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viruses on the regulation of gene
expression in patients
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Yanan Hu1,2, Han Gao3* and Zhiyong Peng1,2*

1Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,
2Clinical Research Center of Hubei Critical Care Medicine, Wuhan, Hubei, China, 3Department of
Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
Background: SARS-CoV-2 infection is a respiratory infectious disease similar to

influenza virus infection. Numerous studies have reported similarities and

differences in the clinical manifestations, laboratory tests, and mortality

between these two infections. However, the genetic effects of coronavirus and

influenza viruses on the host that lead to these characteristics have rarely been

reported.

Methods: COVID-19 (GSE157103) and influenza (GSE111368, GSE101702)

datasets were downloaded from the Gene Expression Ominbus (GEO)

database. Differential gene, gene set enrichment, protein-protein interaction

(PPI) network, gene regulatory network, and immune cell infiltration analyses

were performed to identify the critical impact of COVID-19 and influenza viruses

on the regulation of host gene expression.

Results: The number of differentially expressed genes in the COVID-19 patients

was significantly higher than in the influenza patients. 22 common differentially

expressed genes (DEGs) were identified between the COVID-19 and influenza

datasets. The effects of the viruses on the regulation of host gene expression

were determined using gene set enrichment and PPI network analyses. Five HUB

genes were finally identified: IFI27, OASL, RSAD2, IFI6, and IFI44L.

Conclusion:We identified five HUB genes between COVID-19 and influenza virus

infection, which might be helpful in the diagnosis and treatment of COVID-19 and

influenza. This knowledge may also guide future mechanistic studies that aim to

identify pathogen-specific interventions.
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) outbreak in late 2019 led to a global pandemic (1, 2).

According to the World Health Organization (WHO) (https://

covid19.who.int/), in August 2022, there were 594,367,247

confirmed COVID-19 cases and 6,451,016 deaths worldwide. At

present, the complete impact of the COVID-19 outbreak is

uncertain. Recently, SARS-CoV-2 variants Alpha (B.1.1.7), Delta

(B.1.617.2), and Omicron (B.1.1.529) have also been identified one

after another, becoming the main circulating strains in some

countries. This has caused heavy human and economic losses

worldwide (3).In addition, the beginning of the flu season can

seriously affect human health. As a common respiratory pathogen,

the flu causes seasonal epidemics and severe sporadic epidemics

worldwide (4). The combination of the prevalence of the influenza

virus during the influenza season and the current pandemic poses

additional challenges and greater threats to public health.

Currently, many studies have compared COVID-19 and influenza

patients, including the method and mode of transmission, clinical

features, associated immune response characteristics, clinical

symptoms, laboratory findings, radiological signs, morbidity, and

mortality (5–8). As a respiratory infectious disease, patients with

COVID-19 and influenza experience the same or similar symptoms,

including fever, cough, pneumonia, acute respiratory distress

syndrome, an imbalanced immune response, excessive inflammatory

response, T-cell depletion and failure, and immune escape mechanisms

(6, 8, 9). However, influenza virus infection results from a direct viral

infection of respiratory epithelial cells and a respiratory inflammatory

process caused by innate and adaptive immune responses, the main

purpose of which is to control the spread of the transmitted virus (7).

Inflammatory mediators can spread throughout the body, causing

systemic inflammatory response syndrome (SIRS) and leading to

multiple organ failure. These consequences are often downstream of

lung damage and severe respiratory distress. Other non-pulmonary

disease mechanisms associated with influenza are also thought to be

associated with general inflammatory features (7, 10). Severe COVID-

19 results in damage to the alveolar capillary barrier caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and

extravasation of protein-rich edematous fluid into the air cavity,

resulting in acute respiratory distress syndrome (ARDS) (11, 12).

ARDS is a systemic inflammatory disease that is not confined to

pulmonary processes. In this case, the cytokine storm induced by

COVID-19 leads to the worsening and even death from COVID-19,

not only because of lung damage but also because of extrapulmonary

multi-organ failure (7, 13). The basic reproductive number R zero (R0)
Abbreviations: IFI27, Interferon Alpha Inducible Protein 27; IFI44L, Interferon

Induced Protein 44 Like; RSAD2, Radical S-Adenosyl Methionine Domain

Containing 2; OSAL, NLR Family CARD Domain Containing 5; IFI6,

Interferon Alpha Inducible Protein 6; DEGs, Differentially expressed genes;

SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; ARDS, Acute

respiratory distress syndrome; ssGSEA, Single-sample gene set enrichment

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; TFs, Transcription factors; CC, Cellular component; MF, Molecular

function; BP, Biological process.
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of COVID-19 (1.5-5.7) is more significant than that of influenza (0.9-

2.1) (14). At the same time, the transmission rate of SARS-CoV-2 is

higher than that of seasonal influenza, but the mortality rate of the

latter is much lower than that of COVID-19 (6, 8). Chemosensory

dysfunction, rashes, and reproductive system damage are more

common in people infected with COVID-19 than in those with

influenza (6, 15). Numerous reports illustrate the similarities and

differences between COVID-19 and influenza. However, the genetic

effects of the coronavirus and influenza viruses on the host that lead to

these characteristics have rarely been reported. Comprehensive

assessment of host regulation of gene expression in both diseases can

be used to identify the populations at high risk, enhance our focus on

specific preventive measures for these populations, and help define

future needs for healthcare facilities.

To better understand the effects of coronavirus and influenza virus

infection on the changes of host mRNA levels and biological processes.

And explore the interconnections between different influences as much

as possible. We obtained sequencing data from the GEO database for

influenza (GSE111368, GSE101702) and COVID-19 (GSE157103)

(16). Explored the differential genes in COVID-19 and influenza

patients using bioinformatics methods, identified hub genes, and

explored pathway biological processes and pathways that influence

each of these diseases to gain a more comprehensive understanding of

the host response to SARS-CoV-2 and influenza viruses. The results of

this study will help us understand the association between gene

expression and clinical manifestations, which will improve our ability

to develop effective treatment methods for infected patients.
2 Materials and methods

2.1 Data collection

The expression datasets of COVID-19 and influenza patients were

retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/).

GSE157103 contained data on 100 patients who tested positive for

COVID-19 and 26 controls, while GPL24676 was used to detect the

mRNA expression profiles. GSE111368 included data from 199

patients with H1N1 influenza virus infection, 30 patients with other

influenza virus infection, and 130 controls, while GPL10558 was used

to detect the mRNA expression profile. GSE101702 contained data on

57 healthy controls and 102 influenza patients, while GPL21185 was

used to detect the mRNA expression profile. The information of the

datasets was listed in Table 1.
2.2 Analysis of differentially
expressed genes

Raw sequencing data were first retrieved from the GEO

database. After normalization, the raw sequencing data were log2-

transformed, and the resulting array was directly analyzed using the

R package “limma” (17). An adjusted-p value of < 0.05 and log2[fold

change (FC)] > 1 were considered to indicate a statistically

significant result and were used in the subsequent analysis. The

heatmap of the top 15 genes with high and low expression
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differences were drawn using the R package “pheatmap.” The

differential volcano map was drawn using the R package “ggplot2”.
2.3 Enrichment analysis

Next, we performed GO and KEGG enrichment analyses of

the differential genes in three datasets using the R packages

“clusterProfiler” and “Enrichplot.” We explored the associations

and distinctions between the diseases by comparing the enrichment

of the differential genes in each dataset. A p < 0.05 and adjusted-

p < 0.05 indicated significantly enriched functions and pathways.
2.4 Hub gene extraction

To evaluate the common DEGs among the three diseases, the R

packages “VennDiagram” and “UpSetR” were used to draw the Venn

and UpSet diagrams of the intersection of the genes. The interaction

between intersecting genes was analyzed using the STRING database

(18). Cytoscape software was used to compute the network degree and

draw the interaction diagram (19). The MCC algorithm of the

cytoHubba plugin in Cytoscape was used to calculate the top 5 hub

genes and draw the relevant images (20). Additionally, we verified the

identity of the hub genes using differential and ROC analyses (21).
2.5 Association between the analysis
of the gene regulatory network and
gene-diseases

Transcription factors (TFs) and miRNAs are the two main types of

trans-acting factors. They are essential regulators of gene expression that

play an important role in cell differentiation, animal growth, and

development. NetworkAnalyst is a web tool that can comprehensively
Frontiers in Immunology 03
visualize profile data (22). We used NetworkAnalyst to explore the

TFs obtained from the JASPAR (23) database and miRNA data from

the TarBase andmiRTarBase databases to determine the intersecting genes

(24, 25). We also explored the interrelationships between the genes in our

datasets and known diseases using DisGeNet in NetworkAnalyst (26).
2.6 Immune correlation analysis

The degree of immune cell infiltration in each sample was

determined through single-sample gene set enrichment analysis

(ssGSEA) using the R package, “GSVA.” The Wilcoxon rank-sum

test was used to compare differences in immune cells between the

disease and control groups. Spearman analysis was used to evaluate

the correlation between hub genes and immune cells. A p < 0.05 was

considered to indicate statistical significance.
2.7 Statistical analysis

R software (v.4.2.0) was used to perform all statistical analyses

and mapping. The differentially expressed genes were analyzed

using Student’s t-test, while the Spearman correlation coefficient

was used to evaluate the relationship between hub genes and

immune cells. The difference was considered to be statistically

significant at p<0.05 (*), p<0.01 (**), and p<0.001 (***).

3 Results

3.1 Heat map and volcano map of
differential gene expression in COVID-19
and influenza datasets

We identified 974 differentially expressed genes in the

GSE157103 dataset, with 395 upregulated and 579 downregulated.
TABLE 1 Detailed information of selected datasets.

Disease
name

COVID-19 Influenza Influenza

GEO
accession

GSE157103 GSE111368 GSE101702

GEO
platform

GPL24676 GPL10558 GPL21185

Tissue
(Homo
sapiens)

Peripheral
Blood

Peripheral Blood Peripheral Blood

Experiment
Type

RNA-Seq Array Array

Number of
samples

100 patients
and 26
controls

199 patients had H1N1 influenza virus
infection, 30 patients had other influenza
virus infection and 130 controls

102 patients and 57 controls

Country USA United Kingdom Germany

Description Patients tested
positive for
COVID-19

The majority had H1N1 influenza virus
infection

World Health Organization definition of influenza-like illness (fever of 38 °C or higher,
cough and illness onset within the last ten days). Eligible patients were assessed by an
admitting physician for likelihood of influenza infection.
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The heat map of the top 15 DEGs with high and low expression

differences in the GSE157103 dataset was presented in Figure 1A.

The differential expression volcano map of all genes is shown in

Figure 1D. We found 190 DEGs in the GSE111368 dataset, with 129

upregulated and 61 downregulated. Figure 1B shows the top 15

DEGs of H1N1 virus infected patients and controls in the

GSE111368 dataset, while the volcano map with all DEGs is

presented in Figure 1E. Additionally, 275 DEGs were identified in

the GSE101702 dataset, with 197 upregulated and 78

downregulated. The heat map of the top 15 DEGs in the

GSE171110 dataset is presented in Figure 1C, and the volcano

map of all the DEGs is shown in Figure 1F. The number of

differentially expressed genes in COVID-19 patients was

significantly higher than that of influenza patients, which may

lead to an increase in complex clinical symptoms in COVID-

19 patients.
3.2 GO functional enrichment analysis and
KEGG pathway analysis of differentially
expressed genes in COVID-19 and
influenza datasets

Next, we performed the GO functional analysis of the DEGs in

the COVID-19 and influenza datasets. The top 5 most significant

enrichment results in cellular components (CCs), molecular

functions (MFs), and biological processes (BPs) are presented in

Figure 2. In the COVID-19 dataset, BPs were mainly enriched in

nuclear division and organelle, CCs were mainly enriched in the

Spindle chromosomal region, and MFs were mainly enriched in

tubulin binding and microtubule binding (Figure 2A). This may

lead to the overproduction of inflammatory cytokines in COVID-19

patients. In the GSE111368 dataset, BPs were mainly enriched in

Defense response to bacterium and cell killing, CCs were mainly
Frontiers in Immunology 04
enriched in secretory mutlumen and cytoplasmic vesicle lumen, and

MFs were mainly enriched in immune receptor activity and

glycosaminoglycan binding (Figure 2B). In the GSE101702

dataset, BPs were mainly concentrated on response to viruses,

defense, and response to viruses; CCs were mainly concentrated

on secretory mutlumen and cytoplasmic vesicle lumen, while MFs

were mainly concentrated on cytokine binding immune receptor

activity (Figure 2C). GO results showed that influenza virus

infection mainly caused active expression of genes related to self-

defense and immune system inhibition of virus replication and

inflammatory response.

The KEGG pathway analysis was also performed on the DEGs in

the COVID-19 and influenza datasets. The most enriched pathways

in each of the three datasets are shown in (Figures 2D–F). The

COVID DEGs were mainly enriched in Ribosome and Cell cycle

(Figure 2D). The GSE111368 dataset DEGs were mainly enriched in

transcriptional misregulation in cancer, Staphylococcus aureus

infection, and inflammatory bowel disease (Figure 2E). The

GSE101702dataset DEGs were mainly enriched in the NOD-like

receptor signaling pathway, coronavirus disease-COVID-19,

Cytokines, and Cytokine receptor interaction (Figure 2F).
3.3 Molecular functional analysis of
intersecting DEGs

To further explore the potential common pathogenic molecular

mechanisms between the three diseases, we used Venn and Upset

diagrams to detect 22 common DEGs among the three datasets

(Figures 3A, B). Then, we performed GO and KEGG analyses on

these genes. The common DEGs were mainly enriched for BPs in

defense response to fungus, response to fungus, and defense

response to Gram-negative bacterium. For CCs, the common

DEGs were enriched in secretory mutlumen, cytoplasmic vesicle
A B

D E F

C

FIGURE 1

Identification of differentially expressed genes. (A) Heatmap of GSE157103 database, (B) Heatmap of GSE111368 database, (C) Heatmap of
GSE101702 database, (D) Volcano of GSE157103 database, (E) Volcano of GSE111368 database (F) Volcano of GSE101702 database.
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A B

D E F

C

FIGURE 2

GO enrichment analysis and KEGG enrichment analysis. (A) Bubble for GO enrichment analysis of differentially expressed genes in the GSE157103
dataset, (B) Bubble for GO enrichment analysis of differentially expressed genes in the GSE111368 dataset, (C) Bubble for GO enrichment analysis of
differentially expressed genes in the GSE101702 dataset, (D) Bubble for KEGG enrichment analysis of differentially expressed genes in the GSE157103
dataset, (E) Bubble for KEGG enrichment analysis of differentially expressed genes in the GSE111368 dataset, (F) Bubble for KEGG enrichment analysis
of differentially expressed genes in the GSE101702 dataset.
A B

DC

FIGURE 3

Molecular functional analysis of intersecting DEGs. (A) Intersectional differential gene Venn diagram, (B) Intersectional differential gene Up Set
diagram, (C) Bubble for GO enrichment analysis of DEGs, (D) Bubble for KEGG enrichment analysis of DEGs.
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lumen, and vesicle lumen. For MFs, the common DEGs were

mainly enriched in Heparin binding, Glycosaminoglycan binding,

and sulfur compound binding (Figure 3C). The KEGG pathways

were mainly enriched in Neutrophil extracellular trap formation,

Transcriptional misregulation in cancer, and one carbon pool by

folate (Figure 3D).
3.4 Differential expression analysis of the
22 genes

We analyzed the expression levels of the 22 genes in the

GSE157103, GSE111368, and GSE101702 datasets. As shown in

Figure 4, the 22 common DEGs represent the same host responses

to SARS-CoV-2 and influenza infections. All of them were

significantly upregulated in the COVID-19, H1N1, and influenza

groups compared to the healthy controls (P < 0.05) (Figures 4A–C).
3.5 Molecular regulation of
DEGs at the transcriptional and
post-transcriptional level

To identify changes in the DEGs at the transcriptional and post-

transcriptional level of molecular regulation, we used a network-

based approach and NetworkAnalyst to decipher regulatory

transcription factors and miRNAs. The interaction network

analysis showed that 54 transcription factors (TFs) (Figure 5) and

187 post-transcriptional miRNAs (Figure 6) were involved in the

regulation of several common DEGs, indicating a substantial level

of interference between them. Different diseases may be related

through the same or similar genes and deciphering the relationship

between genes and diseases is a key approach to disease diagnosis

and treatment. Our genetic disease association analysis found that

ulcerative colitis, inflammation, autosomal recessive predisposition,

and other diseases are strongly associated with the intersecting

genes (Figure 7).
3.6 PPI network and hub gene

The interactions between intersecting genes were analyzed

using the STRING online database. The degree of interaction was

calculated using Cytoscape software, and the relationships between

the proteins are displayed based on the strength of the interaction in

Figure 8A. The Cytohubba plugin in Cytoscape was used to identify

the top five DEGs, regarded as the most influential genes based on

the PPI network and MCC algorithm. IFI27, OASL, RSAD2, IFI6,

and IFI44L were identified as the hub genes in Figure 8B. ROC

analysis of hub genes was used to identify the diagnostic efficacy of

hub genes in the COVID-19 dataset and influenza dataset. The

ROC analysis of the hub genes is presented in Figure 9. The AUC of

genes in the COVID-19 cohort are as follows: IFI6, 0.678; IFI27,

0.866; IFI44L, 0.786; OASL, 0.834; RSAD2, 0.770 (Figures 9A–E).

The AUC of genes in the GSE111368 H1N1 dataset are as follows:

IFI6, 0.812; IFI27, 0.895; IFI44L, 0.720; OASL, 0.793; RSAD2, 0.753
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(Figures 9F–J). The AUC of genes in the GSE101702influenza

datasets are as follows: IFI6, 0.844; IFI27, 0.942; IFI44L, 0.838;

OASL, 0.896; RSAD2, 0.865 (Figures 9K–O). Thus, these hub genes

may be viable biomarkers and be used to develop novel therapeutic

strategies for these diseases. We also compared the expression of

hub genes between healthy controls and different severity groups.

The results showed that there was no significant difference in the

expression of hub genes between patients with different severity in

the COVID-19 dataset (P>0.05), while there was a significant

difference in the expression of hub genes between healthy

controls and influenza patients in the influenza dataset (P<0.05).

(Supplementary Figure 1).
3.7 Immune cell correlation of hub genes
in COVID-19 dataset and influenza dataset

The ssGSEA results are presented in Figure 10. The numbers of

activated CD8 T cells, effector memory CD4 T cells, memory B cells,

and central memory CD8 T cells were significantly reduced in

influenza and COVID patients. Moreover, Activated CD4 T

Immature dendritic cells, Macrophages, and Natural killer cell

levels were significantly elevated in the disease groups compared

with the control group. IFI27 was negatively correlated with

Eosinophils. IFI44L was positively correlated with Type 17 T

helper, T follicular helper, and Natural killer cells. IFI6 was

positively correlated with Type 17 T helper and Natural killer

cells, with OASL and RSAD2 showing a similar result

(Figures 11A–C).
4 Discussion

COVID-19 and influenza are infectious respiratory diseases that

can be deadly (27, 28). The pathogenicity of COVID-19 and

influenza and the regulation of gene expression in the host

cause them to present the same or similar clinical manifestations.

Several studies have shown an association between IAV and

SARS-CoV-2. However, a comparison of gene expression

regulation between the two viruses on the host has rarely been

reported. To comprehensively evaluate the effects of these two

viruses on the regulation of host gene expression, we downloaded

the sequencing data of influenza (GSE111368, GSE101702) and

COVID-19 (GSE157103) from the GEO database. The analysis of

the differentially expressed genes showed that the number of

differentially expressed genes in COVID-19 patients was

significantly higher than that of influenza patients, which may

lead to an increase in complex clinical symptoms in COVID-19

patients. This is in line with the finding by Bai and Ryabkova that

COVID-19 is a systemic inflammatory disease that is not confined

to pulmonary processes, compared with influenza (6, 7). The GO

results showed that functions of DEGs in the COVID-19 dataset

were significantly enriched in the mitotic nuclear division, nuclear

division, specific mutational division, and microtubule binding.

This may lead to the overproduction of inflammatory cytokines

in patients, which is consistent with the findings of Varvara et al.
frontiersin.org
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(7). The DEGs in the GSE111368 dataset were significantly enriched

in defense response to fungus, defense response to bacteria, specific

accumulation, and immune receptor activity. The functions of the

differentially expressed genes in GSE101702 were significantly

enriched in negative regulation of viral genome replication,

defense response to viruses, defense response to the symbiont,

and immune receptor activity. This is consistent with the study

by Kalil et al. that the pathogenesis of influenza viral infection is a

respiratory inflammatory process caused by a direct viral infection
Frontiers in Immunology 07
of respiratory epithelial cells that stimulates innate and adaptive

immune responses, whose main purpose is to control the

transmitted disease (29). We found a similar process in the same

KEGG analysis of the COVID-19 dataset, which was mainly

enriched in cell cycle and other processes. In contrast, the

GSE111368 dataset was mainly enriched in Staphylococcus aureus

infection. For transcriptional misregulation in cancer, GSE101702

was mainly enriched in the Nod-like receptor signaling pathway

and Staphylococcus aureus infection. These results indicate that the
A

B

C

FIGURE 4

Expression analysis of the 22 DEGs in GSE157103, GSE111368, and GSE101702 datasets between types of severity and healthy control groups. (A)
mRNA expression levels of 22 DEGs between control and COVID-19 in GSE157103 dataset, (B) mRNA expression levels of 22 DEGs between control
and influenza in GSE111368 dataset, (C) mRNA expression levels of 22 DEGs between control and influenza in GSE101702 dataset (*p<0.05,
**p<0.01, ***p<0.001).
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FIGURE 5

The cohesive regulatory interaction network of DEG–TFs obtained from the Network Analyst.
FIGURE 6

The interconnected regulatory interaction network of DEGs–miRNAs.
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SARS-CoV-2 and influenza viruses differ at the transcriptome level.

The novel coronavirus may cause changes in the cell cycle and

proliferation to resist infections by changing the level of

metabolism. The differential genes of the influenza virus may play

a more important role in activating immunity and immune

response in the body. These results reveal differences between

SARS-CoV-2 and influenza viral infection from the perspective of

gene expression regulation. We identified 22 common differential

genes between the COVID and influenza datasets. The GO and

KEGG analyses showed that these genes were mainly involved in

fungus defense response, defense response to Gram-negative
Frontiers in Immunology 09
bacterium, glycosaminoglycan binding, and Sulfur compound

binding. This suggests that the common genes may be responsible

for fever, cough, pneumonia, and other clinical manifestations in

influenza and COVID patients (6, 8, 11).

Furthermore, TFs and miRNAs are two key regulatory factors at

the transcriptional and post-transcriptional levels. The regulatory

network formed with TFs and miRNAs as the core is effective for

analyzing the complexity of biological regulation. Thus, studying

the regulatory network composed of TF and miRNA might provide

important clues for the occurrence and pathogenesis of diseases at

the system level. In the TFs-DEG and miRNA interaction analysis,
A B

FIGURE 8

(A) PPI network of common DEGs among SARS-CoV-2, H1N1, and Influenza. The PPI network was generated using String and visualized in
Cytoscape. (B) Determination of hub genes from the PPI network by using the Cytohubba plugin in Cytosacpe.
FIGURE 7

The gene-disease association network represents diseases associated with mutual DEGs.
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FIGURE 10

(A) Heatmap of infiltrated immune cells in COVID-19, (B) Heatmap of infiltrated immune cells in H1N1, (C) Heatmap of infiltrated immune cells in
Influenza. (D) Fraction of infiltrated immune cells in COVID-19, (E) Fraction of infiltrated immune cells in H1N1, (F) Fraction of infiltrated immune
cells in Influenza.
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FIGURE 9

ROC analysis of HUB gene. (A) ROC of IFI6 in the GSE157103 dataset. (B) ROC of IFI27 in the GSE157103 dataset. (C) ROC of IFI44L in the GSE157103
dataset. (D) ROC of OASL in the GSE157103 dataset. (E) ROC of RSAD2 in the GSE157103 dataset. (F) ROC of IFI6 in the GSE111368 dataset. (G) ROC
of IFI27 in the GSE111368 dataset. (H) ROC of IFI44L in the GSE111368 dataset. (I) ROC of OASL in the GSE111368 dataset. (J) ROC of RSAD2 in the
GSE111368 dataset. (K) ROC of IFI6 in the GSE101702 dataset. (L) ROC of IFI27 in the GSE101702 dataset. (M) ROC of IFI44L in the GSE101702
dataset. (N) ROC of OASL in the GSE101702 dataset. (O) ROC of RSAD2 in the GSE101702 dataset.
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we found associations between intersecting genes, TFs, and

miRNAs. TP63, FOXA1, STAT1, ELK1, FOS, and JUN are TFs in

various lung injury or infection types. Some studies have shown that

TP63 is involved in airway repair following injury (30), while

FOXA1 plays an important role in maintaining airway epithelial

barrier integrity and lung cell differentiation (31, 32). The AK2/

STAT1 pathway mediated lung inflammation and cell death in a

ventilator-induced lung injury model (27). The intersecting genes-

miRNA analysis showed that miRNA302, miRNA126, miRNA21,

miRNA486, and miRNA206 are associated with the pathogenesis of

various types of lung injury. miRNA302 promotes host recovery

from pneumonia caused by Streptococcus pneumoniae (28), while

miRNA126 attenuates LPS-induced lung injury and may be

involved in the pathogenesis of asthma (33, 34). miRNA21 is a

potential biomarker of chronic lung disease in preterm infants and

may also be a potential biomarker of lung nodules (35, 36).

Currently, little is known about the role played by miRNAs and

TFs in the pathogenesis of COVID-19. Previous studies have shown

that most TFs and miRNAs are significantly upregulated in patients

with COVID-19 and influenza (37, 38). The upregulated miRNAs

and TFs may be involved in the inflammatory storm of patients and

can be used as circulating biomarkers for disease diagnosis or

prognosis (39). Currently, 19 TFS have already received FDA

approval to be used as drug targets for COVID-19 (40). Targeting

TFs and miRNAs associated with cytokine release syndromes may

provide drug candidates and targets for treating influenza and

COVID-19 infections. However, further research is needed to

confirm these findings.

Then, we performed a PPI network analysis. Five hub genes

were identified in Cytoscape software using the MCC algorithm of

cytoHubba: IFI27, IFI44L, RSAD2, OSAL, and IFI6. The ROC

analysis showed that the AUC of all Hub genes was > 0.6,

suggesting they may be potential biomarkers. Studies have

found that IFFI44, IFI6, RSAD2, and OSAL are significantly up-

regulated in COVID-19 patients and are involved in immune

regulation (41). The infected macrophages of COVID-19 patients

release large amounts of interferon into the blood, which activates
Frontiers in Immunology 11
mitochondrial IFI27 expression and disrupts the energy metabolism

of immune cells (42). Genes such as IFI27 that exert antiviral effects

and neutrophil activation are downregulated during treatment in

COVID-19 patients, which is consistent with the dynamically

enhanced inflammatory response of COVID-19 patients (43). In

patients with influenza virus infection, IFFI44L, IFI6, and RSAD2

were key antiviral factors against IAV infection in alveolar basal

epithelial cells (44). As a novel immune biomarker, IFI27 can

accurately distinguish between influenza and bacterial

infections (45).

The critical role of the immune response in infectious diseases

has received increasing attention. In this analysis, we found that the

numbers of activated CD8 T cells, effector memory CD4 T cells,

memory B cells, and central memory CD8 T cells were significantly

reduced in influenza and COVID patients. This is consistent with

the findings of Yu Bai, which indicate that the number of CD4 and

CD8 T cells in the peripheral blood was significantly decreased in

COVID-19 patients and that the severe damage during the late stage

was immune-related rather than virus-related (6). This study also

showed that lymphocytopenia is common in COVID-19 patients,

indicating both immune cell depletion and impaired cellular

immune function (6). The hematological parameters for COVID-

19 are similar. Cao et al. also found that half of the influenza

patients during the 2009 H1N1 pandemic had abnormal CD4:CD8

ratios (46). Furthermore, we also found that the expression of the

five hub genes was associated with Eosinophils, Type 17 T helper, T

follicular helper, Natural killer T, Natural killer, and Immature B

cells. These results demonstrate the importance of immune cell

infiltration for the pathogenesis and typing of influenza and

COVID-19. Previous reports have suggested a close relationship

between the central genes identified in this study and immunity (27,

45, 47–49). Hub genes may be the main cause of these changes and

may be used as immunotherapeutic targets.

In this study, we aimed to identify the effects of COVID-19 and

influenza viruses on the regulation of host gene expression using a

computational systems biology approach. Moreover, we explored

the immune cell infiltration in COVID-19 and influenza. We used it
A B C

FIGURE 11

(A) The correlation between hub genes-immune cells and the fraction of infiltrated immune cells in COVID-19, (B) The correlation between hub
genes-immune cells and the fraction of infiltrated immune cells in H1N1, (C) The correlation between hub genes-immune cells and the fraction of
infiltrated immune cells in Influenza. *p < 0.05, **p < 0.01, ***p < 0.001.
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to identify molecular mechanisms associated with comorbidities

interactions, which may also facilitate the discovery of new

knowledge from published datasets. However, our study has some

limitations. First, external validation was not run for the results.

Second, regarding the specificity of the blood sample, ssGSEA is a

relatively quantitative result, and we could not achieve the accuracy

required by the algorithm. Third, since the datasets included

different ethnicities, it was difficult to accurately determine

whether the different ethnicities could influence the related gene

expression because of the small sample size. Therefore, our results

still need further verification through in vivo and in vitro

experiments and clinical studies.
5 Conclusion

In summary, five HUB genes were identified between COVID-

19 and influenza virus infection, which might be helpful in the

diagnosis and treatment of COVID-19 and influenza. Our results

suggest that the regulatory effects exerted by both the influenza

virus and COVID virus on host gene expression may be responsible

for their similarities and differences in clinical manifestations. We

provide molecular insights into potential biomarkers and regulatory

elements that may contribute to developing novel drugs that can be

used to control the progression of COVID-19 and influenza. The

differentially expressed genes, GO terms, and signaling pathways

identified in this study can help us gain a deeper understanding of

how genes and clinical manifestations are associated. This

knowledge can also guide future mechanistic studies that seek to

develop pathogen-specific interventions.
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