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Metastatic breast cancer is one of the most common and well-known causes of

death for women worldwide. The inflammatory tumor cell and other cancer

hallmarks dictate the metastatic form and dissemination of breast cancer. Taking

these into account, from various components of the tumor microenvironment, a

pro-inflammatory infiltrative cell known as Th-17 plays an immense role in breast

cancer proliferation, invasiveness, and metastasis. It has been demonstrated that

IL-17, a pleiotropic pro-inflammatory cytokine generated by Th-17, is

upregulated in a metastatic form of breast cancer. Recent research updates

stated that chronic inflammation and mediators like cytokines and chemokines

are causative hallmarks in many human cancers, including breast cancer.

Therefore, IL-17 and its multiple downward signaling molecules are the

centers of research attention to develop potent treatment options for cancer.

They provide information on the role of IL-17-activated MAPK, which results in

tumor cell proliferation and metastasis via NF-kB-mediated expression of MMP

signaling. Overall, this review article emphasizes IL-17A and its intermediate

signaling molecules, such as ERK1/2, NF-kB, MMPs, and VEGF, as potential

molecular targets for the prevention and treatment of breast cancer.
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Introduction

Breast cancer (BC) is the most frequently diagnosed metastatic

cancer among women (1). It is a molecularly diverse disease that

involves complex processes that result in initiation, progression,

and metastasis (2). The tumors of breast origin can be classified

either by the gene expression pattern of three receptors, such as

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2), or through its nodal

metastasis (3). Like other solid tumors, breast cancer starts locally

and spreads into distant organs—metastatic breast cancer (2).

Breast cancer metastasis is a usual hallmark of cancer and leads

to treatment failure, leading to the death of many patients. Around

10%–15% of breast cancer patients experience metastasis, leading to

death (2). The bone is the most common site of breast cancer

metastasis for about 75% of patients with late-stage BC (4). Usually,

metastatic breast cancer has a poor prognosis, with 73% of the

patients having less-than-5-year survival (5, 6). According to

studies, several factors may affect the pathogenesis and prognosis

of breast cancer (6). The genetic mutation of tumor cells is

responsible for the proliferation, uncontrolled growth, and

spreading ability of the primary tumor cell malignancy

invasiveness and distant migration (7–9). Inflammatory condition

is also a prognostic factor in metastatic breast cancer and

contributes to cancer development and progression. Particularly,

immune cells—including Th-17, tumor-associated macrophage,

neutrophils, natural killer (NK) cells, and gdT cells and mediators

in the microenvironment—facilitate angiogenesis and proliferation

(10–12). Th-17 is one of the inflammatory CD4+ cells that play an

essential role in cancer pathogenesis and anti-tumor immune

response (13). Notably, in breast cancer, Th-17 cells are positively

related to IL-6, IL-1b, and IL-17 expression and negatively

correlated with increased metastatic lymph nodes and tumor cell

angiogenesis. IL-17-induced inflammatory mediators such as G-

CSF, IL-6, and CXCL1 stimulate the expansion and recruitment of

dysfunctional myeloid cells to establish a proangiogenic and

immune-suppressive tumor environment that enhances tumor

growth and metastasis (14). This results in the formation of a

metastatic secondary tumor. However, how the cytokine of the

microenvironment promotes tumor metastasis remains a research

question. For the effective migration and metastasis of breast cancer

cells in the vascular or lymphatic drainage system, chemical

mediators such as calcium-dependent zinc-containing

endopeptidases like MMPs must be required for the degradation

of the ECM as well as VEGF and IL-8 for vascularization during

intravasation and extravasation processes, respectively, and reach to

the bone (15). A study showed that the expression and activation of

MMPs are mediated through TNF-a and IL-1 secreted by tumor

cells, and IL-17A secreted from the microenvironment plays a role

on the regulation of different MMPs (16, 17). There are five major

classes of MMPs depending on their function and the substrates

that they digest, including matrilysins (MMP-7 and MMP-26),

collagenases (MMP-1, MMP-8, and MMP-13), stromelysins

(MMP-3, MMP-10, and MMP-11), gelatinase (MMP-2 and

MMP-9), and membrane-associated metalloproteinases (MMP-14,
Frontiers in Immunology 02
MMP-15, MMP-16, MMP-17, MMP-23A/B, MMP-24, and MMP-

25) (18, 19). A retrospective SEER study on 25,323 women

presenting with stage IV BC explored that 26.8% and 12.8% had

overall survival of 5 and 10 years, respectively (20, 21). It explained

that there is a strong association between elevated rates of IL-17 and

Th-17 cell infiltration and estrogen receptor (ER)-negative and

triple-negative molecular subtypes of BC (22).

In the mammary gland tumor microenvironment, excessive

infiltration of Th-17 cells, NK, and gdT cells are associated with

poor prognostic factors for staging, overall, and disease-free survival

(23, 24). Furthermore, the functional contribution of human Th-17

cells to tumor immunity remains unclear since both pro- and anti-

tumor effects have been observed. According to the data, in both the

4T1 and E0771 tumor models, increased Th-17 was seen at the early

stage of tumor progression, peaked at the middle cancer stage, and

then markedly declined at the late stage (25). This review further

elaborates on the interaction of IL-17A with its heterodimer single-

pass transmembrane receptor (IL17RA/IL17RC). In turn, TRAF-6/

TAK-1 joins the MAPK pathway and upregulates the subsequent

phosphorylation of extracellular signal-regulated kinases (ERK1/2)

in all human breast cancer, thus leading to uncontrolled growth,

proliferation, and resistance to traditional chemotherapeutic agents

such as docetaxel (26). In addition, these reviews will discuss the IL-

17/NF-kB-associated incidence of bone metastatic breast cancer.

The progression and metastasis of BC thought to be controlled

through locally infiltrated Th-17 cells produce inflammatory

cytokines (IL-17A). This results from activating the IL-17A-IL-6-

STAT-3 pathways, NF-kB-mediated production of MMPs, and

vascular endothelial cell growth factor (VEGF) (27). In

supporting the abovementioned scenario0, IL-17A also triggers

the growth and proliferation of tumor cells through the IL-17A/

MAPK pathways (14, 28). Overall, following metastasized breast

cancer diagnosis, biological signaling pathways are the foundation

of current anti-cancer therapies. Therefore, it is crucial to

thoroughly understand the molecular and immunological

mechanisms to classify and design appropriate treatment for

breast cancer (29). This review article aimed to illustrate the

dysregulated MAPK and NF-kB pathways in response to IL-17A/

IL-17AR/CR interaction in bone metastatic breast cancer and its

therapeutic options.
Mechanism of Th-17 cell polarization
and the diversity of IL-17 and IL-17R

The third independent lineage of the CD4+ T cell subset,

designated as “Th-17 cell”, produces IL-17A, and a related family

of IL-17 cytokines was discovered in 2005 (30–33). Currently, there

are six related IL-17 family members such as IL-17A, IL-17B, IL-

17C, IL-17D, IL-17E, and IL-17F (30, 34, 35). Both IL-17F and IL-

17A share the same structural similarities and are secreted in

homodimeric (two IL-17A or two IL-17F) or heterodimeric (IL-

17A/IL-17F) forms. These forms are biologically active and

connected by disulfide bonds formed by its cysteine residues (36).

Further studies have shown that “Th-17” cells are also capable of
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secreting IL-21, IL-22, and GM-CSF (37). IL-21 creates an

amplification loop for the further generation of Th-17 cells (38),

whereas IL-17A is mostly secreted as a heterodimeric form with IL-

17F, suggesting that the activity of IL-17A is partially attributed to

the most potent form of IL-17A/IL-17F heterodimeric cytokine (36,

39)., Apart from Th-17, IL-17 can also be secreted by gdT cells,

natural killer (NK) cells, NK T cells, mast cells, granulocytes, a

subset of CD8+ T cells, known as Tc17 cells, and “innate lymphoid

cells” (35, 40). The tumor cells, breast cancer-associated

macrophage (41), and cancer-associated fibroblasts (CAF) secrete

chemokines such as MCP-1 or CCL2, CCL20 (MIP-3A) (42, 43),

and CXCL12 (SDF-1) as chemo-attraction of CD4+ T cell during

differentiation of Th-17 cell and even for the selective attraction of

Th-17 cell infiltration and/or its migration into the site of the tumor

microenvironment (28). The ability of naive CD4+ T cells to

undergo lineage polarization into distinct effector subsets is

mediated by master transcription factors (44). These master

transcription factors play opposing roles in Th-1/Th-2/Th-17/

Treg cell fate decisions; retinoic acid receptor-related orphan

receptor-gt (ROR-gt) is induced during Th-17 cell differentiation

and strongly suppresses other Th cell polarization of the gene

expression (45). Downstream of STAT3 signaling is the Th-17

master regulator ROR-gt. This transcription factor directly regulates

the expression of IL-17A and IL-17F, along with other Th-17-

specific genes (44, 46). Therefore, the polarization of naïve CD4+ T

cell to Th-17 cells takes two significant steps in the reaction process.

Activation of naïve CD4+ T cell is the first step of the reaction,

mediated by cytokines (IL-6, IL-23, and TGF-b) secreted by a

professional APC such as dendritic cells and macrophages

(Figure 1) (30, 47). Taken together, polarizing cytokines produced

by APC of the tumor microenvironment and cancer stem cells are

the driving force for differentiation, maturation, and survival (IL-23

mediated) of the Th-17 phenotype (48, 49). In the context of

inflammation driven by cytokines such as tumor necrosis factor

(TNF), there is a clear synergy with IL-17F, reaching a pro-

inflammatory gene signature very far from that induced by the

combination of TNF-a and IL-17A (50). Depending on amino acid

homology with IL-17A, the remaining related families, such as IL-

17C, IL-17D, and IL-17E, have been identified and are significantly

divergent from IL-17A (51). Research scholars stated that the

inflammatory potency of IL-17F becomes more amplified when

expressed and works together with tumor necrosis factor (TNF-a)
(52). The signal transduction of each member of the IL-17 family is

through its binding to specific interleukin-17 receptors (IL-17R)

(34). The tissue distribution of IL-17RAs is almost in every cell type,

whereas IL-17RC is predominantly expressed in epithelial cells,

endothelial cells, fibroblasts, osteoblasts, and limited expression in

myeloid cells (53–55). Based on sequence homology to IL−17RA,

additional receptors have been identified in the IL−17R family such

as IL−17RB, IL−17RC, IL−17RD, and IL−17RE. Indeed not only IL

−17RA but also IL−17RC is required for the action of both IL−17A

and IL−17F. Therefore, it showed that IL-17A or IL-17F binds the

receptor complex called IL-17RA–IL-17RC to drive the expression

of a gene involved in the inflammation, proliferation, angiogenesis,

and metastasis of primary tumor cells through NF-kB and MAPK

activation (56–58).
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IL-17A/MAPK signaling promotes the
proliferation of breast cancer cell

IL-17 plays a pivotal role in the tumor microenvironment, from

the initial stages of tumorigenesis to its invasiveness, proliferation,

and distant migration (14). Therefore, after the dysregulated

interaction of IL-17 with its receptor, there will be a feed-forward

expression of other inflammatory molecules, such as IL-6 through

NF-kB. In turn, IL-6 joins the vicious cycle or loop via the

additional activation of NF-kB through the IL-6/STAT-3/NF-kB

axis (14). A study on a variety of BC cell line in a mouse model

explored that IL-17 has a pro-tumoral effect and contributes to

chemotherapeutic resistance (for example, paclitaxel). IL-17A/E

induces c-RAF and ERK1/2 phosphorylation by p70S6 kinase; in

turn, it activates the MAPK signaling pathway and contributes to

BC taxane resistance. All IL-17R receptors contain an extracellular

domain (ligand binding site), a transmembrane domain, and a

cytoplasmic domain “SEFIR” (56). The SEFIR domain of IL-17RA

is a conserved cytoplasmic motif that depends on an adapter

molecule ACT1 (also known as TRAF3IP2) and TNF receptor

−associated factor 6 (TRAF6) to recruit the rest of its

downstream signalings such as MAPK (p38, JNK, and ERK1/2)

(59, 60) and the NF-kB pathway (Figure 2) (34) (61–63). Taking this

step further, ACT1 recruitment relays on the SEFIR domain, then

TARF-6 binds to ACT-1 and form the IL-17R complex (64). In

addition, ACT-1 also plays a non-degradative ubiquitination of

TRAF-6 through its U-box, like lysine-63 (K63) E3 ligase domain

(32). In turn, the ubiquitination of TRAF6 provides a scaffold for
FIGURE 1

Schematic illustration of Th-17 polarization and its cytokine signature.
Chemokines, including CCL2 and MCP-1, are secreted by cancer-
associated fibroblasts (CAFs), tumor-associated macrophages (TAM),
and antigen-presenting cells (APC) that promote CD4+ cell
recruitment. Breast cancer cells, CAFs, TAMs, and dendritic cells are
part of the stem cell and its microenvironment that produces different
polarizing cytokines, such as IL-6, IL-23, and TGF-b. In turn, such
polarizing cytokines activate distinct transcription factor cascades
within naïve CD4+ T cells and influence T cell differentiation into
distinct effector T cell subtypes, mainly Th-17 effector cell subset that
produces all IL-17 signature cytokines (IL-17A, IL-17B, IL-17C, IL-17D,
IL-17E, and IL-17F) and IL-21 and IL-22.
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the recruitment and activation of TAK-1 (MAPKKK)-mediated

activation of MEK-1/2 (65). Elevated IL-17A or IL-17B expression

is strongly associated with poor prognosis outcomes for patients

who present with BC (22, 66). To stimulate cells to proliferate or

differentiate, these short-lived signaling events need to be converted

into longer-lasting ones that can sustain the signal and relay it

downstream to the nucleus (67). ERK (ERK1 and ERK2) is activated

upon phosphorylation by MEK (MEK1 and MEK2), which is itself

activated when phosphorylated by TAK-1 (Figure 2). In support of

this, studies showed that the type of IL-17 response is context

dependent, i.e., different Il-17 families affect the cell with different

effector molecules differently concerning cell lines like MCF7,

T47D, BT20, MDA-MB468, MD-MB157, and MDA-MB231

(Table 1) (68, 69). Few preclinical studies support the

antitumorigenic properties, particularly of IL-17-E. In contrast,

many more clinical as well as preclinical studies explained pro-

tumorigenesis with the exposures of IL-17A, IL-17F, and IL-17B

(75). Moreover, similar to that of the overexpression or mutation of

receptor tyrosine kinase, most cancers, including breast cancer-

associated lesions, that lead to constitutive or uncontrolled

activation of ERK signaling (55) were due to either the

overexpression of IL-17A/IL-17RA and ACT1-TRAF-6 or the

activating mutation of TAK-1 molecule (63, 76, 77). However,

there is also amplification or deregulation of its nuclear

transcription factor targets, such as AP-1 (dimeric transcription
FIGURE 2

An overview of the IL-17A/MAPK signaling pathway in the
proliferation of breast cancer. ERK1/2, JNK, and p38 MAPK are the
major effector molecules of this signal cascade and lead to
phosphorylate multiple transcription factors, particularly activator
protein one (AP-1), which is a hetero-dimeric composition of c-Jun
and c-Fos proteins. Once active, it translocates to the nucleus and
orchestrates the expression and function of many proliferative genes
or cell cycle regulators such as cyclin D1 (G1-to-S phase) and cyclin
A/E (S-to-G2 phase). In turn, it increases cell growth or proliferation
and survival.
TABLE 1 In vivo and in vitro roles of IL-17 cytokines in breast cancer.

Types of
cytokines

Cellular
source

Types of
study

Cell lines Response
on IL-17
exposure

Cellular mechanisms References

IL-17A Th-17,
TAM,
CAF

Preclinical
and

clinical

MCF7, T47D, BT20, MDA-MB468, MD-
MB157, MDA-MB231

Pro-
tumorigenesis

Activation or ERK1/2 pathway
induces proliferation, migration,
invasion, and chemoresistance
Recruitment of macrophages,

activation of MMP

(68, 69)

IL-17A Th-17,
TAM,
CAF

Clinical None Pro-
tumorigenesis

IL-17A associated to MMP-1, 2, 3, 9,
and 11 mononuclear infiltrating cells
which are correlated to metastasis

(70)

IL-17A Th-17,
TAM,
CAF

Preclinical MCF7 Pro-
tumorigenesis

Activation of MAPK: MEKK, ERK,
JNK, cJun, STAT3
Cell proliferation

(71)

IL-17E Th-17 Preclinical MCF7, MDA-MB468, MDA-MB 435-S,
MDA-MB231, SKBR3, T47D, ZR75, Hs578t,

HCC1937, MDA-MB175-7

Anti-
tumorigenesis

Induction of apoptosis, decrease in
colony formation and tumor growth

(72, 73)

IL-17A and
IL-17E

Th-17 cell, Preclinical
and

clinical

47D, MCF7, BT20, IJG-1731 Pro-
tumorigenesis

Activation of cRAF and S6 kinases
and via chemoresistance

(73)

IL-17B Th-17 cell Preclinical
and

clinical

MCF7, MDA-MB-157, MDA-MB-231, MDA-
MB-361, BT20

Pro-
tumorigenesis

Resistance to paclitaxel in cell lines
via ERK pathway

Upregulation of BCL2 promotion of
proliferation and tumor growth
through IL-17RB via NF-kB and

TRAF6

(74)

IL-17E Th-17 cell Preclinical
study

MCF7, MDA-MB468, MDA-MB 435-S,
MDA-MB231, SKBR3, T47D, ZR75, Hs578t,

HCC1937, MDA-MB175-7

Anti-
tumorigenesis

Induction of apoptosis, decrease in
colony formation and tumor growth

(72, 75)
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factor of c-Fos and c-Jun) (78). AP-1 does not always promote cell

proliferation but has anti-proliferative activities (79). In turn,

activated c-Jun-containing AP-1 allows positive G1-to-S-phase

progression, proliferation, and differentiation regulators such as

cyclin D1 to be turned on and transcribed (80) or represses or turns

off tumor suppressor p53 (blocker of CD1 and cyclin A/E via P21)

and p16 expression (81–83). Additionally, the study showed that IL-

17A is produced by BC TILs and responsible for docetaxel

chemoresistance, angiogenesis, and its proliferation potential

through the ERK1/2 pathway and induction of phosphorylation

of EGFR in collaboration with IL-17ER (69). It proposed that multi-

target inhibition, i.e., not only targeting IL-17A/IL-17AR/CR but

also inhibiting its co-worker IL17E/IL-17ER, maximizes the clinical

efficiency or potency of anti-EGFR such as panitumumab or

rrastuzumab for treatments of BC (84, 85). Among MAPK

signaling, p38 and ERK1/2 are the most commonly activated in

tumorigenesis and migration of BC (86–88). During BC cell

proliferation and invasion, IL-17 is suggested to be critical for p38

MAPK activation. The activated p38 MAPK, in turn, promotes the

production of cytokines (TGFb and TNFa) and interleukins (IL-6,

IL-8, and IL-1b) within the tumor microenvironment, all of which

are known to play a role in promoting tumor growth, angiogenesis,

invasion, and metastasis (89).
IL-17A//NF-kB/MMPs axis promotes
bone metastatic breast cancer

Upon the interaction of IL-17A with its corresponding receptor,

the u-box domain of Act1 is essential for IL-17-induced NF-kB

activation (90). ACT-1-mediated ubiquitination of TRAF-6 acts as a

scaffolding intermediate of the IL-17A signaling pathway (40).

TRAF6 is also a signaling adaptor molecule that plays a key role

as an E3 ubiquitin ligase and ubiquitin-conjugating enzyme (E2)

complex composed of Ubc13 and Uev1A (91). Subsequently

ubiquitinated TRAF-6 recruits a protein kinase complex involving

TGF-b-activated kinase 1 (TAK1) and TAK1-binding proteins

(TAB2–TAB3) (60). TAK1, a member of the MAP kinase kinase

(MAP3K) family, then activates the inactive IkB kinase (IKKi)

complex (IKKa/b/g) into its activated form (IKKa) via

phosphorylation (92). In turn, IKKa then phosphorylates the IkB
subunit of the NF-kB/IkB complex, marking IkB for E3 ubiquitin

ligase–proteasomal proteolysis (42, 43). Ubiquitin (Ub) itself can be

further ubiquitinated and form a polyubiquitin (poly-Ub) chain on

IkB. Then, IkB becomes recognizable by the proteasome. Ub–

proteasome-based degradation of IkB makes NF-kB free of it,

translocates to the nucleus, and acts on a wide spectrum of the

NF-kB gene response element involved in the inflammation and

metastasis of cancer (Figure 2) (93). The major cause of cancer-

associated morbidity and mortality is its metastasis and

colonization of other organs like bone, lung, liver, and brain in

the case of BC (94, 95). Thus, cancer develops after migration to

other anatomic sites, which are called secondary tumors (96). NF-

kB key transcription factor plays a role in the expression and

activity of MMPs (16, 17, 97). This, in turn, defines as many of
Frontiers in Immunology 05
the effects of IL-17A that are correlated with the TRAF-6-mediated

activation of NF-kB. Therefore, the NF-kB-mediated expression of

MMP-2 and -9, respectively, are the most important driving force in

the invasiveness and metastasis of various human cancers such as

colorectal cancer (98), hepatocellular cancer (99), nasopharyngeal

carcinoma (100), and non-small cell lung cancer (101). Similarly,

the researchers explored that the NF-kB-mediated invasiveness,

migration, and metastasis of BC also rely on the increased

expression of MMP-2, MMP-13, MMP-9, and MMP-1 (Figure 3)

(102–104). MMP-13, known as collagenase-3, plays in ECM

physical barrier degradation and increases the invasive capacities

of the malignant cells (70). In support of this, MMP-13 mRNA and

its protein expression in BC serve as independent biomarkers of

poor prognosis or shorter overall survival (95,) (105). In addition,

tumor-associated macrophage (M2Ф) secretes MMP-13 and MMP-

3 which are involved in the promotion of metastasis via the IL-17/

IL-8 axis (105–107). Similar to M2Ф, the CAF cells of the

microenvironment also secretes MMP-1, MMP-11, MMP-9, and

MMP-13 (Figure 3). In the clinical diagnosis of high-grade (grade-

3) breast cancer, the study showed exuberantly increases MMP-2

and MMP-9 mRNA and protein expression (19, 108). Furthermore,

several other studies support a pro-tumorigenesis role of IL-17 in

BC, and the details are presented in Table 1. Those studies also

elaborate that the level of IL-17 was increased and correlated with

the expansion of the disease. Moreover, p38/NF-kB-mediated
FIGURE 3

Diagram summarizing the mechanism of the IL-17A/NF-kB pathway
in breast cancer metastasis and other organs like the brain. IL-17A
can be secreted by breast cancer (BC) cells and many cells in the
breast cancer microenvironment such as tumor-associated
macrophages, cancer-associated fibroblasts, Th-17 cell, gdT cells,
and endothelial cells. In turn, IL-17 and other Th-17 derived
cytokines influence the tumor microenvironment by directly
promoting transformed cell properties and the nearby stromal cell
activity. IL-17A binds with IL-17RA–IL-17RC receptor and transduces
signaling via the adaptor protein nuclear factor (NF)-k activator
(Act1). Many IL-17 target genes contain the promoter’s region that
binds with NF-kB. In turn, the NF-kB signal pathway tend to be
activated and promote the expression of genes encoded for
angiogenesis and metastasis. The major steps of bone metastatic BC
include extravasation, circulatory journey, extravasation in distant
sites, and ultimately metastatic colonization of bone or other target
organs (brain, lung, and liver).
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transcription products such as TNF-a, MMPs (MMP-2 and MMP-

9), VEGF (also called VEGF-A and located at chromosome 6p12),

VEGF-C, and PGE1/2 facilitate the invasion and metastasis of

cancer (34, 41,) (109). Judah Folkman (father of angiogenesis)

stated in 1974 that no tumor could grow beyond 2 mm3 unless

they are vascularized, and tumors could be restricted to tiny sizes

(110). New blood vessel formation from the existing vasculature

establishment of a tumor blood supply plays a central role in distant

metastasis in breast cancer (111, 112). A tumor cell secretes VEGF

that interacts with VEGF receptors on the endothelial cell

membrane and stimulates migration, proliferation, and neo-vessel

formation from the adjacent established blood vessel (113). The

VEGF family includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, and

placental growth factor (114). VEGF-A and its receptors VEGFR-1

and VEGFR-2 play major roles in pathological angiogenesis,

including tumor angiogenesis, whereas VEGF-C/D and their

receptor VEGFR-3 primarily function as critical regulators of

lymphangiogenesis (113). A solid tumor microenvironment

responds to low oxygen tension by enhancing the hypoxia-

inducible factor (HIF) response (112). As a result, evidence

showed that HIF-1a and HIF-2a activate several hypoxia-

inducible gene pathways involved in angiogenesis and glycolysis

(115, 116). On the other hand, activated NF-kB also promotes anti-

apoptotic gene transcription (Bcl-2, Bcl-XL, and BCL-W) and

proliferative gene expression (cyclin D) (14, 117, 118). In turn,

Bcl-2 (sometimes called master regulators of anti-apoptosis) not

only promotes cancer cell proliferation and invasion but also allows

the chemo- and immunotherapeutic resistance of cancer cells (119).

In this regard, apoptosis evasion via the over-expression of Bcl-2 or

Bcl-XL has recently been proposed as a hallmark of cancer (120). A

research conducted by Cochaud et al. explored that ER-negative BC

is rich in increased infiltration of IL-17A-producing cells and PDL1

levels (28, 121). IL-17 promotes the expression of CCL17 and

CCL22 and facilitates Treg cell migration to suppress antitumor

immunity (122, 123). Thus, IL-17A also enhances proliferation and

metastasis via inhibiting tumor apoptosis and suppressing

antitumor immunity (53, 55, 121, 124, 125) [i.e., through

decreasing CD4 T helper 1 (TH-1) cells and increasing Treg

cell] (126).
IL-17 signaling cascade as a
therapeutic target of breast
cancer metastasis

As elaborated well above, IL-17A is potentially significant in the

growth, proliferation, and progression of human cancer, including

breast cancer (28). Thus, in the animal model experiment, IL-17A is

considerably a therapeutic target during the chemotherapeutic

management of breast cancer since its inhibition decreases cancer

progression, migration, and distant metastasis. As discussed earlier,

IL-17A mediates cancer cell invasiveness and metastasis via MMP-

2, MMP-9, and MMP-13. Furthermore, IL-17A stimulates MMP-9

mRNA expression, and MMP-9 inhibitors can inhibit the IL-17A-

dependent invasion and metastasis of BCCs (17). The relation
Frontiers in Immunology 06
between IL-17A and its downstream MMP activity and breast

cancer metastasis through MAPK and NF-Kb suggests the

possibility of various strategies connected with blocking these

checkpoints and kinase enzyme activity. Therefore, strategies

target IL-17A by blocking downstream signaling molecules like

MAPK or inhibiting specific gene products like MMPs. On the

other hand, MMP can be inhibited simply by targeting the master

transcription factor known as NF-kB.
IL-17A as a potential therapeutic target

The role of IL-17 still has controversy and needs advanced

research. IL-17-producing cells of both lymphocytic and myeloid

origins or the microenvironment of the cancer cell as well as their

suggested pro- and antitumorigenic functions in an organ-

dependent context all contribute to make it purely a challenge to

bring science to clinical practice (75). In support of this, a study

showed the anti-tumorigenesis effects of IL-17E exposure to the

breast cancer cell lines of MCF7, MDA-MB468, MDA-MB435-S,

MDA-MB231, SKBR3,T47D, ZR75, Hs578t, HCC1937, and MDA-

MB175-7 (Table 1) (34, 75). Th-17 cell infiltration with a common

pro-inflammatory signature cytokine, IL-17A, is a crucial player in

the proliferation, growth, migration, and dissemination of many

cancer cells, including BC and many more types of cancer. Table 1

shows a summary of the current correlation findings between

different IL-17 subtypes producing T cells and their overall

mechanism of pro-tumorigenesis in various breast cancer cell

lines (75). As a result, research scholars understand the molecular

mechanism of IL-17 in the development and progress of breast

cancer and try to target the development of potential therapeutic

options to tackle this life-threatening non-communicable disease.

The Food and Drug Administration approved the fully-humanized

anti-IL-17A monoclonal antibody secukinumab (AIN457) as an

acceptable therapeutic choice for psoriasis, rheumatoid arthritis,

ankylosing spondylitis, and other inflammatory diseases (Figure 4)

(47, 127–129). Treating mice with ER- or triple-negative breast

cancer by secukinumab boosts the antitumor immunity such as

CD4+ and CD8+ T cells and decreases both the expression of PDL-

1 and Treg cell infiltration (121). Interestingly, a combination

treatment approach [anti-IL-17A (secukinumab) and anti-PDL1

(pembrolizumab)] improved antitumor immunity in support of its

eradication (130).
MAPK as a potential therapeutic target

Cochaud et al. reported that the IL-17A/IL-17AR interaction

not only stimulates the proliferation and growth of the human BC

cell line but also is responsible for chemoresistance (docetaxel). This

pathologic mechanism of IL-17A was due to the upregulation of the

ERK1/2 JNK and p38 MAPK pathway via MEK1/2 (69). Because

p38 MAPK, ERK1/2, and MEK1/2 are the “Achilles heel” of tumor

growth and cancer cell survival, targeting them helps negatively

interrupt the typical proliferation environment of the cancer cell.

The MEK1/2 inhibitor U0126 (IC50 = 0.5 uM) chemically inhibits
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MAPK signaling (131, 132). The ERK1/2 expression in de novo is

negatively regulated by MAP kinase phosphatases (MKPs) or dual-

specificity protein phosphatase through a negative feedback loop

(133). In addition, ulixertinib, a reversible ATP-competitive small-

molecule ERK1/2 kinase inhibitor, has shown promising results in

phase 1 clinical trials (134). Furthermore, there is also a selective

p38 MAPK a and b isoform inhibitor, ralimetinib (LY2228820

dimesylate), not only for BC patients but also for some other human

cancer, including glioblastoma, multiple myeloma, ovarian, and

lung cancer (Figure 4) (135, 136). The IC50 of LY2228820 for p38

alpha = 5.3 nM and for p38 beta = 3.2 nM. BIRB-796

(doramapimod) is also an inhibitor of p38 with IC50 for p38

alpha = 38 nM, for p38 beta = 65 nM, and for p38 delta = 520

nM (136).
NF-kB as a potential therapeutic target

In mammals, there are five prominent member of the NF-kB
family of transcription factors such as p50, p52, c-Rel, RelA (p65),

and RelB (137). TRAF6 is the first signal transducer in NF-kB

activation via IkB kinase (IKK) complex-mediated phosphorylation

of the inhibitor of NF-kB proteins (IkBs) followed by ubiquitin–

proteasomal degradation in response to IL-17. The IKK complex

maintains NF-kB in the inactive state (NF-kB- IkB dimer) in the

cytosol of unstimulated cells. Gene profiling analysis revealed that

the constitutive activation of the NF-kB may be a key regulator

(138) and a driving force for the pathogenesis of a variety of solid

tumors, including BC and TNBCs (139). NF-kB is a set of

transcription factors that play in various inflammation and

immunity-associated diseases. It is also involved in different

cancer progression and survival (140). The natural compound

extracted from Curcuma and its isoxazole analog has many
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especially TNBC cell lines and HL-60 in human leukemia by

counteracting NF-kB activation (141).

Dehydroxymethylepoxyquinomicin (DHMEQ) is a synthetic

and selective inhibitor of NF-kB at the site of its translocation

(142, 143). Studies have shown that a substantial reduction of the

activation of NF-kB is observed in TNBC patients presently treated

with DHMEQ (142). Furthermore, dimethyl fumarate also

effectively blocks NF-kB activity in multiple BCC lines (144).

MG132 is another synthetic compound that targets and prevents

the ubiquitin–proteasome degradation of NF-kB inhibitor, IkBa, or
b (Figure 4) (145, 146).
VEGF as a therapeutic target

Angiogenesis is essential for breast cancer progression and

metastasis (147). The uncontrolled expression and activity of

VEGF are very common in different cancer types, including BC,

as reliable biomarkers for angiogenesis and vascularization (148).

IL-17 induces the expression of specific chemokines like chemokine

ligand 2 (CCL-2) and vascular endothelial growth factor (VEGF),

which promotes IL-17-producing angiogenic macrophage, which

can contribute to the microenvironment and angiogenesis (14). In

support of this, a study conducted on the 4T1 BC cell line in the

murine model explored that, with the administration of IL-17,

VEGF mediated vasculogenesis and increased microvascular

density (149, 150). The exuberant expression and circulatory

detection of VEGF mRNA are predictors of poor prognosis

factors (151). Thus, increased VEGF expression has been

associated with poor response to tamoxifen or chemotherapy in

patients with advanced breast cancer (111). Inhibiting or targeting

VEGF is the most promising mode of chemotherapy for different

types of solid tumors, including BC, and it also interrupts its

metastatic ability. The monoclonal antibody drug bevacizumab

targets and inhibits the activity of the soluble form of VEGF-A

ligand due to the loss of its structural conformation. This results in

inhibiting VEGF-mediated angiogenesis, metastasis, and tumor

survival (148, 152). Therefore, bevacizumab led to a prominent

prolongation in mean progression-free survival from 15.6 to 20.2

months (Figure 4) (153). Clinical and preclinical studies showed

that exposure to trastuzumab significantly decreased VEGF in

HER-2-overexpressing cells (154). Moreover, angiostatin is an

endogenous inhibitor of angiogenesis or suppressor of

neovascularization through negative inhibition of endothelial cell

migration and proliferation. In turn, it augments tumor inhibition.

Angiostatin is found naturally in humans and several other

animals (152).
MMP as a therapeutic target

MMPs are potential pharmacological therapeutic targets for

treating invasive breast cancer (155). Endogenously, TIMP has

natural and clinically significant therapeutic effects via inhibition

of many MMPs. Rebimastat, an inhibitor of MMP-1, MMP-2,
FIGURE 4

Schematic summary of the actions of various inhibitors of IL-17A
and its multiple downstream signal transduction pathways. In
addition to the synthetic and natural inhibitors of these signaling
target molecules, extracellular signal-regulated kinase can be
endogenously regulated by short negative feedback loop via
dephosphorylation, dual-specificity phosphatase.
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MMP-3, MMP-8, MMP-9, MMP-13, and MMP-14, significantly

abolishes tumor growth and abrogates BC metastasis (156).

Similarly, broad-spectrum batimastat has a broad-spectrum

inhibition of virtually all MMP members (157, 158). In contrast,

considering specificity and selectivity, anti-MMP-2 and anti-MMP-

1—such as AG-3340, BAY 12-9566, and BMS-257291—and Ro 32-

3555, respectively, are used as specific therapeutic options (155,

159). Furthermore, small molecules such as tanomastat,

prinomastat, and rebimastat inhibit MMP-2, MMP-3, MMP-8,

MMP-9, and MMP-13; MMP-2, MMP-3, MMP-9, MMP-13, and

MMP-14; and MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-

13, and MMP-14, respectively (156, 158). In addition, a murine

monoclonal antibody called REGA-3G12 inhibits MMP-9 without

influencing the function of MMP-2 (Figure 4) (160).

Conclusions and future direction

Breast cancer is still one of the leading threats to women’s life. In

the stages of the disease, cancer can spread to distant organs,

including the brain and bone, where chemotherapy is not easily

accessible. Achieving effective cancer therapy is significantly

hampered by inflammatory cancer microenvironments. Thus,

targeting IL-17A signaling pathways provides a promising future

approach to developing novel treatment options. Considering

contradictory results observed in other research regarding the

pro- and anti-cancer nature of the Th-17 cell, an individualized

adjustment may be required with different cell lines and even in

various stages of cancer to tackle or target the IL-17A downstream

signaling axis. Targeting the IL-17/IL-17R axis in breast cancer as

relayed in clinical and preclinical models surprisingly produces

excellent outcomes due to the types of cell line stage of the disease

and the exposure status of the cell with IL-17. The evidence

suggested that targeting and reprogramming multiple downstream

signaling pathways of IL-17A may be an essential complementary

option to promote the efficacy of conventional chemotherapy to

treat breast cancer metastasis. Therefore, further research is needed
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in the future to develop anti-cancer strategies that target IL-17

signatures and their signaling pathways.
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