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Platelet factor 4 (PF4), also known as chemokine (C-X-C motif) ligand 4 (CXCL4),

is a specific protein synthesized from platelet a particles. The combination of PF4

and heparin to form antigenic complexes is an important mechanism in the

pathogenesis of heparin-induced thrombocytopenia (HIT), but vaccine-induced

immune thrombotic thrombocytopenia (VITT) related to the COVID-19 vaccine

makes PF4 a research hotspot again. Similar to HIT, vaccines, bacteria, and other

non-heparin exposure, PF4 can interact with negatively charged polyanions to

form immune complexes and participate in thrombosis. These anions include

cell surface mucopolysaccharides, platelet polyphosphates, DNA from

endothelial cells, or von Willebrand factor (VWF). Among them, PF4–VWF, as a

new immune complex, may induce and promote the formation of immune-

associated thrombosis and is expected to become a new target and therapeutic

direction. For both HIT and VITT, there is no effective and targeted treatment

except discontinuation of suspected drugs. The research and development of

targeted drugs based on the mechanism of action have become an unmet

clinical need. Here, this study systematically reviewed the characteristics and

pathophysiological mechanisms of PF4 and VWF, elaborated the potential

mechanism of action of PF4–VWF complex in immune-associated thrombosis,

summarized the current status of new drug research and development for PF4

and VWF, and discussed the possibility of this complex as a potential biomarker

for early immune-associated thrombosis events. Moreover, the key points of

basic research and clinical evaluation are put forward in the study.
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Introduction

After vaccination with recombinant adenovirus vector

(ChAdOx1-nCov-19, AstraZeneca) encoding spike protein

antigen of severe acute respiratory syndrome coronavirus 2

(SARS CoV-2), several cases of abnormal thrombotic events and

thrombocytopenia occurred, known as vaccine-induced immune

thrombotic thrombocytopenia (VITT) (1). This suggests a disorder

that clinically resembles severe heparin-induced thrombocytopenia

(HIT), a well-known prothrombotic disorder caused by platelet-

activating antibodies that recognize multimolecular complexes

between cationic platelet factor 4 (PF4) and anionic heparin (2).

The VITT-affected patients were strongly positive in the PF4/

polyanion immunoassay (enzyme-immunoassay (EIA)), and the

platelet activation induced by serum was the largest in the presence

of PF4 (3).

However, unlike the usual case of HIT, these vaccinated patients

did not receive any heparin to explain the subsequent development

of thrombosis and thrombocytopenia. How PF4 plays a role in

immune-associated coagulation abnormalities has not been clearly

determined. More data are needed on the pathogenesis of this

abnormal coagulation disorder.
Source, structure, and characteristics
of PF4

PF4, also known as chemokine (C-X-C motif) ligand 4

(CXCL4), is synthesized by megakaryocytes, internalized into

vesicles, and then packaged in platelet a-granules (4, 5). In

addition to megakaryocytes, PF4 is also expressed by cultured

microglia (6). Moreover, immunoelectron microscopy studies

confirmed that PF4 localizes not only to a-granules but also to

mast cells (7). When platelets are stimulated by aggregating agents,

such as thrombin or adenosine 50-diphosphate (ADP) (8) and

arachidonic acid (9), PF4 is released from a-granules. In addition,

PF4 is also released by monocytes, neutrophils, and activated T cells

(10, 11). Subcellular locations of PF4 gene are summarized in

Figure 1A (data from GeneCards.org).

PF4 is secreted as a tetramer, that is, comprised of four

identical subunits that assemble to form a globular protein (12).

The genes encoding human PF4 are located in q13.1 in the global

run-on (GRO) region of chromosome 4, which includes a 3′-
untranslated region, the entire amino acid coding region for the

mature PF4 protein, and a 5′ region containing coding

information for an additional 18 amino acids (13, 14). Full-

length human PF4 is composed of 101 amino acids, which

includes a hydrophobic signal-like sequence involved in

transmembrane transport (14) and a mature monomeric human

PF4 peptide with a molecular weight of 7.8 kDa containing 70

amino acids (15). Using nuclear magnetic resonance (NMR)

spectroscopy, researchers have shown that pH and ionic

strength play key roles in the state of PF4. When the pH is

approximately 4, lowering the pH shifts the equilibrium to the
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monomer state, while increasing the pH leads the equilibrium to

the dimer and tetramer states. Additionally, increasing the solvent

ionic strength stabilizes the tetramer state, particularly at low pH

levels (16).
FIGURE 1

(A) Subcellular locations of PF4 gene from compartments.
(B) Potential function of PF4 in antiangiogenesis, inflammation, and
atherosclerosis. (C) Overview of systemic diseases involving VWF.
(D) Potential mechanistic hypothesis of the PF4–VWF complex in
inducing and accelerating thrombosis. PF4, platelet factor 4; VWF,
von Willebrand factor.
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Potential biological function of PF4

PF4 is released when platelets are activated, and it has been

found to play an important role in coagulation, tumors,

antithrombotic neovascularization, fibrosis, infectious diseases,

and other diseases. Among them, the most important and widely

recognized function of PF4 is its participation in the formation of

immune-related thrombosis.

Unlike most chemokines that bind to clear receptors, the

involvement of specific CXCL receptors in mediating different

PF4 activities remains uncertain (17). However, PF4 has a high

affinity for polyanions, such as surface mucopolysaccharides,

platelet polyphosphates, and DNA from endothelial cells (18).

Polyanions (heparin, bacteria, vaccine, etc.) bind to PF4 to form a

complex that promotes the release of various cytokines (growth

factors, inflammatory factors, and chemokines) and induces

immune cells to produce antibodies against the complex

(Table 1). Then, antibodies can bind to the FcgRIIA receptor

on the platelet surface, promoting platelet aggregation and the

release of inflammatory factors, ultimately leading to thrombosis

(23). However, the formation of this complex is affected by the

charge and the concentration of PF4 and polyanions, and when

the concentration of PF4 or polyanions increases, the

combination could become weakened, and the thrombus-

promoting effect is diminished (24). In addition, the PF4

tetramer binds in a calcium-independent manner to the

chondroitin sulfate (CS) side-chain on the cell-surface

glycosaminoglycan (GAG) domain of thrombomodulin (TM),

augmenting activated protein C (APC) formation by up to 25-

fold (25). Meanwhile, PF4 is bound to the anionic g-
carboxyglutamic acid (Gla) domain of protein C (PC) (17),

ultimately enhancing APC generation by the thrombin–

thrombomodulin complex (26). Furthermore, PF4 can

neutralize the natural anticoagulant effect of negatively charged

GAGs, including heparin (27). PF4 prevents heparin binding to

antithrombin III leading to inhibition of heparin-dependent
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thrombin inactivation (28) and facilitates platelet aggregation

even in the presence of suboptimal inducer concentrations (29).

In addition, PF4 plays an important role in antiangiogenesis,

atherosclerosis, the inflammatory response, and tumor biology

mainly through its ability to regulate angiogenesis and the

function of different immune cell types (Figure 1B). PF4 exerts

potent angiostatin effects by inhibiting endothelial cell

proliferation, and this effect is localized to amino acid residues

17–70 of the molecule (30). PF4 and p17-70 can inhibit

proangiogenic factors such as fibroblast growth factor 2 (FGF2)

to suppress angiogenesis (31, 32). Moreover, PF4 also inhibits the

function of vascular endothelial growth factor (VEGF) by

disrupting the binding of VEGF to its receptor and suppressing

the VEGF-induced intracellular signaling cascade (33). PF4

stimulates immune cancer surveillance and tumor inhibition by

enhancing the adhesion of neutrophils, eosinophils, and

monocytes and inhibiting the activation and proliferation of T

cells, which decreases metastasis formation and tumor-platelet

aggregates in animal models (34, 35). PF4 inhibits low-density

lipoprotein (LDL) catabolism by competing for binding to LDL

receptors (LDL-Rs) primarily through interaction with cell-

associated chondroitin sulfate proteoglycans and disrupting

normal endocytic transport of LDL/LDL-R complexes (36). The

resulting retention of LDL on the cell surface may promote the

formation of oxidized LDL, ultimately supporting an expanded

role for platelets in the mechanism of atherosclerotic disease (37).

Regarding the inflammatory response, PF4 triggers chemotaxis of

human polymorphonuclear leukocytes and monocytes, attracting

inflammatory cells to sites of blood vessel injury, promoting

neutrophil degranulation, and stimulating cytokine production

in monocytes, which act on natural killer cells, neutrophils,

mononuclear phagocytes, and T regulatory cells (38, 39).

Moreover, PF4 is also involved in the physiopathological

process of chronic obstructive pulmonary disease (COPD) (40),

pancreatic cancer (41), periodontitis (42), polycystic ovary

syndrome (PCOS) (43), and thyroiditis (44).
TABLE 1 Potential mechanism of PF4 in different thrombosis diseases.

Category HIT or classic HIT (19) Autoimmune HIT (20) VITT (21, 22)

Polyanion
binding to
PF4 (trigger)

Heparin (UFH/LMWH) Heparin, bacteria, or pathogen Adenovirus vector vaccine and the
component

Target cells Platelet, neutrophil, monocytes, and B
cells

Platelet, platelet microparticles, endothelial cells, and monocytes Platelet, monocytes, neutrophils, and
endothelium cell

Clinical
presentation

Thrombocytopenia with or without
thrombosis; high-titer anti-PF4
antibody

Delayed-onset HIT; persisting HIT; spontaneous HIT; heparin
“flush” HIT; fondaparinux-associated HIT; severe HIT (platelet
count lower than 20 × 109/L) with associated DIC

High-titer anti-PF4; thrombosis in
unusual sites; thrombocytopenia

Treatments Stop heparin; anticoagulation
(argatroban/bivalirudin/fondaparinux/
DOACs/warfarin/); IVIg or TPE

Heparin cessation and avoidance/reversal of vitamin K
antagonists; alternative anticoagulation (subcutaneous
fondaparinux/NOAC); high-dose IVIg or TPE

Anticoagulation; modulation of the
autoimmune phenomenon; supportive
care; organ-specific (surgical)
interventions
VITT, vaccine-induced immune thrombotic thrombocytopenia; UFH, unfractionated heparin; LMWH, low-molecular-weight heparin; DOAC, direct oral anticoagulant; IVIg, intravenous
immunoglobulin; TPE, therapeutic plasma exchange; DIC, disseminated intravascular coagulation; HIT, heparin-induced thrombocytopenia; NOAC, novel oral anticoagulant.
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Potential role of the
PF4–VWF complex in
immune-associated thrombosis

Von Willebrand factor (VWF) is a multimeric adhesive protein

that is primarily synthesized and stored in endothelial cells,

megakaryocytes, and platelet precursors in the bone marrow (45).

It is encoded by the VWF gene located on the short arm of

chromosome 12 and is involved in the occurrence and

development of a variety of systemic abnormal diseases, especially

in hemorrhagic and thrombotic conditions (46) (Figure 1C). An

elevated plasma level of VWF may predict a thrombotic occurrence,

while a decreased plasma level may indicate a bleeding condition

(47). When a vessel injury occurs, VWF acts as a molecular bridge

by promoting platelet adhesion to the subendothelial at sites of

vascular injury and platelet–platelet interactions in high shear-rate

conditions, contributing to primary hemostasis (48). It is also the

carrier of factor VIII (FVIII), indirectly contributing to the

coagulation process (49).

The injured vascular endothelial cells release a large number of

VWF molecules, which spontaneously assemble into VWF strings

under the action of low shear force, providing binding sites for PF4. In

2020, PF4–VWF complexes were first found in patients with

thrombotic thrombocytopenic purpura (TTP) (50). As demonstrated,

PF4 was incubated with either bovine serum albumin (BSA), GPIIb/

IIIa, or VWF, and PF4 interacted with VWF only, indicating that the

interaction was specific to VWF. PF4 suppresses ADAMTS13 (a

disintegrin and metalloproteinase with a thrombospondin type 1

motif, member 13) activity when it binds to the VWF-A2 domain in

a concentration-dependent manner (50), potentially worsening

thrombosis. When the ratio was 1:1 (hPF4:VWF = 10:10 µg/ml), the

mean mass of the hPF4–VWF complexes widened with an appearance

similar to that of VWF alone (51). Moreover, PF4 complexes that bind

to VWF chains can be recognized by HIT antibodies, and platelets then

bind extensively to these complexes, which is inhibited by monoclonal

antibodies that block FcgRIIA or glycoprotein Ib-IX (51). These results

indicate that the formation of immune complexes mediated by VWF

promotes thrombosis and participates in the occurrence and

development of HIT.

Von Willebrand disease (VWD) is a bleeding disorder caused

by quantitative (type 1 or 3) or qualitative (type 2A/2B/2M/2N)

defects of circulating VWF (52). However, circulating VWF levels

do not always fully explain bleeding phenotypes, suggesting a role

for alternative factors, like platelets. A positive correlation between

PF4 and VWF : Ag levels in type 2A VWD patients (r = 0.229, p =

0.010) was found, which might indicate a similar interaction in vivo

(53). Low plasma ADAMTS13 activity or reduced ratio of

ADAMTS13 activity to VWF antigen or activity was found

prevalent in patients with suspected HIT (54), which suggests that

PF4 may reduce VWF cleavage by inhibiting ADAMTS13 activity.

Similarly, ADAMTS13 levels were reduced (p = 0.009) and the

VWF/ADAMTS13 ratio was increased (p = 0.0004) in convalescent

COVID-19 patients with dysregulated angiogenesis and

immunothrombosis, while levels of PF4 (a putative protector of

VWF) were also elevated (p = 0.0001) (55). Moreover, recent
Frontiers in Immunology 04
findings revealed mortality to be significantly correlated with

VWF antigen (r = 0.38; p = 0.0022) and soluble thrombomodulin

(r = 0.38; p = 0.0078) among patients with COVID-19-associated

coagulopathy (56). As PF4 was found to bind to VWF and protect

against ADAMTS13 activity (50), studies suggested that

ADAMTS13 activity against VWF was prevented by stabilization/

protection of the PF4–VWF complex mediated by PF4 antibodies

(57). At present, studies on the interaction between PF4 and VWF

are limited, and more studies are needed to focus on the inhibitory

effect of PF4 on the activity of ADAMTS13 and the role of the PF4–

VWF complex in immune-related thrombotic diseases.

No drugs targeting PF4 have been successfully marketed, and

only one HIT diagnostic kit targeting PF4/heparin antibody is

available for in vitro diagnosis. Drugs that prevent VWF-

associated thrombosis include the metalloproteinases ADAMTS13

(58) and N-acetylcysteine (59), by digesting high-molecular-weight

VWF strings and by preventing their formation, respectively. Thus,

therapeutic strategies targeting PF4 and VWF-associated

thrombosis are novel methods for the diagnosis and treatment of

immune-associated thrombosis. We searched the clinical trials

registered on the Clinical Trial website and found 48 drugs or

devices focusing on the diagnosis and treatment of HIT (PF4-

related disease), VWD (VWF-related disease), and other

thrombosis diseases (Supplementary Table 1). A total of four

clinical trials focused on PF4, two of which were medical

diagnostic devices and two of which were drugs, in patients with

HIT, thrombosis, coronary artery bypass graft surgery presence of

heparin/PF4 antibody, and end-stage renal disease. Of the

remaining 44 studies, four studies focused on VWF-related

diagnostic methods, and 40 reported the treatment of

hematological disease. These therapeutic drugs mainly include

plasma-derived FVIII/VWF concentrate, VWF replacement

therapy with Wilate, tranexamic acid, and biological agents

(Advate, Alphanate, BIVV001, Biostate, caplacizumab,

recombinant VWF/FVIII, etc.). Thus, there is still a lack of

effective direct-blocking drugs for thrombotic events caused by

HIT and HIT-like diseases. The discovery of new therapeutic

targets has become a clinical problem for disease interpretation,

diagnosis, and treatment.
Conclusions and perspectives

PF4 is a cationic protein that easily forms polymers with

polyanions to expose new antigenic sites and stimulate immune-

mediated thrombocytopenia and thrombosis. However, in the

COVID-19 vaccinated population, severe COVID-19 patients,

infection, and some spontaneous HIT case reports, the

combination of PF4 with other polyanions to form an antigen

complex can induce the production of anti-PF4 antibodies, leading

to thrombotic thrombocytopenia, even in the absence of a history of

heparin exposure.

Among them, PF4 binds along the surface of elongated strings

of VWF polymers, where specific binding sites are exposed by

ADAMTS13 cleavage. Thus, we speculate that similar to the

mechanism of HIT, VWF, as a polyanion, forms a super-large
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1098665
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1098665
immune complex with PF4 and induces PF4 to expose neoantigens.

The PF4–VWF complex might underlie platelet activation and

inflammation that make and exacerbate immune-associated

thrombosis (Figure 1D): PF4 is released by activated platelets and

forms a tetramer after the patient is exposed to suspicious drugs or

irritants. At the same time, IgG antibody is released from plasma

cells and forms PF4–VWF antigen complexes with the activated

endothelial extruded cell surface VWF. PF4–VWF complexes bind

with IgG antibody as a supercomplex and then bind with the

FcgRIIA receptor, leading to 1) activation, aggregation, and

additional release of PF4 and procoagulant particles; 2) tissue

factor release by endothelial cells; and 3) formation of neutrophil

extracellular traps (NETs) after stimulation of neutrophils. Tissue

factors, NETs, and procoagulant particles act on thrombin, leading

to platelet aggregation and thrombosis. In future drug and product

development, studies focusing on the induction of PF4

conformational changes (PF4V1), blocking the binding of PF4 to

VWF, the competitive binding of the complex to FcgRIIA receptors,

and the prevention of NET release may effectively prevent

thrombosis caused by PF4–VWF complex. In-depth mechanistic

and clinical research on the PF4–VWF complex will help broaden

the early theory of immune-associated thrombosis pathogenesis

and identify new biomarkers for the development of vaccines, new

heparin drugs, and in vitro diagnostic kits.

In summary, we systematically summarized the possible

mechanisms of PF4 and VWF in immune-related thrombosis and

proposed potential directions for future basic and clinical

translational research.
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