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T cells resembling iTreg
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Background: Treg cells have been shown to be an important part of immune-

homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent

activation of T lymphocytes has been demonstrated to critically participate in

Treg development.

Objective: To evaluate small molecule inhibitors (SMI) for the identification of

novel IL-2/Treg enhancing compounds.

Materials and methods: We used TCR-dependent and allergen-specific

cytokine secretion of human and mouse T cells, next generation messenger

ribonucleic acid sequencing (RNA-Seq) and two different models of allergic

airway inflammation to examine lead SMI-compounds.

Results:We show here that the reported 3-phosphoinositide dependent kinase-

1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells,

human peripheral blood mononuclear cells (hPBMC) and allergen-specific

mouse T cells upon TCR-dependent and allergen-specific stimulation while

concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the

presence of BX-795 during allergen-specific activation of T cells induces a

bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression.

When applied in mugwort pollen and house dust mite extract-based models of
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airway inflammation, BX-795 significantly inhibited Th2 inflammation including

expression of Th2 signature transcription factors and cytokines and influx into the

lungs of type 2-associated inflammatory cells such as eosinophils.

Conclusions: BX-795 potently uncouples IL-2 production from Th2

inflammation and induces Th-IL-2 cells, which highly resemble induced (i)

Tregs. Thus, BX-795 may be a useful new compound for the treatment of

allergic diseases.
KEYWORDS

Immunomodulation, IL-2, regulatory T cells, small molecule inhibitor, allergy, Th2 cells
Introduction

Interleukin-2 is an important T cell growth factor (1) that critically

contributes to immune homeostasis by promoting development and

expansion of regulatory T cells (2–7). In fact, several strategies used IL-

2 to expand regulatory T cells to treat autoinflammatory and allergic

diseases. Examples include IL-2/anti-IL-2 antibody complexes that

extend the half-life of IL-2 and contribute to its improved targeting (8,

9), and IL-2 muteins with improved IL-2R specificity, both being the

subject of preclinical (10) or clinical studies (11). IL-2 exerts its Treg-

promoting activity via binding to the high-affinity IL-2 receptor

(CD25) (3, 4, 7, 12). Spontaneous mutations in the human IL-2RA

(CD25) gene (13) or genetic ablation of the mouse il2ra locus result in

Treg deficiency (7, 12), uncontrolled T cell expansion (14), and overt

autoimmunity (13, 15), a clinical picture similar to the

immunodysregulation polyendocrinopathy enteropathy X-linked

(IPEX) syndrome in which Foxp3 (16), the signature transcription

factor of Treg cells, is dysfunctional (17, 18).

Given the importance of IL-2 (19, 20), we were interested in

identifying targeted drugs that would interfere with aspects of the

TCR-signaling pathway and increase secreted IL-2 levels fromT cells.

We hypothesized that such drugs would concomitantly limit cellular

activation/proliferation of T cells. Previous reports have shown that
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this constellation best promotes conversion of naïve T cells to Treg

cells (21–24). Accordingly, we assumed here that partial inhibition of

proliferation in the presence of elevated/induced IL-2 levels could

promote Treg formation and thus should be an appropriate guide for

our mining strategy to identify interesting lead substances (19, 25).

Therefore, in JurkatE6-1cells (26, 27)we initially evaluatedTCRcell

signaling pathway SMI such as the Src-kinase inhibitor Saracatinib (28),

the Erk-2 inhibitor Vx-11e (29), the calcineurin inhibitors Tacrolimus

(30) and Cyclosporin A (31), the c-Jun-N-terminal-kinase inhibitor

SP600125(32), themTORC1/2 inhibitorAZD8055(33)andthePDK-1/

TBK-1 inhibitor BX-795 (34) for their potential IL-2-inducing activity.

Our screen revealed BX-795 as unique in its capacity to enhance IL-2

production in Jurkat E6-1 T cells upon stimulation. We went on to

extensively explore the immunomodulatory properties of BX-795 in

human andmurine T cells using human peripheral bloodmononuclear

cells (PBMC) activated by CD3 antibody or superantigen from

Staphylococcal enterotoxin A and allergen-specific T cells from

humanized allergy mice (35). In vivo studies in these humanized

allergy mice and in a house dust mite (HDM)-based mouse model of

allergen-specific airway inflammation confirmed the in vivo allergy-

mitigating effect of BX-795 and together with gene expression analyses

established the definition of a putatively new Th cell phenotype.
Materials and methods

Stimulation of Jurkat E6-1 T cells for
cytokine production

Jurkat E6-1 cells (ATCC, Manassas, VA, USA) were incubated

on CD3 coated plates in the presence or absence of the indicated

SMI for 24 hours. After centrifugation (500 g, 5 minutes) of plates,

150 µL supernatant was harvested and subjected to cytokine

analyses as shown previously (36).
RNA-Seq and data analysis

Preparation of sequencing libraries, QC-check and sequencing

from naïve or differentially activated allergen-specific T cells were
frontiersin.org
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performed as described (37), obtaining 32 million reads per sample,

which were aligned to the mouse reference genome version

GRCm38 (38) with Gencode mV23 annotations (39) using STAR

aligner (40) version 2.6.1a in 2-pass mode. Reads per gene were

counted by STAR, differential gene expression was calculated using

DESeq2 (41) version 1.22.2.
Animal experimental procedures

TCR/DR1 double transgenic mice expressing a human major

mugwort pollen allergen Art v 125-36 peptide-specific TCR in the

context of HLA-DR1 (35) were cohoused with C57BL/6J wild type

mice at the Medical University of Vienna, Vienna, Austria. TCR/

DR1 mice were used as source for allergen-specific T cells and

antigen presenting cells and for in vivo challenge experiments with

mugwort pollen extract (MPE). Experimental procedures were

approved by the Institutional Review Board and the Federal

Ministry of Science, Research and Economy (GZ : BMBWF-

66.009/0288-V/3b/2018). Mice were free of mouse pathogenic

viruses, bacteria and parasites (42).
Statistical analyses

Normally distributed data were compared using parametric

tests (Student’s t-test or one-way ANOVA) followed by correction

of alpha (Dunnett, Tukey or Holms-Sidak) using GraphPad 9.0.1

(GraphPad Software Inc., La Jolla, CA). Otherwise, the Mann-

Whitney U-test or the Kruskal-Wallis test was performed,

followed by Dunn’s multiple comparison testing. ns, not

significant; *, p < 0.05; **, p < 0.01; ***, p <0.001.

Further materials and methods and experimental details can be

found in the Supplementary Information.
Results

The small molecule inhibitor BX-795
increases transcription and secretion of
IL-2 in TCR/CD3-stimulated Jurkat
E6-1 T cells

Herein, we tested a collection of SMI (Table S1) for their IL-2-

inducing effects in the context of TCR-dependent T cell activation

that simultaneously had some effect on T cell growth (25). We

found that the putative PDK-1/IKKe/TBK-1 multikinase inhibitor

BX-795 significantly increased secreted IL-2 levels at 1.2 and 6 µM

(27.1 ± 14.7 and 23.8 ± 8.1 versus 6.71 ± 2.23 pg/mL, mean ± SEM)

(Figure 1A), decreased soluble IL-2R alpha (CD25) levels (Figure

S1A) but maintained cellular viability (Figure S1B) of the human

leukemic T cell line Jurkat E6-1 (26) upon TCR/CD3 ligation. In

accordance with the increased IL-2 protein levels observed after 24

hours of stimulation, Jurkat E6-1 cells stimulated with CD3/CD28

beads for 6 hours, highly significantly increased IL-2 (Figure 1B) but

not IFN-g (Figure 1C) mRNA levels with a clear trend towards
Frontiers in Immunology 03
increased IL-2 mRNA already at 0.24 µM of BX-795. In contrast, at

30 µM BX-795 showed toxic effects after 24 hours (Figure S1B),

while the same concentration clearly induced elevated IL-2 mRNA

levels after 6 hours (Figure 1B). Neither treatment with the TBK-1/

IKKe inhibitor amlexanox (Figure 1A) (43) nor with six other SMI

revealed a similar IL-2 hypersecretion phenotype, while several SMI

dose-dependently reduced TCR/CD3-induced IL-2 production

(e.g., Vx-11e, Saracatinib, and AZD8055) (Figure 1A). These

results suggested that both increased synthesis and release but

also reduced consumption of IL-2 may contribute to increased

IL-2 levels in TCR/CD3-stimulated Jurkat E6-1 cells in the presence

of BX-795. Next, we tested whether the BX-795-induced IL-2

secret ion was the result of increased TCR proximal

phosphorylation and/or Ca2+-fluxing (Figure S2). Interestingly,

BX-795 reduced TCR-induced intracellular Ca2+-fluxing in Jurkat

E6-1 and primary human T cells with different sensitivity (Figures

S2A, B), which may be related to early attenuation of tyrosine-

phosphorylation by BX-795 (as determined with the anti-pan

tyrosine-phosphorylation antibody 4G10) (Figure S2). However,

BX-795 sustained overall (Figure S2C), Lck-specific (Figure S2D)

and CD3 z-chain-specific (Figure S2E) tyrosine-phosphorylation at

later time points, while it left Erk tyrosine-phosphorylation

unaffected (Figure S2F) when compared to the solvent (DMSO).

These changes at early time points were also quantified using

densitometric analyses of the indicated lanes of the Western blots

(Figure S2G).
BX-795 co-stimulates IL-2 but mitigates
Th2 cytokine secretion in PB T cells of
healthy donors

Next, we examined human PBMC co-incubated with CD3 mAb

(OKT3) or the Staphylococcus aureus superantigen A (SEA) in the

presence or absence of BX-795. We observed that BX-795

significantly increased IL-2 levels in OKT3 (25.7 ± 9.0 versus 16.0

± 5.2 pg/mL, mean ± SEM; 1.6-fold) and SEA (6515.0 ± 4153 versus

1368.0 ± 811.1 pg/mL, mean ± SEM; 4.76-fold) stimulated T cells

(Figures 2A, B) while it inhibited Th2 cytokine and the regulatory

cytokine IL-10 secretion levels (Figures 2C–F). Moreover, BX-795

treatment slightly increased IFN-g but left GM-CSF and IL-17a

secretion levels unchanged (Figures 2G–I). The contribution of BX-

795 to enhanced IL-2 secretion was corroborated with murine

allergen-specific transgenic T cells (35). T cells from these mice

express a human TCR, which is specific for the human-relevant,

immunodominant major mugwort pollen allergen Art v 125-36
peptide in the context of HLA-DR1. Upon stimulation of these T

cells with the cognate Art v 123-36 peptide in the presence but not in

the absence of BX-795, the levels of IL-2 were likewise significantly

increased (Figure S3A), while the levels of the Th2 cytokines IL-4,

IL-5 and IL-13 (Figures S3B–D), and that of the regulatory cytokine

IL-10 (Figure S3E) were reduced. Similar to human T cells,

detectable GM-CSF and IL-17 levels in supernatants remained

unchanged in the presence of BX-795 in murine T cells as well

(Figures S3F, G), while the Th1 cytokine IFN-g was reduced (Figure

S3H). Figure S3I shows that the changes in cytokine expression
frontiersin.org
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levels were TCR-signal- (peptide concentrat ion) and

time-dependent.

BX-795hasbeenpreviouslydescribedasanIKKe inhibitor(44). IKKe
was shown to be involved in an inhibitory feedback loop controlling

NFATc1 translocation and IL-2 production (45). Therefore, we

speculated that BX-795 might act in a similar fashion on NFATc1

translocation as an explanation for increased IL-2 secretion. However,
Frontiers in Immunology 04
wefoundnoindicationfor increasedNFATc1translocationprecedingthe

elevated IL-2 levels neither upon BX-795 nor upon treatment with the

recently described TBK-1/IKKe inhibitor amlexanox (43) of murine T

cells compared to solvent control (Figure S4), suggesting that NFATc1

translocation was not crucial for BX-795 mediated IL-2 enhancement.

At higher concentrations, BX-795 gradually impacted on the

proliferation of human and murine T cells, which may contribute to
A

B C

FIGURE 1

T cell activation studies identify BX-795 as a novel, IL-2 enhancing SMI which acts independently of accessory cells. Shown are (A), IL-2 levels in
supernatants of Jurkat E6-1 cells (1x105 cells/well) incubated in 96-well flat bottom plates in the presence (colored bars) or absence (white bar) of
plate-bound CD3 mAb OKT3 in the presence (red, green, blue) or absence (magenta and white bar) of the indicated SMI applied at the indicated
final concentrations C1 – C3 (see inset table, C1 red, C2 green, C3 blue). All conditions contained DMSO at a final concentration of 0.25% (v/v).
Shown are relative (B), IL-2 and (C), IFN-g mRNA expression levels as assessed by RT-qPCR of Jurkat E6-1 cells (1x106 cells/well in a 48 well plate,
400 µL final volume) incubated in the presence or absence of CD3/CD28 beads (1x106 beads/well) and the indicated concentrations of BX-795 for 6
hours in 400 µL final volume. Specific mRNA levels were first normalized to the housekeeping gene b-2 microglobulin (b2M) and then normalized to
the mean of the CD3/CD28 beads stimulated DMSO condition for each respective experiment. All conditions contained DMSO at a final
concentration of 0.25% (v/v). Data show in A, mean values ± SEM of four independently performed experiments (except three for rapamycin, and
two for amlexanox) tested in triplicates and in B, the summary (means ± SEM) of seven (except 3 for 0.24 and 1.2 µM; 4 for CD3/CD28 at 30 µM;
and 6 for unstimulated 6 and 30 µM) independently performed experiments is shown. In (C), the summary (means ± SEM) of six (except 5 for 30 µM;
3 for 0.24 and 1.2 µM; and 2 for unstimulated at 6 µM) are shown. One-way ANOVA with Dunnett’s correction for multiple comparisons (A),
comparing all conditions against CD3 stimulated cells in solvent (mean of CD3 stimulated control indicated by dotted line) and (B, C), comparing the
respective stimulated and BX-795 treated condition to the stimulated condition which was treated with solvent only. Statistically significant changes
are indicated with *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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the salient features of the induced T cell phenotype (Figure S5).

Consistent with its impact on primary allergen-specific murine and

human polyclonal T cells, BX-795 also significantly inhibited

allergen-specific recall responses (Figure S6). In fact, upon

restimulation of mugwort major pollen allergen Art v 1-specific T

cells with the cognate allergen-specific peptide, BX-795 significantly

reduced numbers of IL-2-IL-13+ Th2 cells (Figure S6B), residual IL-2-

IFN-g+ Th1 cells (Figure S6H) and cellular proliferation (Figure S6G),
while IL-2+IL-13- T cells were found modestly increased (Figure

S6D). This suggested that BX-795 is capable of inhibiting Th2

cytokine production even in already differentiated, actively cycling

Th2 cells, which argues against the possibility that BX-795 merely

inhibits Th2 differentiation in primary non-differentiated cells.

Taken together, antigen (allergen)-dependent T cell activation

in the presence of BX-795 favors the differentiation of a putatively

novel, IL-2-secreting T helper cell phenotype, here referred to as

Th-IL-2 cells, that consistently turns off Th2 cytokine production in

human and murine T cells.
Frontiers in Immunology 05
Th-IL-2 cells are phenotypically highly
similar to iTreg

To determine and relate the phenotype of BX-795-induced Th-IL-

2 cells to well-defined effector and regulatory T cells, RNA-Seq

experiments were carried out. For that purpose, naïve allergen-

specific murine CD4+CD44-CD62L+ T cells were stimulated with

recombinant Art v 1 protein in the presence of bone marrow

derived dendritic cells (BMDC) and either solvent alone (Teff cells),

BX-795 (Th-IL-2 cells) or exogenous TGF-b1 plus anti-IFN-g and

anti-IL4 mAbs (iTreg) according to the scheme shown in Figure 3A.

Due to the higher sensitivity of naïve FACS-sorted T cells, these

experiments had to be carried out with a lower (0.24 µM)

concentration of BX-795. Flow cytometry analyses revealed that

induced(i)Tregs upregulated CD25 and Foxp3. However, Th-IL-2

cells, similar to Teff, lacked Foxp3 expression, although they were

comparably activated as shown by > 60% of cells neo-expressing CD44

(Figure 3B). In addition, Th-IL-2 cells revealed a decreased expression
D

A

B

E

F G IH

C

FIGURE 2

BX-795 stimulates IL-2 but inhibits Th2 effector cytokine secretion in primary human peripheral blood T cells. Shown are (A, B), IL-2; (C), IL-4; (D),
IL-5; (E), IL-13; (F), IL-10; (G), IFN-g; (H), IL-17; and (I), GM-CSF; levels in supernatants of human PBMC (1x105/well) which were stimulated in 96-well
round bottom tissue culture plates with soluble 1 µg/mL CD3 mAb in A, or 50 ng/mL SEA in B to I in the presence or absence of 6 µM BX-795 for 72
hours. All cultures contained DMSO at a final concentration of 0.25% (v/v). Shown are A to I, the summaries (mean values ± SEM) of secreted
cytokine levels obtained with PBMC of six unrelated healthy individuals analyzed in two independently performed experiments. The non-stimulated
baseline levels for the indicated cytokines for medium plus DMSO and medium plus BX-795 solubilized in DMSO were (mean ± SEM): IL-2: 10.1 ± 3.1
and 8.8 ± 3.7; IL-4: 23.5 ± 2.6 and 26.7 ± 3.3; IL-5: 1.6 ± 1.0 and 0.8 ± 0.1; IL-13: 3.9 ± 1.8 and 2.3 ± 0.5; IL-10, 6.9 ± 1.3 and 8.8 ± 1.8; IFN-g: 233.7
± 63.9 and 111.3 ± 43.0; IL-17A: 1.2 ± 0.3 and 1.2 ± 0.2 and GM-CSF: 16.0 ± 3.9 and 7.9 ± 3.2; respectively. Paired two-tailed Mann-Whitney U-test.
Only statistically significant changes are indicated with *, p < 0.05; **, p < 0.01.
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in CD25. Despite the clear difference in Foxp3 expression, principal

component analyses of RNA-Seq data revealed that Th-IL-2 cells

strongly co-clustered with iTreg cells, but were clearly distinct fromTeff

and naïve Th cells (Figure 3C). Consistent with the cytokine secretion

results, mRNA levels of Th-IL-2 cells were high for Il2 but low for the

Th2 cytokine genes Il4, Il5 and Il13, which was exactly opposite to Teff

cells (Figure 3D). Compatible with the flow data and in contrast to

iTregs, Th-IL-2 cells were devoid of Foxp3 message while they
Frontiers in Immunology 06
expressed appreciable mRNA-levels of Ikzf2 (Helios), Nt5e (CD73)

and Entpd1 (CD39), all well-established signature genes of Treg cells

(16, 46–48) (Figure 3E). RNA-Seq data for Foxp3, Ikzf2 and Il4 genes

were confirmed by qPCR (Figure S7). The observed increase in IFN-g
mRNA expression levels for Th-IL-2 cells was unexpected (Figure 3E),

however, the increase was not significant and attributable to one

(outlier) higher expression value in one out of the four experiments

performed (Figure 3D).
D

A B

E

C

FIGURE 3

Transcriptomic analyses of naïve T cells activated allergen-specifically in the presence of BX-795 reveals a Th-IL-2 cell phenotype which is distinct
from but has close similarities with iTregs. (A), shown is the experimental scheme for allergen-specific T cell activation. For each experimental
condition and the numbers of experiments performed a colored dot is assigned. (B), shown are representative FACS plots of freshly sorted naïve
(0 h) and differentially activated (120 h) CD3+CD4+ T cells upon culture at the conditions shown in (A). (C), shown are the results of the principal
component analyses (PCA) of the RNA-Seq data derived from viable and naïve (0 h) and differentially activated (120 h) CD3+CD4+ T cells according
to (A). Colors indicate the respective experimental condition, dots the results of the independently performed experiments. (D), shown are bar
graphs (mean values ± SEM) summarizing the expression of selected genes for the four experimental conditions as transcripts per million (TPM).
Data shown are representative for one out of 4 experiments in (B) and show the mean value ± SEM of four independently performed experiments in
(D). In (D), statistical analysis was performed with one-way ANOVA with Dunnett’s correction of multiple comparisons. All comparisons performed
against the condition Th-IL-2. (E), shown is a heat-map displaying the expression of manually curated T helper cell signature genes. Statistically
significant changes are indicated with *, p < 0.05; **, p < 0.01; ***, p < 0.001. ns, non-significant.
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To analyze whether the T cells expressing the surface markers

indicative of the Th-IL-2 phenotype (CD39, CD73, CD62L) also

produce IL-2 and differentially regulate the signature transcription

factors, as predicted by the transcriptomic data, multicolor flow

cytometry experiments were performed. These experiments

revealed that allergen-specific T cell activation in the presence of

BX-795 maintains a CD3+CD4+CD62L+ cell population of 54.2 ±

8.0% (mean ± SEM), which is barely observed upon allergen-

specific T cell activation neither in the absence of BX-795

(DMSO-control) (10.1 ± 1.5%, mean ± SEM) nor in the presence

of iTreg favoring factors (0.5% ± 0.2%, mean ± SEM) (Figure S8A).
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In the presence of CD39 co-expression, this cell population co-

expresses IL-2 and Helios (Figures S8C, D, G). Notably, the

CD39+CD62L+ cells generated in the presence of BX-795 contain

only low levels of IFN-g and IL-13 producing cells when compared

to control cells (Figures S8 E–F).

Subsequent assignment of mRNA expression data to patterns of

similarity/dissimilarity of expression of genes using RNA-Seq by

expectation maximization (RSEM) (49) revealed that the similarity

between Th-IL-2 and iTreg cells was based on 2.816 out of the 9.845

protein coding genes (Figure 4A; Table S2) identified. In fact, 4.732 of

the 9.845 genes are similarly regulated between Th-IL-2 and Teff cells
A B

C

FIGURE 4

RSEM, GSEA and GO analysis identify features similar and dissimilar between Th-IL-2, iTreg and Teff. A total of 9845 protein coding genes were
assigned to patterns of differential gene expression between the four experimental conditions using the rsem-run-ebseq function of the RSEM
toolkit. Each gene can be part of one pattern only. Same numbers for different experimental conditions indicate similar expression of the genes in
the respective pattern. Different numbers indicate significantly different gene expression between the respective experimental conditions The order
of numbers assigned is shown by the condition-specific colors (indicated in the legend) on top of each heatmap/graph. (A), heatmap of z-scores
generated by the limma coolmap function of those 2052 genes which are similarly expressed in Th-IL-2 and iTreg cells, but have differential
expression between naïve and Teff cells (pattern 1:2:3:3). (B), gene set enrichment analysis (GSEA) plot of a gene set specific for Tregs after TNF-a
stimulation comparing Th-IL-2 to Teff. (C), heatmap showing the relative gene expression levels (z-scores) of genes identified as leading edge subset
in the GO term “GO:0006955 Immune response” in an overrepresentation analysis performed by clusterProfiler/enrichGO comparing the Th-IL-2
and iTreg cell groups of samples. Based on the previous DESeq2 analysis, only genes with a log2-fold-change between Th-IL-2 and iTreg of >1 were
selected as input for clusterProfiler/enrichGO. Sample group membership is indicated along the x-axis according to Figure 3A.
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among all differentially regulated genes detected in the experiments.

However, 4.301 of these 4.732 genes are also similarly regulated in

iTreg. Moreover, 163 genes are also similarly regulated in Th-IL-2 cells

and naïve T cells. From that follows that only 268 genes remain which

are exclusively similarly regulated in Th-IL-2 and Teff cells. This is in

stark contrast to themuch greater similarity of Th-IL-2 and iTreg cells.

In fact, these two cell types coregulated 2.816 genes. Thus, the similarity

in terms of uniquely co-regulated genes is more than 10-fold higher for

Th-IL-2 and iTreg cells when compared to Th-IL-2 and Teff cells.

Similar to the herein performed comparison between Th-IL-2 cells and

the iTreg cells differentiated parallel gene set enrichment analyses

(GSEA) confirmed the significant enrichment of genes associated

with Treg cells in Th-IL-2 when compared with Teff cells

(GSE18893_Tconv_vs_Treg_24h_TNF_Stim_up) (Figure 4B) (50).

Despite the large degree of similarities, clear biological differences

exist betweenTh-IL-2 and iTreg cells, as shown by gene ontology (GO)

enrichment analyses using clusterProfiler and a list of ranked

differentially expressed genes (those genes that showed a log2-fold

change ≥ 1 between Th-IL-2 and iTreg) used as input. In fact, 54 GO

terms significantly distinguished biological processes of Th-IL-2 and

iTreg cells (Table S3). From these 54 GO terms, the term immune

responsewas most significantly enriched which harbored, for example,

the overexpressed Il2, in addition to other genes differentially expressed

between Th-IL-2 and iTreg, but also Csf2 (granulocyte monocyte

colony stimulating factor 2) Icosl (ICOS-ligand, CD275) and Gzmb

(granzyme B) (Figure 4C), the latter two representing signature

molecules of most suppressive Treg (51, 52) and T regulatory 1

(Tr1) cells (53), respectively. That overexpressed IL-2 may be

biologically active can be already inferred from the overexpressed

Csf2 mRNA levels. Although Csf2 was clearly not as strongly

differentially expressed in Th-IL-2 as Il2 (average z-score for IL-2 1.4

versus 1.1 forCsf2) (Figure 4C) its increase in expression complies well

with the previous finding that administration of IL-2/anti-IL-2

complexes increased Csf2 expression (54). That the increased Csf2

mRNA levels were not reflected by a similar tendency in soluble

cytokine levels detectable in the culture supernatant of cells treated

with BX-795may be caused by the increased consumption of GM-CSF

by developing antigen-presenting cells within the culture system (55,

56). As a result of the selection strategy of the genes for theGO analyses

in Figure 4C, genes similarly or not strongly differentially expressed

between Th-IL-2 and iTreg cells were not included for GO analysis. In

addition, Entpd1 and Nt5e are not part of Figure 4C, because they are

not part of the GO term immune response. Moreover, Th-IL-2 cells

exhibited also a moderate suppressive capacity, it was, however, less

pronounced compared with in vitro differentiated iTregs. (Figure S9).
IL-2 secreted by Th-IL-2 cells is
biologically active and required for the
expression of the regulatory phenotype of
Th-IL-2 cells

To formally demonstrate that the overexpressed IL-2 is critical

for the development of the Treg-like phenotype of Th-IL-2 cells, we

blocked IL-2 during BX-795-induced Th cell differentiation and

monitored the expression of two bona fide Treg/Tr1 marker, i.e.,
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ecto-5′-nucleotidase (Nt5e, CD73) and ectonucleoside triphosphate

diphosphohydrolase-1 (Entpd1, CD39), both being critically

involved in adenosine metabolism (16, 46–48) which were also

differentially regulated by BX-795 (Figure 5). Accordingly, FACS-

sorted, naïve CD62L+CD25-CD44-CD4+ T cells from transgenic

allergy mice were co-incubated with syngeneic BMDC in the

presence of cognate Art v 1 protein in the presence or absence of

BX-795 with and without IL-2 and/or TGF-b1 neutralizing

antibodies for 5 days. We found that BX-795 at nanomolar

concentrations IL-2-dependently but TGF-b1-independently up-

regulated CD73 expression on Th-IL-2 cells (58.1 ± 5.0 versus 88.2

± 0.9%, p = 0.0010, mean ± SEM) (Figures 5A, B). The other

important ectoenzyme involved in adenosine generation by Treg

and Tr1 cells, CD39, was by default expressed on one third of Teff

cells even in the absence of BX-795. Notably, CD39 expression

levels on Th-IL-2 cells on day 5 were highly-dependent on the

availability of IL-2, as shown by their dramatic down-regulation in

the presence of neutralizing IL-2 but not TGF-b1 antibodies

(Figures 5A–C) as assessed by multicolor flow-cytometry.

Interestingly, IL-2 or TGF-b did not seem to play a direct role for

the BX-795-inhibited Th2 phenotype since their individual or

combined antibody-based neutralization was not able to rescue

the Th-IL-2 associated inhibition of IL-4, IL-5 and IL-13 secretion

(Figure S10) as assessed by multiplexing cell culture supernatants.

That the anti-IL-2 antibodies highly effectively neutralized IL-2 can

be seen by the lack of detectable IL-2 in their presence but not in

their absence (Figure S10). Together, these results indicate that BX-

795-induced IL-2 secretion is biologically relevant and contributes

to the development of the Foxp3neg Th-IL-2 cells.
BX-795 administration alleviates Th2
inflammation in vivo

To translate our findings to preclinical models of allergic airway

inflammation, recently established mugwort allergy mice (35) were

challenged with mugwort pollen extract (MPE) in the presence and

absence of the Th-IL-2 inducer BX-795 (Figures 6, 7). In vivo

infiltration of the lungs with effector cells and the resulting lung

histology were determined. While application of vehicle control

(DMSO) or BX-795 per se did not change numbers of eosinophils,

MPE challenge increased eosinophil numbers significantly, which

was completely abrogated in MPE-challenged mice which were co-

treated with BX-795 (Figure 6B). Similarly, the frequency of Th2

cells expressing the signature transcription factor GATA-3, and the

Th2 signature cytokines IL-4 and IL-13 (Figures 6C; 7B, C) were

significantly reduced. In contrast, frequencies of IL-2+, Tbet+, IFN-

g+, ROR-gt+ and IL-17+ (Figures 6E, F; 7C) T cells were comparable

or only slightly different across groups. In support of our in vitro

findings on a single cell level, the fractions of IL-2+ cells which co-

expressed the Th2 cytokines IL-4 and IL-13, were much smaller,

indicating that these cells were IL-2 producers but unable to

elaborate Th2 effector cytokines (Figure 7B). No such effects on

IL-2/IFN-g and IL-2/IL-17 co-producing cells (Figure 7B) or overall
IL-2+ CD4+ T cells were observed (Figure 7C). These findings

support the previous assumption that BX-795 has a complex
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differentiating effect on T cells by inducing Th-IL-2 cells and does

not simply drive T cells into an anergic state. Frequencies

(Figure 6D) and numbers (Figure S11) of Foxp3+ cells were

upregulated in MPE challenged mice only in the absence but not

in the presence of BX-795, which was compatible with the in vitro

finding that BX-795 inhibits Foxp3 expression in iTreg

differentiation cultures (Figures S12, S13). Notably, overall cellular

infiltration and mucus production was reduced in MPE challenged

mice treated with BX-795 as compared to sham-treated mice

(Figure 6G). Myeloid cells other than eosinophils such as e.g.,

neutrophils or alveolar macrophages were not altered by the drug

treatment (Figures S14, S15). Experiments performed in a second

model of allergic airway inflammation, based on another clinically

highly relevant aeroallergen source, i.e., house dust mite (HDM),

gave comparable results and also revealed a distinct, albeit not

significant increase of IL-2+ T cells (Figure S16E). Together these

results show in two independent models of allergic airway

inflammation that BX-795 treatment resulted in significant

inhibition of allergen extract-induced Th2 inflammation which
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was paralleled by generally lower numbers of Foxp3+ T cells

(both models) and distinctly increased IL-2+ cells (HDM model).
Discussion

Based on previous findings highlighting the importance of IL-2

for Treg expansion in vivo (8, 9), we hypothesized that SMI

inducing IL-2 hypersecretion by T cells activated via their TCR

would lead to the differentiation of cells with a Treg phenotype,

which may have implications for the treatment of allergic

inflammation. Indeed, we identified here a previously

unrecognized function of the multikinase PDK-1/IKKe/TBK-1
small molecule inhibitor BX-795, namely its capability of

inducing an IL-2 hypersecreting Th cell type upon TCR

activation. This was intriguing because the other SMI studied,

particularly the previously described TBK1 inhibitor amlexanox,

failed to do so (43). Our initial screen was performed in Jurkat E6-1

cells, because these cells historically formed one of the centerpieces
A B

C

FIGURE 5

IL-2 secreted by Th-IL-2 cells is biologically active. (A, B), bar graphs show the percentages of CD73+ (left panel) and CD39+ (right panel) CD3+CD4+

T cells as determined by flow-cytometry for each indicated condition. Briefly, naïve CD4+ T cells [1x105/well] from double transgenic allergy mice
were co-cultured with BMDCs [2x104/well] and recombinant Art v 1 protein [1 µg/mL] in the presence or absence of BX-795 [0.24 µM]. Blocking-
antibodies against IL-2 and/or TGF-b were added at the beginning of the 120 h incubation period at a final concentration of 10 µg/mL in
combinations as indicated. Presence of the respective blocking antibody is indicated by a “+”, replacement of the antibody by its isotype control at a
concentration of 10 µg/mL is indicated by a “-”. After 120 hours, cells were stained with fluorophore-conjugated antibodies and analyzed by flow-
cytometry. (C), Representative FACS plots of the experiments performed in (A, B) are shown. Numbers indicate percent cells in the respective
quadrants. The presence or absence of blocking antibodies is indicated on the left-hand side of each set of contour plots. Data show (A, B), mean
values ± SEM of three independently performed experiments. (A, B), one-way ANOVA with Tukey’s post-hoc analysis comparing each condition with
each other. The p-values are indicated by *, p < 0.05; **, p < 0.01; ***, p < 0.001. ns, non-significant.
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for the detailed investigation of T cell receptor signaling processes.

While human HPB-ALL and HuT-78 and murine EL4 and LBRM-

33 cells belonged to the “legendary group” of immortalized T cell

lines, Jurkat E6-1 T cells stood out (26). The merits of Jurkat E6-1 T

cells as in vitro test system for TCR-signaling are several-fold: i)

they are excellent IL-2 producers upon TCR ligation (27); ii) they

produce IL-2 especially well when two signals are provided to them

for stimulation, one of them being a TCR-derived signal the second

one a signal activating PKC, such as phorbol myristate acetate (57);

iii) they were the basis for a number of sublines, generated by
Frontiers in Immunology 10
somatic mutation and lacking, for instance, TCR ab (58), CD3 (59)

and CD45 (60); iv) TCR-mutant Jurkat E6-1 cells were the basis for

showing that a calcium signal, e.g., provided by a calcium

ionophore, could bypass the TCR-signal-requirement and lead to

full-blown T cell activation in the presence of PKC activation (57);

v) Jurkat E6-1 T cells were the first T cells to be used in fluorescent

calcium measurements by Imboden et al. (59).; vi) these cells were

the basis for the description of protein tyrosine kinase signaling and

thus spearheading the characterization of LCK, ZAP70, CARMA1,

and a number of further signaling molecules involved in the TCR-
D
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FIGURE 6

BX-795 ameliorates Th2 inflammation in a murine model of mugwort allergy. (A), shown is the treatment protocol indicating the time points and dosage of
mugwort-pollen extract (MPE) or sham treatment (PBS) and concomitant BX-795 exposure of mugwort-specific TCR/DR1 double transgenic C57BL/6 mice. All
conditions contained the same amounts of solvent (DMSO). (B), shown are the absolute numbers of eosinophils expressed as 1x106 cells per lung of mice
treated as in (A) determined by FACS analyses (gating strategy see Figure S15) of lung homogenates. (C-F), shown are the percentages of GATA-3+, Foxp3+, T-
bet+ and ROR-gt+ of CD3+CD4+ T cells in the lung of mice sensitized by i.t. administration of MPE or placebo (PBS) in the presence or absence of i.t. applied
BX-795 as determined by FACS analyses. (G), shown are representative lung sections stained with hematoxylin eosin (HE, upper panel) or periodic acid-Schiff
(PAS, lower panel) of mice of the indicated treatment groups. (B-F), data show the mean ± SEM of pooled result from two independently performed
experiments containing 8-10 mice in total per group. The indicated p-values were calculated using one-way ANOVA followed by Dunnett’s test comparing
MPE stimulated BX-795 treated to counterparts. Only statistically significant changes are indicated with *, p < 0.05; **, p < 0.01.
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signaling pathway (61–63)); vii) nowadays, Jurkat E6-1 cells form

the basis for genetic and functional (reporter) screens devoted to

human T cell and HIV biology, among other topics (64–67). The

fact, that a currently performed data-base search for this cell line

revealed 400 citations during the year 2022 in PubMed indicates
Frontiers in Immunology 11
that this immortalized human T cell line, since its establishment

more than 40 years ago, is still a very valuable tool for

immunologists world-wide.

Hypersecreted IL-2 was identified upon activation of both

human and murine T cells stimulated by surrogate TCR/CD3
D
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FIGURE 7

BX-795 reduces MPE induced IL-2/IL-4 and IL-2/IL-13 co-producing T cells but not overall IL-2 producers in a murine model of mugwort allergy.
Lung cells derived from mice challenged as shown in Figure 6A were stimulated for 4 h in the presence of PMA/ionomycin and protein transport
inhibitors monensin/brefeldin A and then stained for CD3, CD4 and the indicated cytokines. (A), shown is the gating strategy for the analysis of IL-2/
cytokine double positive cells and representative FACS plots showing co-production of indicated cytokines with IL-2 for mice treated with MPE plus
solvent and MPE plus BX-795. (B), shown are the percentages of cells co-producing IL-2 and the indicated second cytokine as percent of
CD3+CD4+ T cells for each treatment group. (C), shown are the percentages of all cells of CD3+CD4+ T cells producing the indicated cytokine. The
total percentage of the respective cytokine producing cells was calculated from the IL-2/cytokine gates shown in (A). The percentage of all IL-2
producing cells of CD3+CD4+ T cells was calculated from the IL-2/IL-4 plots. (D), shown are the ratios of IL-2+/Cytokine- cells relative to IL-2+/
Cytokine+ cells for MPE plus solvent and MPE plus BX-795 treated mice. Cells stained for the indicated cytokines were stimulated for 4 h in the
presence of PMA/ionomycin and protein transport inhibitors monensin/brefeldin A, Data show the mean ± SEM of pooled results from two
independently performed experiments containing n = 8 both PBS groups, MPE plus BX-795 and n = 9 MPE plus DMSO (B-D). The indicated p-values
were calculated using one-way ANOVA followed by Dunnett’s test (B, C) or by an unpaired two-sided Student’s t-test (D). All comparisons
performed against MPE plus solvent treated. Only statistically significant changes are indicated with *, p < 0.05; **, p < 0.01.
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ligation (OKT3), superantigen from Staphylococcus aureus or

nominal antigen (major mugwort pollen allergen, Art v 1).

Although IL-2 hypersecreting Th-IL-2 cells lacked Foxp3

expression on the mRNA and protein level, they were found to

mimick iTreg by mRNA expression phenotype. In fact, RNA-Seq

analyses identified 2.816 protein-coding genes which expression

was similar in Th-IL-2 and iTreg cells but exhibited differential

regulation in both naive and effector CD4+ T cells. For comparison,

only 268 genes are coregulated in Th-IL-2 cells and Teff cells,

indicating the much lower degree of relatedness between these two

cell types. The hypersecreted IL-2 was found to be biologically

relevant, as its antibody-based neutralization, e.g., completely

inhibited the activation-induced up-regulation of the Treg

signature surface molecule ecto-5′-nucleotidase (Nt5e, CD73),

which is well-known for its triggering of the degradation of AMP

towards regulatory adenosine (68). In contrast, the increased IL-2

secretion levels were not required for the Th2 inhibitory capacity of

BX-795 as shown in experiments using blocking antibodies (Figure

S10). The suppressive potential of BX-795-induced T cells, although

somewhat lower when compared to iTregs (Figure S9), is in line

with previous reports showing that PDK1 activity contributes to the

suppressive capacity of regulatory T cells (69).

Upon allergen-specific challenge in the presence of BX-795, T

helper cells downregulated Th2 immunity in vivo and made mice

less susceptible for the development of allergic airway

inflammation. This was mirrored in T cells by the significant

downregulation of Th2 cytokine production and the expression of

the Th2 signature transcription factor GATA-3, which resulted in a

reduced pathological influx of eosinophils into the lungs of allergen-

sensitized and -challenged mice (Figures 6B; S16B). While Th2 cell-

based reduction of cytokine production certainly contributed to

reduced eosinophil infiltration, we cannot exclude that direct effects

on innate immune responses contributed to the observed reduction

in eosinophils. For instance, it was recently shown that cGAMP

triggered HDM extract-induced asthma in mice via IL-33 in a TBK-

1 dependent manner which could be antagonized by the bona fide

TBK-1 inhibitor amlexanox (70).

We initially hypothesized that Th-IL-2 cells may be generated

by modulation of Signal-1 strength. Indeed, when looking at TCR-

induced proliferation in allergen-specific T cells, we observed that

BX-795 moderately inhibited T cell proliferation (Figure S5). Also,

TCR-induced intracellular Ca2+-fluxing in Jurkat E6-1 and primary

human T cells as determined by the calcium indicator Indo-1 was

slightly reduced at biologically relevant BX-795 concentrations

(Figures S2A, B). These findings may be related to early BX-795-

attenuated tyrosine-phosphorylation (as determined with the anti-

pan tyrosine-phosphorylation antibody 4G10) (Figure S2).

However, BX-795 sustained overall (Figure S2C), Lck- (Figure

S2D) and CD3 z-chain-specific (Figure S2E) tyrosine-

phosphorylation at later time points, while it left Erk tyrosine-

phosphorylation unaffected (Figure S2F) when compared to

stimulation with solvent conditions (DMSO). These findings let

us speculate that BX-795 may enhance IL-2 expression by

disinhibiting a TCR-distal feedback loop, which may explain how,

in fact, attenuated Signal-1 strength increases IL-2 production. Such

a feedback loop had indeed been posited for IKKe, suggesting that
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the BX-795 target IKKe provided a negative TCR-signaling

feedback (45). In that study, knockout of IKKe resulted in

decreased phosphorylation of the transcription factor NFATc1

and enhanced its nuclear translocation thereby enhancing IL-2

expression (45). However, when we investigated NFATc1

translocation by imaging flow cytometry in the presence of BX-

795, we did not find evidence for enhanced NFATc1 translocation.

Rather, in our studies, the increase in IL-2 secretion clearly preceded

the expression and translocation of NFATc1 (Figure S4), ruling out

direct involvement of the IKKe-NFATc1 axis in the IL-2

hypersecretion phenotype, and suggesting a hitherto undisclosed

mechanism. That the activation induced shut-off of IL-2 may

depend on a suppressor, which is sensitive to cycloheximide has

been shown previously and allows to speculate that this yet

unidentified suppressor could be a target of BX-795 (71). The

authors cannot completely exclude the possibility of decreased

consumption of secreted IL-2 as a possible contributor to the

elevated IL-2 levels detectable in culture supernatants, e.g., due to

decreased CD25 expression. However, it seems rather unlikely that

this is the only factor for the increased IL-2 levels in culture

supernatants, because IL-2 mRNA expression levels were also

significantly increased in human (Figure 1) and murine T cells

(Figure 3). In addition, increased IL-2 levels were also observed at

the single cell level in flow cytometry (Figure S8), suggesting that

increased production of IL-2 by Th-IL-2 cells is certainly an

important, if not the main, factor for the observed increase in IL-

2 levels in supernatants.

RNA-Seq experiments showed that BX-795-induced Th cells

appeared to be way more similar to iTregs than to naïve T cells or

Teff (Figure 3C). This indicated that BX-795 does not inhibit the

transition from naïve T cells towards a differentiated phenotype but

rather directly induces a distinct Th cell phenotype which is highly

similar to iTregs which we refer to here as Th-IL-2 cells. Although

there was a high degree of similarity between Th-IL-2 cells and

iTreg, Th-IL-2 cells completely lacked Foxp3 expression. Moreover,

under iTreg differentiating conditions BX-795 reduced numbers of

CD25+Foxp3+ Tregs in vitro from 50.4 ± 7.5% mean ± SEM to 19.2

± 4.0% mean ± SEM, corresponding to a 62% decrease (Figures S12,

S13). In contrast, the ecto-5’-nucleotidase CD73 and the

ectonucleoside triphosphate diphosphohydrolase-1(CD39), both

important adenosine-generating enzymes of Treg cells (48, 72),

remained highly expressed (98.2 ± 0.7 mean ± SEM versus 96.5 ±

1.6% mean ± SEM) or were only modestly downregulated (17.56 ±

4,2% mean ± SEM versus 11.99 ± 4.8% mean ± SEM) (Figures S12,

S13). However, another transcription factor closely related to the

development of Treg cells, Ikzf2 (Helios) remained stably expressed

in iTregs even in the presence of BX-795. This was in concordance

with our finding that Helios expression was significantly induced in

the larger part of Th-IL-2 cells (Figures 3D; S8D), and may indicate

that the BX-795 targeted pathway represents a switch for the

differentiation of Helios+/Foxp3- T helper cells (73). Although

differences between Foxp3+/Helios+ T cells and Foxp3+/Helios-

have been associated with different types of regulatory T cells the

phenotypic characteristics of Helios+/Foxp3- T cells have not been

described in detail so far (46, 47). Helios was proposed as a specific

marker for thymic-derived Treg cells (47) and the co-expression of
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Helios and Foxp3 was reported to increase the regulatory activity of

human engineered regulatory T cells (74). Moreover, Helios

expression has been linked to the control of several regulatory

functions of Treg cells (46) and has been described as an exclusive

marker of activated Treg cells expressing the markers GARP/LAP

(75). We could confirm our findings obtained in the RNA-Seq

experiments on the protein level in flow cytometric analyses

demonstrating that BX-795-induced expression of the

transcription factor Helios in a fraction of Th-IL-2 cells (Figure

S8). Notably, Helios expression was independent of soluble IL-2 and

TGF-b levels as determined with blocking antibodies (data not

shown). Whether Helios is responsible for the induction of the here

presented T cell phenotype remains to be shown. The BX-795-

induced increase in Th-IL-2 cells amounted to 36.1 ± 6.2% (BX 1.2

µM, % IL-2+ of CD3+CD4+, mean ± SEM) while only 12.8 ± 1.2%

(% of CD3+CD4+IL-2+, mean ± SEM) of Th-IL-2 cells were co-

expressing Helios on a single cell level. This may indicate that

Helios positivity is either a salient feature of a subset of Th-IL-2

cells. Alternatively, parallel immunological detection of Helios and

IL-2, which is technically difficult because of gross differences in the

optimal composition of the fixation reagents used, could

considerably underestimate the number of Th-IL-2 cells co-

expressing Helios as determined by flow cytometry. A regulatory

cell type lacking Foxp3 expression is represented by IL-10+Foxp3-

Treg cells (76). Since treatment with BX-795 decreased the number

of IL-10+ T cells, it seems rather unlikely that Th-IL-2 cells resemble

IL-10+Foxp3- Treg cells. However, the authors cannot exclude the

possibility that Th-IL-2 cells share a common progenitor with IL-

10+Foxp3- cells.

Apart from the induction of Th-IL-2 cells resembling iTregs, the

inhibition by BX-795 of type 2 immunity was the second major

finding of this study. In fact, BX-795-dependent inhibition of type 2

cytokine secretion was a robust trait observed in different species

and model systems in vitro and in vivo applying, among others,

double transgenic allergy mice (Figures 6, 7) and wild type C57BL/6

mice for detailed preclinical analyses (Figure S16), which was

accompanied by a decrease in GATA-3 expression in lung T cells

of allergen-sensitized and challenged mice (Figures 6; S16).

Moreover, the influx of eosinophils into the lungs of allergen-

exposed mice was reduced to background levels in the presence of

BX-795, as was the formation of goblet cells, indicating the far-

reaching effects of blockade of type 2 immunity by BX-795.

Interestingly, GM-CSF which is a cytokine also secreted by Th2

cells was not inhibited throughout our studies in different model

systems (77). This raises the question whether Th-IL-2 cells have

similarities with the recently described TGM cells (78). The

transcription factors c-Maf and Fli-1 have been described as

regulators of GM-CSF expression (79, 80). Previously, the

transcription factor c-Maf has been shown to be exclusively

involved in positive regulation of IL-4 transcription but not other

Th2 cytokines (81). In our transcriptomic analyses, up-regulation of

c-Maf was clearly inhibited by BX-795 whereas Fli-1 was increased

although non-significantly (Figure S17). This may explain the

discrepancy observed with regards to IL-4 inhibition but GM-CSF
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maintenance. Somewhat similar to GM-CSF, also IL-17A was not

inhibited throughout our studies by BX-795. Th17 cell

differentiation has been shown to rely on the cell cycle-dependent

function of CARMA1, which suggests that the changes in cytokine

expression seen in Th-IL-2 cells are not explainable by mere

inhibition of cell cycle progression/proliferation as inhibition of

IL-17 expression would then also be an expected outcome (82).

This study is not without certain limitations. For instance, the

epigenetic changes of IL-4, IL-5, IL-13, and IL-2 loci in Th-IL-2 cells

and the stability of their phenotype over time remain to be

determined in future studies using epigenetic analysis tools, e.g.,

by ATAC-Seq. Moreover, transcriptomic analyses of Th-IL-2 cells

at the single cell level will help to better understand the transition

processes that drive naïve T cells to develop into Th-IL-2 cells and

will be necessary to identify and compare phenotypic clusters of in

vivo-induced with in vitro-generated Th-IL-2 cells.

Furthermore, we have not yet answered the question why the IL-

2 hypersecreting phenotype, which was so robustly reproducible in

vitro with primary (Figures 2; S3) but also with Th2-differentiated

(Figure S6) cells, was not more clearly apparent in the allergic airway

inflammation models in vivo. Our findings in that respect may be

attributable to variables such as available drug concentration over

time, complexity of the tissue/cellular composition, different

pharmacokinetic and pharmacodynamic parameters of BX-795 or

IL-2 itself, which are less well controllable and assessable in vivowhen

compared to in vitro experiments. Nevertheless, frequencies of IL-2+/

IL-4+ and IL-2+/IL-13+ T cells were clearly reduced in vivo (2.6 ±

0.4% and 1.5 ± 0.3% to 1.4 ± 0.1% and 0.7 ± 0.1% mean ± SEM,

respectively) while overall IL-2 producing cells remained the same

(Figure 6). It is tempting to speculate that the cell fractions turning

into IL-2 single positive cell types could be identical to the cell type

observed in vitro upon BX-795 stimulation. In addition, our study is

limited by the fact that we focused primarily on the effects of BX-795

on the differentiation and function of CD4+ T helper cells. Thus, we

can only speculate how BX-795 may act on other cell types such as,

e.g., CD8+ T cells, dendritic cells or type 2 innate lymphoid cells

(ILCs), the latter representing recently discovered key players in the

initial phase of allergic diseases (83).

Also, the role and capability of Th-IL-2 cells to regulate levels of

immunosuppressive adenosine by virtue of their CD73 and CD39

up-regulation requires to be determined in future studies.

Taken together, we have provided evidence in this study of the

potential of BX-795 to limit Th2 inflammation and inhibit T cell

activation and proliferation in a dose-dependent manner in multiple

species andmodel systems. If applied at a constant (low) dose over time

during differentiation of naïve T cells, BX-795 induced a phenotype

displaying characteristics of iTregs with hallmark differences between

Th-IL-2 cells and iTregs seen with regards to IL-2 secretion and Foxp3

expression. In addition to other studies showing anti-inflammatory

capacities of BX-795 (84) and anti-viral effects (85) we here extend the

potential field of application for this SMI compound towards Th2

inflammatory diseases such allergic asthma.

Since the transcriptional regulation of type 2 cytokine

expression in ILC2 cells has been found to be very similar to that
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in Th2 cells, it can be speculated that BX-795 treatment would

produce similar effects, i.e., inhibition of type 2 inflammatory

cytokine secretion, in this cell type (86).
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