
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Juan Bautista De Sanctis,
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Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process

which is governed by chemokines. CD8+ T cells in the RCC tumor

microenvironment (TME) may be exhausted which most likely influence

therapy response and survival. The aim of this study was to evaluate

chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as

well as metabolic processes leading to their functional anergy in RCC. Eight

publicly available bulk RCC transcriptome collectives (n=1819) and a single cell

RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised

clustering, gene set variation analysis and Monte Carlo-based modeling of

metabolic reaction activity were employed. Among 28 chemokine genes

available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA

expression were significantly increased in RCC compared to normal kidney

tissue and also strongly associated with tumor-infiltrating effector memory and

central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK

cells as well as tumor cells were identified as the major sources of these

chemokines, whereas T cells, B cells and dendritic cells were found to

predominantly express the cognate receptors. The cluster of RCCs

characterized by high chemokine expression and high CD8+ T cell infiltration

displayed a strong activation of IFN/JAK/STAT signaling with elevated expression

of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were

characterized by metabolic reprogramming, in particular by downregulated

OXPHOS and increased IDO1-mediated tryptophan degradation. None of the

investigated chemokine genes was significantly associated with survival or

response to immunotherapy. We propose a chemokine network that mediates

CD8+ T cell recruitment and identify T cell exhaustion, altered energy

metabolism and high IDO1 activity as key mechanisms of their suppression.
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GRAPHICAL ABSTRACT
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Concomitant targeting of exhaustion pathways and metabolism may pose an

effective approach to RCC therapy.
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riptome data from 8 independent RCC collectives comprising 1819 tumor samples reveals
ine receptor axes correlating with T cell markers related to activation and cytotoxicity but also to
and XCL1/XCR1 are significantly overexpressed in RCC compared to normal kidney tissue. M1
cells and tumor cells are the major source of these chemokines. CXCL11 was exclusively
ptors were expressed by T cells, B cells and dendritic cells. The CD8+ T cell abundant
ibition of oxidative phosphorylation (OXPHOS), especially with reduced Complex I and IV
tryptophan degradation. Such metabolic reprogramming together with high activity of T cell
gy of cytotoxic T cells in chemokinehigh RCCs. This chemokine signature may serve as biomarker
ic reprogramming in RCC.
1 Introduction

Renal cell carcinoma (RCC) differs from other cancer entities by

its high immunogenicity, which includes the efficient recruitment of

tumor-infiltrating immune cells. As a result, the RCC tumor

microenvironment (TME) harbors heterogenous mixtures of

leukocyte subsets (1). Tumor-infiltrating lymphocytes (TILs) have

previously attracted clinical research interest. In a form of adoptive

T cell therapy, TILs were expanded ex vivo with high-dose IL-2 and

subsequently re-infused into the patient (2). However, clinical

efficacy of TIL therapy remained low. More recent studies
02
demonstrated that CD8+ T cells in the RCC TME may be

exhausted, express heterogenous phenotypes and express

immune-evasive molecules (PD1, PD-L1, PD-L2, and CTLA4) (3,

4). In addition, the elevated CD8+ T cell presence corresponded to a

higher frequency of BAP1 mutations (3), which is a key regulator of

cancer-associated pathways (5). Exhausted T cells in the TME,

which express multiple immune checkpoints, have been proposed

to mediate resistance to immunotherapy with low therapeutic

response rates (6–8). In RCC patients treated within the

CheckMate-010 trial, a high percentage of CD8+ T cells

expressing PD-1 but not TIM-3 and LAG-3 were positively
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https://doi.org/10.3389/fimmu.2023.1095195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pichler et al. 10.3389/fimmu.2023.1095195
associated with longer progression-free survival on the anti-PD-1

antibody nivolumab, suggesting that the higher predictive value of

these cells might be related to their less exhausted phenotype and

their ability to be more efficiently reactivated during PD-1 blockade

(9). Additional immune cells such as CD4+CD25+FoxP3+

regulatory T cells (Tregs), myeloid-derived suppressor cells and

tumor-associated macrophages (TAMs) (1) as well as dendritic cells

(DCs) (10) have been detected in the RCC TME and may also affect

anti-tumor immunity in different ways. Thus, the composition of

TME-infiltrating immune cells and the functional phenotype of the

individual infiltrating immune cell types are critical determinant

factors in cancer prognosis and outcome.

The recruitment of immune cells to the TME is governed by

chemokines (11), a large family of chemotactic cytokines, which are

grouped into four subfamilies: CXC, CC, (X)C, and CX3C (12).

Two members of the CXC family, CXCL9 (also known as MIG) and

CXCL10 (also known as IP-10) are associated with Th1-type

immune response by recruiting natural killer (NK) cells, CD4+

Th1 and CD8+ cytotoxic lymphocytes, which all contribute to anti-

tumoral responses (13).

The migratory capacity of immune and non-immune cells is

based on chemokine receptors that allow cells to migrate along

chemokine gradients. In addition to being agonists of their cognate

receptors, chemokines can also act as antagonists at other

chemokine receptors. CXCL9, CXCL10 and CXCL11, for example

are natural antagonists for CCR3 (14).

In addition to their direct effects on anti-tumor immune

responses, chemokines affect angiogenesis, cancer cell

proliferation, stemness and invasiveness and can thus be key

determinants of disease progression (15–17). All these

observations make the chemokine/chemokine receptor network

an attractive target for cancer immunotherapy. Moreover,

chemokines and their receptors could be useful biomarkers of

response and/or survival stratification.

Herein, published transcriptome data from eight publicly

available bulk RCC collectives including 1819 cancer samples and

a single cell RNAseq dataset were examined. We investigated the

association between chemokine expression and T cell infiltration,

metabolic changes and T cell in the RCC TME.
2 Methods

Detailed description of analysis procedures is provided in

Supplementary Material.
2.1 Software

The analysis was done with R version 4.2.0. Basic data

transformation tasks were accomplished with the tidyverse

package bundle (18) and the development package trafo (https://

github.com/PiotrTymoszuk/trafo). Exploratory data analysis and

hypothesis testing was done with the rstatix (19), ExDA (https://

github.com/PiotrTymoszuk/ExDA) and microViz (https://

github.com/PiotrTymoszuk/microViz) packages. Network analysis
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was accomplished with igraph (20). Results were visualized with the

packages ggplot2 (bubble plots) (21), ExDA (box plots), microViz

(Forest plots, Volcano plots, bar plots of regulation estimates and p

values), survminer (Kaplan-Meier plots) (22) and ggnetwork

(network plots) (23).
2.2 Data import and transformation

The following publicly available RCC data sets were re-

analyzed: TCGA Clear Cell Carcinoma (KIRC) project (24),

whole-genome subsets of the CheckMate 010 (CM 010) and

CheckMate 025 (CM 025) studies (25), GSE73731 (26),

GSE167093 (27), RECA-EU (28) and E-MTAB 1980 (29).

Author-provided expression data and clinical information for the

TCGA cohort were extracted from the GDC Data Portal with the

TCGA-Assembler script (https://github.com/compgenome365/

TCGA-Assembler-2/blob/master/TCGA-Assembler/). Author-

provided expression and clinical data for GSE73731 and

GSE167093 were fetched with the GEOquery package (30). E-

MTAB 1980 and RECA-EU data sets were imported from the

ArrayExpress and ICGC Data Portal repositories, respectively, with

in-house developed R scripts. To investigate possible effects of

therapy with checkpoint inhibitors, the CheckMate 025

everolimus (CM 025 EVER) and nivolumab (CM 025 NIVO)

treatment arms were analyzed separately.

For the microarray expression studies (GSE73731, GSE167093,

E-MTAB 1980), integration of multiple probes targeting the same

gene was accomplished by geometric mean. Expression values were

transformed with log2(transcriptcount + 1) (RNA sequencing:

TCGA, CM 010, CM 025, RECA-EU) of log2. Immune infiltration

estimates were calculated using the QuanTIseq and xCell

algorithms (immunedeconv package) (31–33).

Gene signatures corresponding to Reactome pathways were

extracted from the MSig database, version 7.5.1, and the

signatures’ single sample gene set enrichment analysis scores

(ssGSEA) were calculated with the GSVA algorithm (34). Genes

associated with T cell exhaustion were retrieved from four recent

papers (35–38).
2.3 Genes of interest

The chemokine genes of interest were identified within the set

of 28 chemokine genes available for all investigated datasets (CCL2,

CCL7, CCL8, CCL11, CCL13, CCL17, CCL20, CCL21, CCL22,

CCL24, CCL25, CCL26, CCL28, CXCL1, CXCL2, CXCL3,

CXCL5, CXCL6, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13,

CXCL14, CXCL16, CXCL17, CX3CL1, XCL1). The chemokine

genes were screened in the TCGA KIRC cohort for differences in

expression levels between the RCC and normal kidney tissue

(paired normal/tumor samples, two-tailed paired T test, function

test_two_groups(), microViz package), and for correlation with

CD8+ T cell content in RCC predicted with the QuanTIseq

algorithm (31) (Spearman’s correlation, correlate_variables(),

package ExDA).
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Among 28 chemokine genes measured in all investigated

collectives, expression of CXCL9, CXCL10, CXCL11, CXCL13 and

XCL1 was found to be highly enriched in the malignant tissue

(paired two-tailed T test) and strongly significantly associated with

CD8+ T cell levels (Spearman’s correlation) in the TCGA KIRC

cohort (Supplementary Figure S1). These chemokine genes and

their cognate receptors CXCR3 (CXCL9/10/11), CXCR5 (CXCL13)

and XCR1 (XCL1) were investigated further in the current report.
2.4 Comparison of gene expression
between the normal kidney and tumor
samples, correlation with non-malignant
cell infiltration

log2-transformed expression was compared between the donor-

matched normal kidney and cancer samples by two-tailed paired T

test and Cohen’s d effect size statistic. Correlation of log2-

transformed gene expression with QuantIseq- and xCell-predicted

non-malignant cell content (31, 33) was investigated with

Spearman’s test. The expression comparison and correlation

results were corrected for multiple testing with the false discovery

rate (FDR) method (39). The scaled Spearman’s correlation

matrices for the genes of interest and cell types associated with

them with moderate-to-large strength (correlation coefficient r >

0.4) were visualized as force-directed network plots (packages

igraph and ggnetwork) (20, 23).
2.5 Survival modeling

Correlation of log2-transformed gene expression with overall (OS)

or relapse-free survival (RFS) by uni-variable Cox proportional hazard

modeling (40) including the linear and spline term for the gene

expression variable. Significance for model terms was corrected with

FDR for multiple testing. Linear term model estimates are presented as

hazard ratios (HR) with 95% confidence intervals.

Multi-parameter modeling of OS was done by Ridge regularized

Cox regression (package glmnet) (41). The explanatory factors

included age, squared age, sex, tumor grade, tumor stage,

metastasis stage) variables and log2-transformed expression values

of the genes of interest. Two models were trained in the TCGA

KIRC cohort: a model with demographic/grade/stage variables only

and a model with the complete set of explanatory factors and both

models were subsequently validated in the E-MTAB 1980 and

RECA-EU collectives. To assess the add-on effect of gene

expression on the survival prediction accuracy as compared with

the demographic/grade/stage information, concordance indexes of

the full models and the demographic/grade/stage-only models

were compared.
2.6 Semi-supervised clustering

By PAM (partition around medoids) - cosine distance

clustering (42, 43) in respect to to normalized log2-transformed
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expression of the genes of interest, two clusters of RCC samples, the

chemokinehigh and chemokinelow cluster were defined in the

training TCGA KIRC cohort. The clustering algorithm was

chosen based on its excellent reproducibility in 10-fold cross

validation (44) and good explanatory performance as compared

with hierarchical and KMEANS clustering algorithms

(Supplementary Figure S2A). Choice of the cluster number (k =

2) was motivated by the bend of the within-cluster sum of squares

curve, the peak mean silhouette statistic and visual inspection of the

heat map of distances between cancer samples (Supplementary

Figures S2B, C).

Prediction of the chemokine cluster assignment in the test

collectives (E-MTAB 1980, GSE73731, GSE167093, RECA-EU

and CheckMate cohorts) was done with a 15-nearest neighbor

(15-NN) classifier with inverse distance weighting. The prediction

yielded clustering structures with comparable fractions of explained

variance and comparable cluster sizes in the training and the test

cohorts indicative of high reproducibility (Supplementary

Figure S3A).

xCell estimates of non-malignant cell infiltration (43) were

compared between the chemokine clusters by FDR-corrected

Mann-Whitney U test. Differences in distribution of tumor stages,

MSKCC risk strata and frequencies of best overall therapy response

(complete/partial response vs. stable/progressive disease) between

the clusters were compared by FDR-corrected c2 test. Differences in
OS and RFS between the two clusters were assessed by Peto-Peto

test (22).
2.7 Differences in Reactome pathways,
gene expression and signaling modulation
between the clusters

Differences in ssGSEA scores (34) of Reactome pathway gene

signatures between the chemokine clusters were investigated by

FDR-adjusted two-tailed T test (Supplementary Table S1). Genes

differentially expressed between the chemokine clusters were

identified by FDR-corrected two-tailed T test and > 1.25 fold-

regulation in the chemokine high versus chemokine low cluster

(Supplementary Tables S2, S3). Modulation of KEGG-listed

signaling pathways in chemokinehigh versus chemokinelow cluster

cancers based on the differential gene expression was investigated

with SPIA (45) (Supplementary Table S4).
2.8 Biochemical reaction modulation in the
CXCL9 expression strata

Rules of assignment of genes to biochemical reactions were

retrieved from the Recon2 human metabolism model available via

the BiGG database (46). Regulation of biochemical reactions

between the chemokinehigh and chemokinelow clusters based on

whole-genome estimates of differential gene expression and their

standard errors was done by evaluation of the gene assignment rules

with the ‘gene - protein - reaction’ (GPR) principle (47). Standard

deviation, 95% confidence intervals and p values for the predicted
frontiersin.org
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reaction regulation estimates were obtained by a Monte Carlo

simulation (n = 1000 draws) (Supplementary Table S5). The

analysis was done with the package BiGGR (47) and the

development package biggrExtra (https : //gi thub.com/

PiotrTymoszuk/biggrExtra).
2.9 In-house flow cytometry

Peripheral blood mononuclear cells, adjacent normal kidney

tissues, tissues from the center and periphery of ccRCC tumors

(Supplementary Table S6; n=4) were obtained freshly at the day of

surgery. Patients were all treated at the University Hospital

Regensburg (Urology) between 2019 and 2020. Tissues were

processed as described previously (48). Peripheral blood was

enriched using leukocyte reduction system cones and processed

using Ficoll density gradient centrifugation. After processing,

single-cell suspensions were cryopreserved until the day of

analysis. For flow cytometric analyses, cells were permeabilized

using the Cytofix/Cytoperm kit (BD) and stained with antibodies

against: CD3, CD14, CD56, CD19, CD25, CD4 (all BD); CD8

(BioLegend), CXCL9, (Biotechne); and with Fixable Viability Dye

eFluor 708 (eBioscience). Flow cytometry was performed using

LSRFortessa (BD).
2.10 Single-cell RNAseq analysis

The respective dataset consisting of samples obtained from 12

patients with RCC was downloaded as AnnData object (h5ad) from

previously published studies of Li R. et al. (49) [Dataset (50)] and

imported in Scanpy version 1.9.1. The dataset was controlled for the

quality with scanpy by thresholding the number of detected genes

(200), counts (2000) and the fraction of mitochondrial

reads (<30%).

Cell transcriptomes were embedded into a batch-corrected low-

dimensional latent space using scVI (51, 52) treating each sample as

a separate batch. The scVI model was trained on the 2000

most ‘highly variable genes’ as determined with scanpy’s

“pp.highly_variable_genes’ with parameters ‘flavor=“seurat’, and

batch_key=‘orig.ident’. A neighborhood graph and UMAP

embedding was computed based on the scVI latent space. All cell-

type annotations were used from the original study (49). Annotated

cell types were confirmed by a set of cell type–specific markers such

as, CD3E, CD68, CD8A, CD4, CD79A, KIT, CDH5, ACTA2,

EPCAM. For more detailed analysis ‘tumor’ and ‘normal-kidney’

samples were extracted from the dataset and merged into a sparate

AnnData object.

Data analysis and graphical visualization was performed with

scanpy v.1.9.1, anndata v.0.8.0, umap v.0.5.3, numpyv.1.21.5, scipy

v.1.7.3, pandas v.1.4.2, scikit-learn v.1.02.2, statsmodels v.0.13.2,

pynndescent v.0.5.7, and python-igraph v.0.10.2. A method and

samples overview of scRNA dataset is shown in Supplementary

Figure S4.
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2.10.1 Multiplex immunofluorescence
In-House RCC samples (n = 4) after surgery were fixed in 4%

paraformaldehyde, embedded in paraffin and five-micrometer

sections were used for the immunofluorescence staining. Multiplex

IHC was performed using Opal 6-plex Detection Kit (cat:

NEL821001KT, Akoya Biosciences, Menlo Park, USA). A multiplex

panel of immune markers was developed with antibodies against

CXCR3 (clone EPR25373-32, cat: ab288437, dilution 1:200, Abcam,

Cambridge, MA, USA), CD4 (clone EP204, cat: 104R-26, dilution

1:50, Cell Marque), CD8 (clone C8/144B, cat: M710301-2, dilution

1:200, Dako/Agilent, Santa Clara, CA, USA), CD68 (clone PG-M1,

cat: M087601-2, dilution 1:250, Dako/Agilent), cytokeratin (clone

AE1/AE3, cat: MA5-13156, dilution 1:500, Thermo-Fisher). The

staining procedure was performed using an automated staining

system (BOND-RX; Leica Biosystems, Vienna, Austria). To

visualize cell nuclei, the tissue was stained with 4’,6-diamidino-2-

phenylindole (spectral DAPI, Akoya Biosciences). Slides were

scanned at 20x magnification using Mantra 2 Quantitative

Pathology Workstation (Akoya Biosciences) and representative

images from each tissue were acquired with the Mantra Snap

software version 1.0.4. Image spectral deconvolution, multispectral

image analysis and cell phenotyping was carried out using the

InForm Tissue Analysis Software version 2.4.10 (Akoya Biosciences).
3 Results

3.1 Characteristic of the study cohorts

Altogether, we analyzed clinical and transcriptome data from 8

publicly available RCC cohorts including a total of 1819 RCC

samples. Males constituted between 57 and 76% of investigated

patients and the gender distribution was comparable between the

cohorts. The median age ranged between 60 and 64 years and was

similar in the study collectives. The RECA-EU, GSE167093 and E-

MTAB 1980 cohort individuals tended towards lower tumor grades

(G2) as compared with the remaining collectives with the grade data

available. The majority of tumors was stage T1. In the TCGA,

RECA-EU and E-MTAB 1980, information on initial metastasis

status was available; only a small fraction of participants had lymph

node or distant metastases at RCC diagnosis. The median

observation time was clearly shorter in the CM 010 and CM 025

collectives. In these cohorts, the rate of relapses and mortality

within the observation time window was substantially higher. In

the samples from the CM studies, between 5.1 (CM 025 everolimus)

and 25% patients (CM 010 and CM 025, nivolumab) displayed an

overall therapy response defined as CR or PR (Table 1).
3.2 CXCL9/10/11, CXCL13 and XCL1 govern
CD8+ T cell recruitment in RCC

First, we sought to identify RCC-specific chemokines which

may mediate CD8+ T cells recruitment. Expression of 28 chemokine
frontiersin.org
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TABLE 1 Characteristic of the study cohorts. Numeric variables are presented as medians with interquartile ranges and ranges.

Variable TCGA EMTAB1980 GSE73731 GSE167093 RECA CM010 CM025eve CM025niv

Sex

Female: 35%
(n = 188)
Male: 65% (n
= 345)
complete: n =
533

Female: 24% (n
= 24)
Male: 76% (n =
77)
complete: n =
101

Female: 39%
(n = 102)
Male: 61% (n
= 160)
complete: n =
262

Female: 41%
(n = 247)
Male: 59% (n
= 357)
complete: n =
604

Female: 43%
(n = 39)
Male: 57% (n
= 52)
complete: n =
91

Female: 33% (n
= 15)
Male: 67% (n =
30)
complete: n = 45

Female: 27% (n
= 25)
Male: 73% (n =
67)
complete: n = 92

Female: 24% (n
= 21)
Male: 76% (n =
67)
complete: n = 88

Age, years

61 [IQR: 52 -
70]
range: 26 - 90
complete: n =
533

64 [IQR: 56 -
72]
range: 35 - 91
complete: n =
101

62 [IQR: 55 -
68]
range: 23 - 85
complete: n =
602

60 [IQR: 54 -
67]
range: 35 - 83
complete: n =
91

61 [IQR: 55 -
67]
range: 46 - 81
complete: n = 45

62 [IQR: 56 -
68]
range: 31 - 86
complete: n = 92

62 [IQR: 53 -
68]
range: 30 - 88
complete: n = 88

Tumor grade

G1: 2.6% (n =
14)
G2: 43% (n =
229)
G3: 39% (n =
206)
G4: 14% (n =
76)
GX: 0.94% (n
= 5)
complete: n =
530

G1: 13% (n =
13)
G2: 60% (n =
59)
G3: 22% (n =
22)
G4: 5.1% (n =
5)
complete: n =
99

G1: 8.6% (n =
22)
G2: 35% (n =
90)
G3: 37% (n =
95)
G4: 19% (n =
49)
complete: n =
256

G1: 19% (n =
100)
G2: 57% (n =
304)
G3: 20% (n =
105)
G4: 4.5% (n =
24)
complete: n =
533

G1: 14% (n =
13)
G2: 53% (n =
48)
G3: 17% (n =
15)
G4: 16% (n =
14)
complete: n =
90

Tumor stage

T1: 51% (n =
273)
T2: 13% (n =
69)
T3: 34% (n =
180)
T4: 2.1% (n =
11)
complete: n =
533

T1: 67% (n =
68)
T2: 11% (n =
11)
T3: 21% (n =
21)
T4: 0.99% (n =
1)
complete: n =
101

T1: 33% (n =
41)
T2: 9.6% (n =
12)
T3: 22% (n =
28)
T4: 35% (n =
44)
complete: n =
125

T1: 51% (n =
306)
T2: 16% (n =
98)
T3: 23% (n =
138)
T4: 10% (n =
62)
complete: n =
604

T1: 59% (n =
54)
T2: 14% (n =
13)
T3: 24% (n =
22)
T4: 2.2% (n =
2)
complete: n =
91

Metastasis
stage

M0: 79% (n =
422)
M1: 15% (n =
79)
MX: 5.6% (n
= 30)
complete: n =
531

M0: 88% (n =
89)
M1: 12% (n =
12)
complete: n =
101

M0: 89% (n =
81)
M1: 9.9% (n =
9)
MX: 1.1% (n =
1)
complete: n =
91

Node stage,
pn

N0: 45% (n =
240)
N1: 3% (n =
16)
NX: 52% (n =
277)
complete: n =
533

N0: 93% (n =
94)
N1: 3% (n = 3)
N2: 4% (n = 4)
complete: n =
101

N0: 87% (n =
79)
N1: 2.2% (n =
2)
NX: 11% (n =
10)
complete: n =
91

Relapse
26% (n = 115)
complete: n =
435

32% (n = 32)
complete: n =
101

6.6% (n = 6)
complete: n =
91

91% (n = 41)
complete: n = 45

89% (n = 82)
complete: n = 92

88% (n = 77)
complete: n = 88

Death
30% (n = 160)
complete: n =
530

23% (n = 23)
complete: n =
101

33% (n = 30)
complete: n =
91

78% (n = 35)
complete: n = 45

83% (n = 76)
complete: n = 92

70% (n = 62)
complete: n = 88

Observation
time, days

1000 [IQR:
330 - 1700]
range: 0 -
3800
complete: n =
529

1600 [IQR:
1000 - 2500]
range: 30 -
4400
complete: n =
101

1800 [IQR:
1100 - 2000]
range: 2 - 2300
complete: n =
91

770 [IQR: 240 -
1500]
range: 36 - 2200
complete: n = 45

600 [IQR: 250 -
1100]
range: 21 - 1900
complete: n = 92

680 [IQR: 350 -
1500]
range: 25 - 2000
complete: n = 88

(Continued)
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genes was compared between RCC and normal kidney, and

correlated with CD8+ T cell infiltration predicted by the

QuanTIseq algorithm (46) in the TCGA KIRC cohort. CXCL9/10/

11, CXCL13 and XCL1 were found to be at least four-fold

upregulated in the cancer tissue and correlated strongly with

CD8+ T cell infiltration with r > 0.6 in Spearman test

(Supplementary Figure S1). These chemokine genes along with

genes coding for the cognate receptors CXCR3 (CXCL9/10/11),

CXCR5 (CXCL13) and XCR1 (XCL1) were analyzed further.

CXCL9/10/13 and XCL1 chemokine transcripts and the CXCR3,

CXCR5 receptor transcripts were significantly enriched in RCC as

compared with the non-malignant tissue in an analysis of donor-

matched samples in the TCGA KIRC and GSE167093. This

upregulation was particularly strong for CXCL9, CXCL10 andCXCL13.

In turn, significantlyelevatedexpressionofCXCL11andXCR1 inRCCas

comparedwithnormalkidneytissuecouldbeobservedonlyintheTCGA

KIRC cohort but not in the GSE167093 collective (Figure 1).

As revealed by network analysis of Spearman’s correlations

between gene expression and non-malignant cell content predicted

by the xCell algorithm, expression of CXCL9/10/11, CXCR3,

CXCL13, XCL1 and XCR1 was tightly associated with increased

infiltration by panCD8+, central memory and effector memory

CD8+ T cells, activated myeloid and plasmacytoid DC (mDC and

pDC), TAMs, CD4+ T cells and B cells (Figure 2; Supplementary

Figure S5). The association of CD8+ T cells with CXCL9/10/13

expression was the strongest. Substantially weaker correlations were

detected for CD8+ T cells and CXCR5 or XCR1 (Supplementary

Figures S6, S7). Likewise, highly reproducible correlation could be

observed between RCC expression of the genes of interest and CD8+

T cell infiltration levels as predicted by the QuanTIseq algorithm

(31) (Supplementary Figures S8, S9). Interestingly, levels of

chemokines and the cognate receptors were not associated with

Treg infiltration.
3.3 Chemokine expression is enriched in
immune and tumor cells, whereas the
cognate receptors are exclusively
produced by immune cells

To furtherdelineate expressionof the chemokinesof interest and the

cognate receptors at the single-cell level, we reanalyzed a publicly
Frontiers in Immunology 07
available PDAC dataset (49), comprising single-cell RNAseq data

from 12 RCC samples. Following cell type annotation, re-analysis

revealed CXCL9 as well as CXCL10 expression mainly in myeloid

cells, whereas CXCL11 was exclusively expressed in tumor cells. T cells

were the major source of CXCL13, while XCL1 was predominantly

expressed in NK cells. Focusing on the cognate receptors, CXCR3 was

mainly expressed in T cells, CXCR5 in B cells and finally, XCR1 in

myeloid cells (Figure 3A). In-depth analysis of CXCL9/10 and XCR1

expression in different myeloid subclusters showed that myeloid/

conventional DC (cDC) were the majour source of CXCR1. On the

contrary, CXCL9 and CXCL10 were predominantly expressed in M1

TAMs. In line with this finding, our FACS of tissue samples from

periphery andcenter ofRCC tumors (AppendixTable S6) also identified

CD14+ tumor-infiltrating myeloid cells as the population with the

highest levels of CXCL9 protein (Figure 3B). In-depth analysis of

CXCR3 expression in T cell subsets revealed CXCR3 expression in

CD4+ and CD8+ T cells. Immunofluorescence experiments of in-house

RCCsamples again corroborated thatCXCR3 ismainly co-expressedon

CD4+ and CD8+ T cells (Figure 3C).
3.4 Clustering according to chemokine
expression

PAM clustering of the TCGA KIRC samples in respect to

normalized expression levels of CXCL9/10/11, CXCR3, CXCL13,

XCL1 and XCR1 yielded two distinct subsets of RCC termed the

chemokinehigh and chemokinelow cluster (Supplementary Figure S2).

This clustering structures were highly conserved in the remaining

investigated collectives as evident from comparable fractions of

explained clustering variance and similar distribution of

chemokinehigh and chemokinelow sample frequencies within the

cohorts (Supplementary Figure S3A). The strongest differences in

expression of the clustering genes between the chemokinehigh and

chemokinelow cluster were detected for CXCL9/10/11, CXCR3 and

CXCL13 (Figure 4; Supplementary Figure S3B). In line with the

correlation results, xCell-predicted infiltration of central memory

CD8+T cellswas significantly higher in the chemokinehigh than in the

chemokinelow cluster. Levels of xCell-predicted TAM, activated

mDC, RCC and B cell infiltration were significantly upregulated in

chemokinehigh cancers in the majority of analyzed cohorts (Figure 5;

Supplementary Figure S10).
TABLE 1 Continued

Variable TCGA EMTAB1980 GSE73731 GSE167093 RECA CM010 CM025eve CM025niv

MSKCC risk
group

favorable: 36%
(n = 16)
intermediate:
38% (n = 17)
poor: 27% (n =
12)
complete: n = 45

favorable: 36%
(n = 33)
intermediate:
47% (n = 43)
poor: 17% (n =
16)
complete: n = 92

favorable: 27%
(n = 24)
intermediate:
50% (n = 44)
poor: 23% (n =
20)
complete: n = 88

Therapy
response

CRPR: 0% (n =
0)
complete: n = 45

CRPR: 5.1% (n
= 4)
complete: n = 79

CRPR: 25% (n =
21)
complete: n = 83
Categorical variables are presented as percentage and total number within the complete observation set.
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3.5 Chemokinehigh expression shows no
influence on survival and therapy response

Except for the TCGA KIRC cohort displaying a significant

enrichment of late stage tumors in the chemokinehigh cluster, no

significant differences in distribution of tumor stages and MSKCC

risk groups could be observed neither between the two clusters

(Supplementary Figure S11) nor at the level of single chemokine

genes (data not shown). No differences in best therapy response

between the chemokine clusters could be detected neither for
Frontiers in Immunology 08
everolimus nor for nivolumab in the CM collectives (Supplementary

Figure S12). Similarly, OS and RFS times in the two clusters did not

differ significantly (Figure 6; Supplementary Figure S13).

Finally, in multi-parameter Ridge Cox modeling of OS as a

function of age, sex, grade, tumor and metastasis stage

together with gene expression, the influence of chemokine

levels was found to be marginal as compared with age, grade,

tumor and metastasis stage (Supplementary Figure S14A). As

evident from a comparison of concordance indexes of the

multi-parameter model consisting of solely clinical and
A B

D

E F

G H

C

FIGURE 1

(A–H) Differences in expression of CXCL9/10/11, CXCL13, XCL1 and their cognate receptors between RCC and normal kidney tissue. Differences in
expression of CXCL9/10/11, CXCR3, CXCL13, CXCR5, XCL1 and XCR1 between the RCC and normal kidney tissue were investigated in donor
matched samples from the TCGA KIRC and GSE167093 cohorts by two-tailed paired T test. The results were corrected for multiple testing with false
discovery rate (FDR) method. Points represent single samples, samples from the same tissue donors are connected with lines. P values are displayed
in the plot captions. Numbers of tissue donors are indicated under the plots.
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demographic variables and the model including gene

expression parameters, there was no add-on value of the

investigated gene expression levels to the prediction accuracy

of the OS in the TCGA KIRC, E-MTAB 1980 or RECA-EU

collectives (Supplementary Figure S14B).
3.6 Chemokinehigh cluster is associated
with IFN signaling and T cell exhaustion

To elucidate such mechanisms of activation and suppression

of CD8+ T cell response in RCC, we delved into differences in
Frontiers in Immunology 09
transcriptomes between chemokinehigh and chemokinelow

clusters. In gene set variance analysis (34), ssGSEA scores of

gene signatures of 26 Reactome pathways were found

significantly upregulated in the chemokinehigh cluster as

compared with the chemokinelow cluster. These included PD-1

signaling involved in T cell exhaustion and signatures of

pathways employing JAK/STAT signaling: IFN (IFN)a/b,
IFNg , interleukin 9 (IL9) and IL21 signaling (Figure 7;

Supplementary Table S1). Of note, the upregulation of JAK/

STAT along with an activated chemokine and cytokine signaling,

and increased cytotoxicity in the chemokinehigh cluster were

identified by the SPIA algorithm modelling activity of signaling
FIGURE 2

Expression of CXCL9/10/11, CXCL13, XCL1 and their cognate receptors in RCC samples enriched in CD8+ and CD4+ T cells, activated myeloid DC,
TAM and B cells. Pairwise association of the gene expression and xCell non-immune cell infiltration estimates was assessed by scaled Spearman’s
correlation. The genes of interest and the cell types associated with the genes of interest with moderate-to-large strength (correlation coefficient r
> 0.4) were visualized as network force-directed plots with edge weighting by the scaled Spearman’s correlation coefficient. CD8+ T, CD8+ T cells,
CD4+ T, CD4+ T cells, n, naive; m, memory; em, effector memory; cm, central memory; Th1, T helper cells 1; Th1, T helper cells 1; mDC, myeloid
dendritic cells, act mDC, activated mDC; pDC, plasmacytoid dendritic cells; TAM, tumor-associated macrophages; B, B cells, switch Bm, class-
switched memory B cells; NK, natural killer cells; NKT, natural killer T cells; T gd, gd T cells; Mono, monocytes; Eosino, eosinophils.
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pathways based on different ia l gene express ion (45)

(Supplementary Figure S15).

To investigate the JAK/STAT signaling and T cell exhaustion

process in more details, we resorted to identification of genes

differentially expressed in the chemokinehigh cluster as compared

with chemokinelow RCCs (Supplementary Tables S2, S3). Out of

140 transcripts associated with the IFNa/b and IFNg Reactome

pathways, between 21 and 71 genes were upregulated in

chemokinehigh RCCs of the TCGA KIRC, E-MTAB 1980,

GSE73731, GSE167093, RECA-EU and CM 025 collectives. Only

two IFN signaling/related genes were differentially regulated in the
Frontiers in Immunology 10
smallest CM 010 cohort. The top regulated IFN signaling-related

genes encompassed IFNg (IFNG), genes of signaling mediators

(JAK2, STAT1, ISG15), canonical transcriptional targets of IFN

signaling (IRF and GPB family), anti-viral defense genes (OAS1,

OASL, SAMHB), antibody receptors (FCGR1B, TRIM21) and

genes of immunoproteasome and antigen-presenting complex

(PSMB8, B2M, HLA family). In particular, high levels of IFNG

and direct JAK2/STAT1 transcriptional targets suggest high

activity and functionality of IFNg-mediated signaling in

chemokinehigh RCCs (Supplementary Figures S16, S17). Of note,

CXCL9/10/11 belong to classical IFNg-stimulated genes and as
A

B C

FIGURE 3

Cellular localization of CXCL9/10/11, CXCL13, XCL1 and their cognate receptors by scRNAseq analysis. (A) Overview of cellular localization of
chemokines (CXCL9/10/11, CXCL13 and XCL1) and the cognate receptors (CXCR3, CXCR5 and XCR1). (B) Dotplot expression analysis of annotated
myeloid subpopulations in the dataset (49) with targets CXCL9/10 and XCR1 demonstrating dendritic cells as the major source of XCR1 and M1 TAMs
for CXCL9/10. As a representative member of the chemokine cluster, CXCL9 was further analyzed by flow cytometry. RCC tumors from tumor
center and tumor periphery and matched normal adjacent kidney tissues were resected and freshly processed to obtain a single-cell suspension.
Cells were analyzed using flow-cytometry. Dotplots of a representative gating of live cells are shown: CD3+CD4+ and CD3+CD8+ T cells, CD56+ NK
cells, CD19+ B cells and CD14+ myeloid cells. Levels of CXCL9 were assessed in the specific immune cell subpopulations. FACS identified CD14+

tumor-infiltrating myeloid cells as the population with the highest levels of CXCL9 protein. (C) Dotplot expression analysis of annotated T cell
subsets in the dataset with the target CXCR3 showing CD4+ and CD8+ T cells as the major source of CXCR3. This finding was also confirmed by
multiplex immunofluorescence analysis. Multiplex immunofluorescence image of RCC showing coexpression of CXCR3 with CD8 and CD4 T cells.
Scale bar = 100 mm. (B) Magnification of TILs region. Scale bar = 50 mm. Stastististical tests used: (A) two-way ANOVA with Geisser-Greenhouse
correction with Tukey’s multiple comparisons test; *p<0.05, **p<0.01.
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such may perpetuate CD8+ T cell recruitment to the IFN-rich

milieu of chemokinehigh RCCs.

A sizable fraction of genes related to T cell exhaustion (18–21)

was upregulated in the chemokinehigh cluster as compared with

chemokinelow cluster of the TCGA KIRC, E-MTAB 1980,

GSE73731, GSE167093, RECA-EU and CM 025 collectives (total

genes: 87, upregulated genes: 17 - 64). These upregulated genes

included transcripts of surface co-stimulation/inhibition molecules

(TIGIT, CD27, ICOS, LAG3, TNFSRF9), cytotoxic proteins (GZMB)

and transcription factors driving T cell differentiation, persistence

and exhaustion (TOX, EOMES, BATF) (Supplementary Figures S18,

S19). Genes coding for immune checkpoint proteins, PDCD1,

CD274 (PD-L1), PDCD1LG2 (PD-L2), CTLA4 and HAVCR2

(TIM3), were found to be expressed at significantly higher levels

in the chemokinehigh than chemokinelow cluster (Figure 8,

Supplementary Figure S20). In sum, the abundant CD8+ T cell

infiltration and high activity of potentially anti-tumorigenic IFN

signaling in the chemokinehigh cluster is strongly counteracted by
Frontiers in Immunology 11
mult ip le redundant immune checkpoint and T ce l l

exhaustion processes.
3.7 Altered energy metabolism and
immunosuppressive IDO1-mediated
tryptophan degradation in
Chemokinehigh RCC

Finally, we sought to investigate potential alterations of cellular

metabolism in the chemokinehigh cluster as compared with

chemokinelow cluster based on whole-genome differences in gene

expression (46, 47) (Supplementary Table S5). Substantial fractions

of reactions involved in oxidative energy metabolism such as fatty

acid oxidation, citric acid cycle (also known as TCA or Krebs cycle)

and oxidative phosphorylation (OXPHOS) were found to be

inhibited in chemokinehigh RCCs. In turn, one-third of enzymatic

reactions of tryptophan metabolism (TRP) implicated in T cell
FIGURE 4

Expression of CXCL9/10/11, CXCL13, XCL1 and their cognate receptors in the two chemokine clusters. Chemokine clusters of RCC samples were
defined in the TCGA KIRC training cohort in respect to normalized log2-transformed expression of CXCL9/10/11, CXCR3, CXCL13, XCL1 and XCR1 by
the PAM/cosine distance algorithm. Prediction of cluster assignment in the E-MTAB 1980, GSE73731, GSE167093, RECA-EU, CM 010, CM 025
everolimus and CM 025 nivolumab (CM 025 NIVO) was done with the inverse distance-weighted 15-nearest neighbor classifier. log2 transformed
expression of the clustering genes was compared between the chemokine (chemox) high and low cluster by false discovery rate (FDR) corrected
two-tailed T test in the TCGA KIRC, E-MTAB 1980, GSE73731, GSE167093, RECA-EU collectives. Mean normalized expression values are visualized as
thick lines, tinted regions represent two standard errors of the mean (SEM). P values are shown in the Y axis. Numbers of cancer samples assigned to
the clusters are displayed in the plot captions.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1095195
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pichler et al. 10.3389/fimmu.2023.1095195
immunosuppression were significantly upregulated in

chemokinehigh RCCs of the TCGA KIRC collective (Figure 9). In

more detail, widespread significant inhibition of multiple fatty acid

oxidation reactions was observed in chemokinehigh cancers of the

TCGA KIRC, E-MTAB 1980, GSE73731, GSE167093 and CM 025

nivolumab cohorts (Supplementary Figure S21). An overall reduced

activity of the citric acid cycle was particularly evident in the

chemokinehigh cluster of the four largest collectives (TCGA KIRC,

E-MTAB 1980, GSE73731 and GSE167093) and the 2-oxoglutarate
Frontiers in Immunology 12
- malate section of the cycle (Supplementary Figure S22). In

OXPHOS, sustained inhibition of the complexes I and IV could

be detected (Supplementary Figure S23).

In the chemokinehigh cluster of the TCGA KIRC, E-MTAB

1980, GSE73731, GSE167093 and RECA-EU cancers, significant

increase (>50%) in activity of IDO was detected, a reaction

responsible for TRP depletion and the first step of synthesis of

immunosuppressive kynurenine and quinolinic acid. In the CM

collectives, an increased predicted IDO activity was evident, yet
frontiersin.or
FIGURE 5

Predicted infiltration of T and B cells, activated mDC and TAM in the two chemokine clusters. Differences in levels of effector memory CD8+ T
(CD8+ Tem), central memory CD8+ T (CD8+ Tcm), memory CD4+ T (CD4+ Tm), effector memory CD4+ T cells (CD4+ Tem), B cells (B), activated
myeloid dendritic cells (act mDC), M1 and M2 tumor-associated macrophages (TAM) between the chemokine (chemox) high an chemokine low
cluster were assessed by false discovery rate (FDR) corrected Mann-Whitney test in the TCGA KIRC, E-MTAB 1980, GSE73731, GSE167093, RECA-EU
collectives. Median normalized infiltration levels with interquartile ranges (IQR) are presented as boxes, whiskers span over the 150% IQR. Points
represent single cancer samples. P values are indicated in the Y axes, significant effects are highlighted in bold. Numbers of cancer samples assigned
to the chemokine high and low clusters are displayed in the plot captions.
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missed statistical significance following multiple testing correction.

Furthermore, we could observe an elevated activity of kynureninase

(KYNU), a key enzyme in quinolinate biosynthesis, in

chemokinehigh RCCs as compared with the chemokinelow cluster

(Supplementary Figure S24). These findings were corroborated at

the gene expression level in the TCGA KIRC, E-MTAB 1980,

GSE73731, GSE167093, where both isoforms of IDO, IDO1 and

IDO2, were significantly upregulated in the chemokinehigh cluster.

Significantly higher levels of IDO1 could be detected in the RECA-

EU and CM 025 everolimus chemokinehigh cancers as well. KYNU

gene was also expressed at significantly increased levels in

chemokinehigh RCCs in four out of eight investigated cohorts

(Figure 10; Supplementary Figure S25).
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4 Discussion

RCC is considered as an immunogenic tumor with frequent

infiltration of immune cells. However, infiltrating anti-tumor

immune cells may become dysfunctional in the TME. In addition,

regulatory immune cells such as Tregs and MDS cells can infiltrate

into the TME resulting in the impairment of tumor immunity (53).

Chemokines play an essential role within the TME by

differentially regulating the infiltration of various immune cell

subsets (16), guiding the trafficking behavior of T cells (54) and

thus, influencing therapeutic outcomes in cancer patients (16).

Consequently, targeting chemokine signaling pathways might be

an innovative concept to improve efficacy of current cancer
FIGURE 6

Overall survival in the two chemokine clusters. Differences in overall survival between the chemokine (chemox)high and chemoxlow RCCs were
investigated by false discovery rate (FDR) corrected Peto-Peto test. Fractions of surviving patients are visualized in Kaplan-Meier plots. Uncorrected
and FDR-corrected p values are displayed in the plots. Number of complete observations and deaths (events) are displayed in the plot captions,
numbers of patients in the clusters are indicated under the plots. CM 010: CheckMate 010; CM 025 EVER: CheckMate 025 everolimus; CM 025
NIVO: CheckMate 025 nivolumab.
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therapies including immunotherapy (16). We previously

investigated a possible role of different chemokine receptors in

RCC showing that CCR3 was predominantly expressed in RCC cells

and correlated with a higher tumor grading (55). Moreover, its

ligand eotaxin-1 (CCL11), possibly up-regulated as a result of

tumor-associated inflammation, might be involved in the

development and progression of RCC (55). In addition to CCR3,

increased expression of CXCR3 and its ligands in RCC tissue

compared to normal kidney tissue have already been reported

(56–58). To more systematically examine the role of chemokines

and their cognate receptors in RCC we performed a comprehensive

analysis of published bulk RNAseq data from a total of 1819 RCC

samples and identified, within the set of 28 chemokine genes

available for all eight datasets, an overexpression of CXCL9/10/11/

CXCR3, CXCL13/CXCR5 and XCL1/XCR1 in RCC compared with

normal renal tissue. Collectively, the results of correlation,

scRNAseq and semi-supervised clustering put forward CXCL9/10/

11, CXCL13 and XCL1 chemokine genes along with their receptors

CXCR3, CXCR5 and XCR1 as the key molecules involved in

recruitment of effector memory and central memory CD8+ T cells

to the RCC TME. Focusing on the cellular localization of these

chemokines of interest and cognate receptors, M1 TAMs, T cells,

NK cells and tumor cells were the major sources of chemokines. In

contrast, the cognate receptors CXCR3, CXCR5 and XCR1 were

predominantly expressed on T cells (CXCR3), B cells (XCR5) and

denritic cells (XCR1).

RCC shows a high frequency of metabolic reprogramming

(59–61) and importantly, such local and systemic metabolic

alterations can affect anti-tumor immune responses (62). We
Frontiers in Immunology 14
could previously demonstrate that tumor-infiltrating T cells in

RCC are functionally impaired due to mitochondrial and

glycolytic dysfunction (48). In accordance, in our current

comprehensive analysis we found a significant correlation

between the chemokinehigh cluster and reduced OXPHOS. The

entire process from fatty acid oxidation and TCA cycle to the

electron transport chain (ETC) was significantly suppressed.

Importantly, Complex I and Complex IV of the ETC were most

strongly inhibited in the chemokinehigh RCC cluster. This

phenomenon of “nutrient competition exhaustion” by reduced

OXPHOS might be explained by a recent study which has shown

that CD4+ T cells preferentially differentiate towards Tregs when

OXPHOS is inhibited (63).

Among transcripts differentially regulated in the chemokinehigh

cluster, multiple STAT-activated genes were found, suggestive of

activation of IFN/JAK/STAT signaling. This is of interest as this

specific signaling pathway drives for example the expression of

CXCL9/10/11 and CXCR3 (64). Moreover, the same pathway

promotes IDO-1-mediated degradation of tryptophan resulting in

the accumulation of the immunosuppressive metabolite kynurenine

(65). We recently described that expression of IDO-1, an enzyme

that catalyzes TRP and induces the accumulation of kynurenine

metabolites, was predominantly expressed in tumor endothelial

cells and was mostly absent from RCC tumor cells (66). Of note,

in this current analysis, the TRP degrading pathway was also

upregulated in the chemokinehigh RCC cluster. Moreover, a series

of genes related to T cell exhaustion was upregulated in the

chemokinehigh cluster including transcripts of surface co-

stimulation/inhibition molecules, cytotoxic proteins and
FIGURE 7

Reactome pathway gene signatures significantly regulated between the two chemokine clusters. Single sample gene set enrichment analysis
(ssGSEA) scores for Reactome pathway gene signatures (n = 1615) were compared between chemokine (chemox)high and chemokinelow RCCs by
false discovery rate (FDR) corrected two-tailed T test. Significance and estimated differences in ssGSEA scores for the TCGA KIRC cohort are
presented in a volcano plot. Points represent single genes, point color codes for the regulation sign. The significance cutoff is visualized as a dashed
line. Reactome pathway signatures found to be significantly regulated in all investigated cohorts are highlighted and labeled with their names.
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transcription factors driving T cell differentiation, persistence and

exhaustion as well as immune checkpoint proteins such as PDCD1,

CD274 (PD-L1), PDCD1LG2 (PD-L2), CTLA4 and HAVCR2

(TIM3). Thus, results of metabolic reaction activity modeling

suggest profound inhibition of OXPHOS in the chemokinehigh

RCC cluster along with an increased activity of the

immunosuppressive IDO1-mediated degradation pathway. These

processes may pose another hurdle to effective anti-tumor T cell

response in RCCs hallmarked by high expression of the T cell-

attracting chemokines CXCL9/10/11, CXCL13 and XCL1. In sum,

the T cell-inflamed TME in RCC is characterized by CD8+ T cell

infiltration, which is mediated by these specific chemokines, and an

IFNg signature, indicating a strong interplay between tumor cells

and immune cells. However, CD8+ T cell-inflamed RCCs may
Frontiers in Immunology 15
activate different immunosuppressive redundant immune

checkpoint and T cell exhaustion pathways such as IDO1 and/or

PD-L1/2, CTLA4, TIGIT, LAG3 and TIM3 (Figure 11). Thus,

upregulation of immunosuppressive pathways within the TME is

more intrinsically driven by immune cells itself rather than by

tumor cells (67).

Focusing on the predictive and prognostic role of our identified

chemokine signature, we could neither observe significant

differences in survival nor in response to immunotherapy

between the chemokinehigh and chemokinelow RCC cluster. None

of the chemokine genes used for cluster definition correlated

consistently and significantly with OS or RFS. This fact may

suggest, that potential beneficial effects of CD8+ T cells recruited

via CXCL9/10/11, CXCL13 and XCL1 are likely outweighed by
FIGURE 8

Differential expression of genes coding for clinically relevant immune checkpoint proteins in the two chemokine clusters. Genes differentially
expressed in chemokine (chemox)high versus chemokinelow RCCs were identified by false discovery rate (FDR) corrected two-tailed T test in the
TCGA KIRC, E-MTAB 1980, GSE73731, GSE167093, RECA-EU collectives. Results for clinically relevant immune checkpoint genes are presented.
Median normalized log2 expression levels with interquartile ranges (IQR) are presented as boxes, whiskers span over the 150% IQR. Points represent
single cancer samples. P values are indicated in the Y axes, significant effects are highlighted in bold. Numbers of cancer samples assigned to the
chemokinehigh and chemokinelow clusters are displayed in the plot captions.
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potent activated immunosuppressive properties of the RCC TME as

described here. An additional explanation relates to the fact that

chemokines may differentially regulate the biological function of T

cells, resulting in distinct anti- and pro-tumoral effects in the TME

(64, 68). While CXCL9/10/11 may exhibit indirect anti-tumor

effects through the recruitment of CXCR3-expressing T cells,

these chemokines and their cognate receptor may also contribute

to tumor development and metastasis via T cell-independent

mechanisms (56). Activation of CXCR3 on different tumor cell

types has been shown to prevent apoptosis and promote

proliferation. Moreover, immunohistochemical detection of

CXCR3 on localized RCC correlated with poor disease prognosis

(69). In addition to promoting and sustaining tumor development,

CXCR3 may facilitate tumor cell dissemination, for instance, to the

lymph nodes (64, 68). Thus, when RCC acquires CXCR3 expression

and possibly also CXCL9 expression, this fact can generate an

autocrine CXCL9/CXCR3 axis that supports tumor progression

and metastasis. CXCL13, originally identified as a B cell

chemoattractant, and its receptor CXCR5 have also emerged as

key players of carcinogenesis and cancer progression (70). They can

also act via autocrine and paracrine signals between the TME and

the tumor cells itself (70). In RCC, CXCL13 promotes tumor cell

proliferation and migration by activation of PI3K/Akt/mTOR

signaling. Thus, CXCL13 up-regulation has been shown to

correlate with advanced disease stage and poor prognosis (71). In
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addition, XCL1 positively correlated with the expression of several

inhibitory receptors and cytokines that are associated with T cell

exhaustion and several immune checkpoints in ccRCC, thus

resulting in a significantly poorer survival (72). However, as

evident from a comparison of concordance indexes of the multi-

parameter model consisting of solely clinical and demographic

variables and the model including gene expression parameters,

there was no add-on value of the investigated chemokine gene

expression levels to the prediction accuracy of OS or response to

immunotherapy. Despite the fact that chemokines included in our

chemokinehigh cluster seem to be good candidates to predict

response to immunotherapy (73, 74), RCCs with chemokinehigh

expression did not show better survival or response to

immunotherapy in the present study. One reason we show for

this is an increased activation of immunosuppressive pathways such

as IDO, which is known to lead to resistance to immunotherapy

(75). In RCC, we also showed in a previous work that IDO1

expression correlates positively with increased CD8+ T cells

reflecting a T cell-inflamed TME in RCC (66). IDO1 is

responsible for immune escape mechanisms for tumor cells

contributing to T cell exhaustion (76). As a consequence,

accelerated breakdown of TRP with increased IDO-1 activity is

associated with disease progression, decreased OS and poor

prognosis in different cancer entities (77). Thus, blocking more

than one immunosuppressive pathway combining PD-1/PD-L1
A B

FIGURE 9

Differential regulation of metabolic reactions between the two chemokine clusters. Regulation of the Recon human metabolism model reactions in
chemokine (chemox) high versus chemokine low cluster cancers was predicted based on the differential gene expression with the BiGGR and
biggrExtra package tools. Significance of the metabolic reaction regulation was assessed by Monte Carlo simulation and corrected for multiple
testing with the false discovery rate (FDR) method. Fractions of significantly activated (A) and significantly inhibited (B) reactions within the Recon
model subsystems are presented for the TCGA KIRC cohort. Fatty acid oxidation, citric acid cycle, oxidative phosphorylation and tryptophan (TRP)
metabolism subsystems investigated in more detail are highlighted in bold.
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inhibitors with IDO1 inhibitors may improve the therapeutic

response to immunotherapy especially in chemokinehigh RCCs.

Early data already show a promising response of the combination

pembrolizumab and the IDO inhibitor epacadostat in metastatic

RCC (78). The corresponding phase 3 study (KEYNOTE-679/

ECHO-302) is currently ongoing.

There are some limitations of our research. The analysis of

published bulk RNAseq data does not allow us to link CXCL9/10/11,

CXCL13 and XCL1 expression with T cell priming, differentiation

and exhaustion. Analogically, it does not explain how CXCL9/10/11,

CXCL13 and XCL1 overexpression induces reprogramming of

energy metabolism and increased IDO-mediated tryptophan
Frontiers in Immunology 17
degradation. To address that and validate our bioinformatic

analysis results, ex vivo assays and protein level analyses

including both chemokinehigh and chemokinelow RCC are

considered as a next research step.
5 Conclusion

XCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1

expression defines a chemokinehigh subset of RCC characterized

by abundant CD8+ T cell infiltration and active IFN/JAK/STAT

signaling. These favorable prognostic features are overweighed by
A

B

FIGURE 10

Differential expression of genes involved in the tryptophan/kynurenine/quinolinate metabolism between the two chemokine clusters. Genes
differentially expressed in chemokine (chemox)high versus chemokinelow RCCs were identified by false discovery rate (FDR) corrected two-tailed T
test. Results for genes involved in the tryptophan - kynurenin - quinolinate metabolic pathway are presented. (A) Pathway scheme. TRP, tryptophan;
TDO, tryptophan 2,3-dioxygenase; KMO, kynurenine 3-monooxygenase; KYNU, kynureninase; KAT, kynurenin aminotransferase; HAAO, 3-
hydroxyanthranilate 3,4-dioxygenase. (B) Gene expression in the clusters. Median normalized log2 expression levels with interquartile ranges (IQR)
are presented as boxes, whiskers span over the 150% IQR. Points represent single cancer samples. P values are indicated in the Y axes, significant
effects are highlighted in bold. Numbers of cancer samples assigned to the chemokine high and low clusters are displayed in the plot captions. IDO,
indoleamine 2,3-dioxygenase; KYAT1, kynurenine—oxoglutarate transaminase 1.
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redundant immunosuppression processes involving T cell

exhaustion, suppression of oxidative energy metabolism and

OXPHOS, and IDO1-mediated tryptophan degradation. As a

result, no survival or therapy response benefit could be observed

for chemokinehigh RCCs. Our results stress the importance of

therapeutic combinations targeting multiple immunosuppressive

pathways and metabolic reprogramming in RCC.
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