would be necessary to

overcome TMB in predicting ICB response.

Our results suggest that the neoantigen sequence holds

information to define its immunogenic potential based on that

DL methods performance is better than random but improvements

are still needed. To achieve this, appropriate training datasets are

required. Based on the evidence that WT peptides can be presented

on the surface (40) and that they may exert a weak, in-vitro

immunogenic response at high peptide concentration (3) it is

suggested that the use of negative examples built by sampling

random sequence from human proteome seems an inadequate

approach as well as the use of immunogenic peptides from

pathogens as positive examples (28) for training neoantigen

immunogenicity predictors. ITSNdb pretends to fulfill that

requirement, because of two main characteristics: immunogenic

neoantigens with experimentally proven processing and

presentation as positive dataset, and non-immunogenic

neoantigens known to be bound to MHC-I molecule as negative

dataset. Present weaknesses are: the current low amount of peptides,

expected to increase with the addition of new validated neoantigens

in future ITSNdb versions and technical limitations in

experimental assays.

It is recommended that DL models developed to predict

specifically neoantigen immunogenicity should be further

explored jointly with new molecular, patient specific data and

objective vaccine responses from clinical trials to enhance their

practical application in a clinical environment and the use of the

proposed ITSNdb as well as the evaluation algorithm presented here

for fair and comparable immunogenicity predictors evaluation.
4 Materials and methods

4.1 The ITSNdb database

The neoantigens were first collected from PubMedTM using

“neoantigen’’ or “neoepitopes” as keywords. The resulting
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publications were manually curated. Those neoantigens whose

inclusion criteria were explicitly described were included in the

new database. Next, references from the primary publications (i.e.,

those that were found using the keywords) were carefully revised. If

additional peptides that met the defined criteria were found in these

references, the curation process was repeated. The references of the

neoantigens from DbPepNeo, CAPD and IEDB were also examined

and curated. At the end of this process, neoantigens from 45 scientific

publications were included from more than 70 revised manuscripts.
4.2 Validation data set for false detection
rate evaluation and simulated
prioritization scenario

In order to simulate a real scenario of TSN prioritization (i.e.

selecting candidate TSN to be included in a vaccine to evaluate their

immunogenicity), we merge two TSNs candidates lists. The first one

containing 109 neopeptides, 4 with 2 HLA associations, resulting in

113 non-immunogenic neopeptides with experimental negative

immunogenic assay of 9-mer length derived from SNVs (3),

originally selected by their predicted binding affinity

(NetMHCpan version 4.0) and not included in the ITSNdb due

to missing binding affinity experimental validation. The second one

holds 6 non-SNV derived neoantigens of 9-mer length (2 derived

from gene fusion events, 3 originated from intronic retention and 1

derived from 2 nucleotide deletions resulting in a new open reading

frame), one of them with 2 HLA-associated restriction alleles

resulting in 7 neoantigens with validated MHC-I presentation and

immunogenicity (1, 2, 4); leading to a 120 peptides-HLA pairs

dataset (available at github/elmerfer/ITSNdb).
4.3 TESLA negative dataset

TESLA dataset has a total of 608 neopeptides, all of them were

in-silico prioritized by different research teams (26) and chosen for

experimental validation. All of them were tested for MHC-I binding

and immunogenicity; The reason why it could not be incorporated

into ITSNdb is the lack of information about WT sequence or gene

of origin into the public database; immunogenic neoantigens were

excluded from the analysis because processing and presentation

were not validated. In order to be used as a tool for FP evaluation,

some filters were applied and only non-immunogenic neoantigens

with a sequence length of 9 or 10 amino acids and a measured

binding affinity< 500 nM were retained. On the other hand, these

non-immunogenic neoantigens were not included in the validation

dataset, since it is not possible to reproduce such neopeptides

selection in a real clinical setting; consequently TESLA negative

dataset was not included in the evaluation algorithm either.
4.4 ICB TMB cohorts and TNB evaluation

Four ICB treated cohorts (see Supplementary Information)

(30–33), with TMB evaluation, were used to calculate TNB
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according to each evaluated software. These datasets provide the list

of candidates TSN predicted to bind to the MHC-I complex

(available at github/elmerfer/ITSNdb).
4.5 Immunogenicity predictors

To evaluate the performance of current methods and metrics to

assess neoantigen immunogenicity, seven state-of-the-art types of

software (Table 3) were run using the authors’ default preferences

over ITSNdb.

The most recently updated and widely applied methods were

chosen for evaluation. They should be publicly available and cover a

wide diversity of HLA alleles.

BA prediction software

NetMHCpan 4.1: is an artificial neural network, designed to

predict peptide-MHC-I binding. It uses the NNAlign_MA

framework to allow for the incorporation of eluted mass

spectrometry (MS) data. Thus, it is trained to estimate both the

BA and the eluted mass as ranks. For a peptide-HLA restriction

pair, it provides the eluted rank (%R) and the BA (nM) to their

restricted HLA (13). The authors propose to classify the peptides as

either strong (SB), weak (WB) or non-binders, according to

predefined score thresholds (by default, SB=%R ≤ 0.5% and

WB=0.5%<%R≤ 2%).

MHCflurry 2.0: is a trained convolutional neural network

(CNN) that includes affinity measurements and MS datasets. It

predicts BA in nM (lower values indicate stronger affinity and the

percentile (P) of the affinity prediction (calculated among a large

number of random peptides tested on that allele). The authors do

not provide predefined thresholds to outline strong binders, but

they suggest using the popular threshold of BA<500 nM or P<2% to

differentiate binder from non-binder peptides (14).

MixMHCpred 2.1: is a binding motif deconvolution in HLA-I

peptidomic model, trained on mass spectrometry elution data. It

provides affinity scores (the higher the score, the stronger the

peptide binding to the HLA-I) and ranks (the lower the rank, the

stronger the peptide binding to the HLA-I) (15).

Immunogenicity prediction software

DeepImmuno-CNN 1.2: A web application implementing a

CNN that predicts immunogenicity of MHC–peptide pairs. It uses

MHCflurry to predict BA. The model provides a continuous
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immunogenic score. The greater the peptide scores, the higher the

chance for it to be immunogenic. No score threshold is provided to

define immunogenicity (17).

T cell class I p-MHC immunogenicity predictor (CIImm): A

web application implementing a model to predict the

immunogenicity of new peptides-MHCs complexes. It provides

an immunogenicity score calculated as a position-dependent

weighted sum of the non-anchor amino acids of the neoantigen

amino acid sequence. Higher scores mean a higher chance for the

peptide to be immunogenic. No threshold is provided to define

peptide immunogenicity (35).

PRIME 2.0: web application implementing a class I

immunogenicity predictor combining affinity predictions to HLA-

I molecules, performed by mixMHCpred, together with TCR

recognition propensity, trained as a logistic regression. Non-

immunogenic peptides receive a score of 0 (16). A rank is

also provided.

DeepHLApan 1.1: recurrent neural network (RNN) that

combines a binding model with an immunogenicity model

trained to make predictions about neoantigens. Peptides with an

immunogenicity score > 0.5 are considered immunogenic. It also

postulates a rank between the input peptides according to the

probability of activating T-cells (18).

In addition, the Differential Agretopicity Index (DAI), derived

from NetMHCpan predicted BA and R metrics (DAIBA=WTBA-

mutBA and DAIR=mutR/WTR) (36, 37), was also evaluated.
4.6 Statistical analysis

All the predicted output values from all the considered methods

and their derived metrics were evaluated over ITSNdb through

ROC curves (pROC R library) (43) and the AUC.

Since the output of every method are continuous values (i.e.

scores, binding affinity scores, binding affinity ranks and binding

affinity percentiles), a threshold for each of them should be defined in

terms of: if the method`s output value for neoantigen “z” in the

ITSNdb is greater/lesser (depending on the methods) to some

threshold value, then the neoantigen will be classified as

immunogenic/non-immunogenic. Despite some authors proposed

such classification thresholds (for instance SB, WB for NetMHCpan

and score > 0.5 for DeepHLApan), we also define the best threshold
TABLE 3 Software description.

Software Category Method Platform Ref URL

netMHCpan 4.1 MHC-I Binding ANN WEB/C++ Reynisson (13) https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1

MHCflurry 2.0 MHC-I Binding CNN Python O´Donnell (14) https://github.com/openvax/mhcflurry

mixMHCpred 2.1 MHC-I Binding Mixture model C++ Gfeller (15) https://github.com/GfellerLab/MixMHCpred

PRIME 2.0 Immunogenicity Logistic regression WEB/C++ Schmidt (16) http://prime.gfellerlab.org/

DeepImmunno-CNN Immunogenicity CNN WEB/Python Li (17) https://deepimmuno.research.cchmc.org/

DeepHLApan 1.1.1 Immunogenicity RNN Python Wu (18) https://github.com/jiujiezz/deephlapan

Class I Immunogenicity Immunogenicity Linear regression WEB Calis (35) http://tools.iedb.org/immunogenicity/
ANN, Artificial Neural Network; CNN, Convolutional Neural Network; RNN, Recurrent Neural Network.
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for all the methods tested on the ITSNdb by chosen the “z-th” output

valuez for each method that minimizes the Distance to the Optimal

Point (DOP) as the “best threshold” for such method, as follows:

For each thresholdi (chosen from the minimum output valuez
to the maximum output valuez achieved on the ITSNdb

neoantigens for the specific evaluated method) the Se, Sp, PPV

and NPV are obtained and the DOPi calculated.

DOPi = (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Sei − 1)2 + (Spi − 1)2 + (PPVi − 1)2 + (NPVi − 1)2

p
)

then Best   threshold = thresholdi =
argmin

i (DOPi) as suggested in

Fernandez et al. (34).

For each method-metric-threshold (author’s defined and by

DOP) the Se, Sp, PPV, NPV and F1 score for positive predictions

were calculated. False positive rates (FPR) and false negative rates

(FNR) were evaluated through the validation dataset. Then, a rank

system was implemented, ranking the 16 methods according to

ranks of DOP, F1 (ITSNdb), FPR and FNR (validation dataset). In

order to sort the method to define the top performers, the average

and standard deviation of all ranked performance metrics were

calculated (AR and ARsd). The top performers were chosen as the

one having the lowest AR and ARsd. In addition, if only ITSNdb is

going to be used, the classification rank (CR) can be obtained as AR

and ARsd by just using DOP and F1-score ranks and only use FNR

and FPR ranks to calculate the False Discovery Rate Rank (FDRR)

when using the validation dataset.
4.7 Data and code availability

In order to facilitate the use and availability of the ITSNdb and

the compared tools we developed user-friendly R library (ITSNdb,

which allow the installation and use of NetMHCpan 4.1,

mixMHCpred, PRIME and CIImm) and Colab Python notebooks

to facilitate the use of MHCflurry, Deepimmune and DeepHLApan.

It also contains all datasets used in this study. All of them are free

available at https://github.com/elmerfer/ITSNdb.
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