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methods to identify the effects
of SARS-CoV-2 and influenza
viruses on the regulation of gene
expression in patients
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Background: SARS-CoV-2 infection is a respiratory infectious disease similar to
influenza virus infection. Numerous studies have reported similarities and
differences in the clinical manifestations, laboratory tests, and mortality
between these two infections. However, the genetic effects of coronavirus and
influenza viruses on the host that lead to these characteristics have rarely been
reported.

Methods: COVID-19 (GSE157103) and influenza (GSE111368, GSE101702)
datasets were downloaded from the Gene Expression Ominbus (GEO)
database. Differential gene, gene set enrichment, protein-protein interaction
(PPI) network, gene regulatory network, and immune cell infiltration analyses
were performed to identify the critical impact of COVID-19 and influenza viruses
on the regulation of host gene expression.

Results: The number of differentially expressed genes in the COVID-19 patients
was significantly higher than in the influenza patients. 22 common differentially
expressed genes (DEGs) were identified between the COVID-19 and influenza
datasets. The effects of the viruses on the regulation of host gene expression
were determined using gene set enrichment and PPI network analyses. Five HUB
genes were finally identified: IFI27, OASL, RSAD2, IFI6, and IFI44L.

Conclusion: We identified five HUB genes between COVID-19 and influenza virus
infection, which might be helpful in the diagnosis and treatment of COVID-19 and
influenza. This knowledge may also guide future mechanistic studies that aim to
identify pathogen-specific interventions.
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1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) outbreak in late 2019 led to a global pandemic (1, 2).
According to the World Health Organization (WHO) (https://
covid19.who.int/), in August 2022, there were 594,367,247
confirmed COVID-19 cases and 6,451,016 deaths worldwide. At
present, the complete impact of the COVID-19 outbreak is
uncertain. Recently, SARS-CoV-2 variants Alpha (B.1.1.7), Delta
(B.1.617.2), and Omicron (B.1.1.529) have also been identified one
after another, becoming the main circulating strains in some
countries. This has caused heavy human and economic losses
worldwide (3).In addition, the beginning of the flu season can
seriously affect human health. As a common respiratory pathogen,
the flu causes seasonal epidemics and severe sporadic epidemics
worldwide (4). The combination of the prevalence of the influenza
virus during the influenza season and the current pandemic poses
additional challenges and greater threats to public health.

Currently, many studies have compared COVID-19 and influenza
patients, including the method and mode of transmission, clinical
features, associated immune response characteristics, clinical
symptoms, laboratory findings, radiological signs, morbidity, and
mortality (5-8). As a respiratory infectious disease, patients with
COVID-19 and influenza experience the same or similar symptoms,
including fever, cough, pneumonia, acute respiratory distress
syndrome, an imbalanced immune response, excessive inflammatory
response, T-cell depletion and failure, and immune escape mechanisms
(6, 8, 9). However, influenza virus infection results from a direct viral
infection of respiratory epithelial cells and a respiratory inflammatory
process caused by innate and adaptive immune responses, the main
purpose of which is to control the spread of the transmitted virus (7).
Inflammatory mediators can spread throughout the body, causing
systemic inflammatory response syndrome (SIRS) and leading to
multiple organ failure. These consequences are often downstream of
lung damage and severe respiratory distress. Other non-pulmonary
disease mechanisms associated with influenza are also thought to be
associated with general inflammatory features (7, 10). Severe COVID-
19 results in damage to the alveolar capillary barrier caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and
extravasation of protein-rich edematous fluid into the air cavity,
resulting in acute respiratory distress syndrome (ARDS) (11, 12).
ARDS is a systemic inflammatory disease that is not confined to
pulmonary processes. In this case, the cytokine storm induced by
COVID-19 leads to the worsening and even death from COVID-19,
not only because of lung damage but also because of extrapulmonary
multi-organ failure (7, 13). The basic reproductive number R zero (R0)

Abbreviations: IF127, Interferon Alpha Inducible Protein 27; IFI44L, Interferon
Induced Protein 44 Like; RSAD2, Radical S-Adenosyl Methionine Domain
Containing 2; OSAL, NLR Family CARD Domain Containing 5; IFI6,
Interferon Alpha Inducible Protein 6; DEGs, Differentially expressed genes;
SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; ARDS, Acute
respiratory distress syndrome; ssGSEA, Single-sample gene set enrichment
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; TFs, Transcription factors; CC, Cellular component; MF, Molecular

function; BP, Biological process.
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of COVID-19 (1.5-5.7) is more significant than that of influenza (0.9-
2.1) (14). At the same time, the transmission rate of SARS-CoV-2 is
higher than that of seasonal influenza, but the mortality rate of the
latter is much lower than that of COVID-19 (6, 8). Chemosensory
dysfunction, rashes, and reproductive system damage are more
common in people infected with COVID-19 than in those with
influenza (6, 15). Numerous reports illustrate the similarities and
differences between COVID-19 and influenza. However, the genetic
effects of the coronavirus and influenza viruses on the host that lead to
these characteristics have rarely been reported. Comprehensive
assessment of host regulation of gene expression in both diseases can
be used to identify the populations at high risk, enhance our focus on
specific preventive measures for these populations, and help define
future needs for healthcare facilities.

To better understand the effects of coronavirus and influenza virus
infection on the changes of host mRNA levels and biological processes.
And explore the interconnections between different influences as much
as possible. We obtained sequencing data from the GEO database for
influenza (GSE111368, GSE101702) and COVID-19 (GSE157103)
(16). Explored the differential genes in COVID-19 and influenza
patients using bioinformatics methods, identified hub genes, and
explored pathway biological processes and pathways that influence
each of these diseases to gain a more comprehensive understanding of
the host response to SARS-CoV-2 and influenza viruses. The results of
this study will help us understand the association between gene
expression and clinical manifestations, which will improve our ability
to develop effective treatment methods for infected patients.

2 Materials and methods
2.1 Data collection

The expression datasets of COVID-19 and influenza patients were
retrieved from the GEO database (https://www.ncbinlm.nih.gov/).
GSE157103 contained data on 100 patients who tested positive for
COVID-19 and 26 controls, while GPL24676 was used to detect the
mRNA expression profiles. GSE111368 included data from 199
patients with HINT1 influenza virus infection, 30 patients with other
influenza virus infection, and 130 controls, while GPL10558 was used
to detect the mRNA expression profile. GSE101702 contained data on
57 healthy controls and 102 influenza patients, while GPL21185 was
used to detect the mRNA expression profile. The information of the
datasets was listed in Table 1.

2.2 Analysis of differentially
expressed genes

Raw sequencing data were first retrieved from the GEO
database. After normalization, the raw sequencing data were log,-
transformed, and the resulting array was directly analyzed using the
R package “limma” (17). An adjusted-p value of < 0.05 and log,[fold
change (FC)] > 1 were considered to indicate a statistically
significant result and were used in the subsequent analysis. The
heatmap of the top 15 genes with high and low expression
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TABLE 1 Detailed information of selected datasets.

10.3389/fimmu.2023.1098688

Disease =~ COVID-19 Influenza Influenza

name
GEO GSE157103 GSE111368 GSE101702
accession
GEO GPL24676 GPL10558 GPL21185
platform
Tissue Peripheral Peripheral Blood Peripheral Blood
(Homo Blood
sapiens)
Experiment RNA-Seq Array Array
Type
Number of 100 patients 199 patients had HIN1 influenza virus 102 patients and 57 controls
samples and 26 infection, 30 patients had other influenza

controls virus infection and 130 controls

Country USA United Kingdom Germany
Description Patients tested =~ The majority had HIN1 influenza virus World Health Organization definition of influenza-like illness (fever of 38 °C or higher,

positive for infection

COVID-19

differences were drawn using the R package “pheatmap.” The
differential volcano map was drawn using the R package “ggplot2”.

2.3 Enrichment analysis

Next, we performed GO and KEGG enrichment analyses of
the differential genes in three datasets using the R packages
“clusterProfiler” and “Enrichplot.” We explored the associations
and distinctions between the diseases by comparing the enrichment
of the differential genes in each dataset. A p < 0.05 and adjusted-
p < 0.05 indicated significantly enriched functions and pathways.

2.4 Hub gene extraction

To evaluate the common DEGs among the three diseases, the R
packages “VennDiagram” and “UpSetR” were used to draw the Venn
and UpSet diagrams of the intersection of the genes. The interaction
between intersecting genes was analyzed using the STRING database
(18). Cytoscape software was used to compute the network degree and
draw the interaction diagram (19). The MCC algorithm of the
cytoHubba plugin in Cytoscape was used to calculate the top 5 hub
genes and draw the relevant images (20). Additionally, we verified the
identity of the hub genes using differential and ROC analyses (21).

2.5 Association between the analysis
of the gene regulatory network and
gene-diseases

Transcription factors (TFs) and miRNAs are the two main types of
trans-acting factors. They are essential regulators of gene expression that
play an important role in cell differentiation, animal growth, and
development. NetworkAnalyst is a web tool that can comprehensively
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cough and illness onset within the last ten days). Eligible patients were assessed by an
admitting physician for likelihood of influenza infection.

visualize profile data (22). We used NetworkAnalyst to explore the
TFEs obtained from the JASPAR (23) database and miRNA data from
the TarBase and miRTarBase databases to determine the intersecting genes
(24, 25). We also explored the interrelationships between the genes in our
datasets and known diseases using DisGeNet in NetworkAnalyst (26).

2.6 Immune correlation analysis

The degree of immune cell infiltration in each sample was
determined through single-sample gene set enrichment analysis
(ssGSEA) using the R package, “GSVA.” The Wilcoxon rank-sum
test was used to compare differences in immune cells between the
disease and control groups. Spearman analysis was used to evaluate
the correlation between hub genes and immune cells. A p < 0.05 was
considered to indicate statistical significance.

2.7 Statistical analysis

R software (v.4.2.0) was used to perform all statistical analyses
and mapping. The differentially expressed genes were analyzed
using Student’s t-test, while the Spearman correlation coefficient
was used to evaluate the relationship between hub genes and
immune cells. The difference was considered to be statistically
significant at p<0.05 (¥), p<0.01 (**), and p<0.001 (***).

3 Results

3.1 Heat map and volcano map of
differential gene expression in COVID-19
and influenza datasets

We identified 974 differentially expressed genes in the
GSE157103 dataset, with 395 upregulated and 579 downregulated.
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The heat map of the top 15 DEGs with high and low expression
differences in the GSE157103 dataset was presented in Figure 1A.
The differential expression volcano map of all genes is shown in
Figure 1D. We found 190 DEGs in the GSE111368 dataset, with 129
upregulated and 61 downregulated. Figure 1B shows the top 15
DEGs of HINI virus infected patients and controls in the
GSE111368 dataset, while the volcano map with all DEGs is
presented in Figure 1E. Additionally, 275 DEGs were identified in
the GSE101702 dataset, with 197 upregulated and 78
downregulated. The heat map of the top 15 DEGs in the
GSE171110 dataset is presented in Figure 1C, and the volcano
map of all the DEGs is shown in Figure 1F. The number of
differentially expressed genes in COVID-19 patients was
significantly higher than that of influenza patients, which may
lead to an increase in complex clinical symptoms in COVID-
19 patients.

3.2 GO functional enrichment analysis and
KEGG pathway analysis of differentially
expressed genes in COVID-19 and
influenza datasets

Next, we performed the GO functional analysis of the DEGs in
the COVID-19 and influenza datasets. The top 5 most significant
enrichment results in cellular components (CCs), molecular
functions (MFs), and biological processes (BPs) are presented in
Figure 2. In the COVID-19 dataset, BPs were mainly enriched in
nuclear division and organelle, CCs were mainly enriched in the
Spindle chromosomal region, and MFs were mainly enriched in
tubulin binding and microtubule binding (Figure 2A). This may
lead to the overproduction of inflammatory cytokines in COVID-19
patients. In the GSE111368 dataset, BPs were mainly enriched in
Defense response to bacterium and cell killing, CCs were mainly

10.3389/fimmu.2023.1098688

enriched in secretory mutlumen and cytoplasmic vesicle lumen, and
MFs were mainly enriched in immune receptor activity and
glycosaminoglycan binding (Figure 2B). In the GSE101702
dataset, BPs were mainly concentrated on response to viruses,
defense, and response to viruses; CCs were mainly concentrated
on secretory mutlumen and cytoplasmic vesicle lumen, while MFs
were mainly concentrated on cytokine binding immune receptor
activity (Figure 2C). GO results showed that influenza virus
infection mainly caused active expression of genes related to self-
defense and immune system inhibition of virus replication and
inflammatory response.

The KEGG pathway analysis was also performed on the DEGs in
the COVID-19 and influenza datasets. The most enriched pathways
in each of the three datasets are shown in (Figures 2D-F). The
COVID DEGs were mainly enriched in Ribosome and Cell cycle
(Figure 2D). The GSE111368 dataset DEGs were mainly enriched in
transcriptional misregulation in cancer, Staphylococcus aureus
infection, and inflammatory bowel disease (Figure 2E). The
GSE101702dataset DEGs were mainly enriched in the NOD-like
receptor signaling pathway, coronavirus disease-COVID-19,
Cytokines, and Cytokine receptor interaction (Figure 2F).

3.3 Molecular functional analysis of
intersecting DEGs

To further explore the potential common pathogenic molecular
mechanisms between the three diseases, we used Venn and Upset
diagrams to detect 22 common DEGs among the three datasets
(Figures 3A, B). Then, we performed GO and KEGG analyses on
these genes. The common DEGs were mainly enriched for BPs in
defense response to fungus, response to fungus, and defense
response to Gram-negative bacterium. For CCs, the common
DEGs were enriched in secretory mutlumen, cytoplasmic vesicle
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lumen, and vesicle lumen. For MFs, the common DEGs were
mainly enriched in Heparin binding, Glycosaminoglycan binding,
and sulfur compound binding (Figure 3C). The KEGG pathways
were mainly enriched in Neutrophil extracellular trap formation,
Transcriptional misregulation in cancer, and one carbon pool by
folate (Figure 3D).

3.4 Differential expression analysis of the
22 genes

We analyzed the expression levels of the 22 genes in the
GSE157103, GSE111368, and GSE101702 datasets. As shown in
Figure 4, the 22 common DEGs represent the same host responses
to SARS-CoV-2 and influenza infections. All of them were
significantly upregulated in the COVID-19, HINI, and influenza
groups compared to the healthy controls (P < 0.05) (Figures 4A-C).

3.5 Molecular regulation of
DEGs at the transcriptional and
post-transcriptional level

To identify changes in the DEGs at the transcriptional and post-
transcriptional level of molecular regulation, we used a network-
based approach and NetworkAnalyst to decipher regulatory
transcription factors and miRNAs. The interaction network
analysis showed that 54 transcription factors (TFs) (Figure 5) and
187 post-transcriptional miRNAs (Figure 6) were involved in the
regulation of several common DEGs, indicating a substantial level
of interference between them. Different diseases may be related
through the same or similar genes and deciphering the relationship
between genes and diseases is a key approach to disease diagnosis
and treatment. Our genetic disease association analysis found that
ulcerative colitis, inflammation, autosomal recessive predisposition,
and other diseases are strongly associated with the intersecting
genes (Figure 7).

3.6 PPl network and hub gene

The interactions between intersecting genes were analyzed
using the STRING online database. The degree of interaction was
calculated using Cytoscape software, and the relationships between
the proteins are displayed based on the strength of the interaction in
Figure 8A. The Cytohubba plugin in Cytoscape was used to identify
the top five DEGs, regarded as the most influential genes based on
the PPI network and MCC algorithm. IFI27, OASL, RSAD2, IFI6,
and IFI44L were identified as the hub genes in Figure 8B. ROC
analysis of hub genes was used to identify the diagnostic efficacy of
hub genes in the COVID-19 dataset and influenza dataset. The
ROC analysis of the hub genes is presented in Figure 9. The AUC of
genes in the COVID-19 cohort are as follows: IFI6, 0.678; IFI27,
0.866; IFI44L, 0.786; OASL, 0.834; RSAD2, 0.770 (Figures 9A-E).
The AUC of genes in the GSE111368 HIN1 dataset are as follows:
1FIe, 0.812; IF127, 0.895; IF144L, 0.720; OASL, 0.793; RSAD2, 0.753
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(Figures 9F-]). The AUC of genes in the GSE101702influenza
datasets are as follows: IFI6, 0.844; IFI27, 0.942; IFI44L, 0.838;
OASL, 0.896; RSAD2, 0.865 (Figures 9K-O). Thus, these hub genes
may be viable biomarkers and be used to develop novel therapeutic
strategies for these diseases. We also compared the expression of
hub genes between healthy controls and different severity groups.
The results showed that there was no significant difference in the
expression of hub genes between patients with different severity in
the COVID-19 dataset (P>0.05), while there was a significant
difference in the expression of hub genes between healthy
controls and influenza patients in the influenza dataset (P<0.05).
(Supplementary Figure 1).

3.7 Immune cell correlation of hub genes
in COVID-19 dataset and influenza dataset

The ssGSEA results are presented in Figure 10. The numbers of
activated CD8 T cells, effector memory CD4 T cells, memory B cells,
and central memory CD8 T cells were significantly reduced in
influenza and COVID patients. Moreover, Activated CD4 T
Immature dendritic cells, Macrophages, and Natural killer cell
levels were significantly elevated in the disease groups compared
with the control group. IFI27 was negatively correlated with
Eosinophils. IFI44L was positively correlated with Type 17 T
helper, T follicular helper, and Natural killer cells. IFI6 was
positively correlated with Type 17 T helper and Natural killer
cells, with OASL and RSAD2 showing a similar result
(Figures 11A-C).

4 Discussion

COVID-19 and influenza are infectious respiratory diseases that
can be deadly (27, 28). The pathogenicity of COVID-19 and
influenza and the regulation of gene expression in the host
cause them to present the same or similar clinical manifestations.
Several studies have shown an association between IAV and
SARS-CoV-2. However, a comparison of gene expression
regulation between the two viruses on the host has rarely been
reported. To comprehensively evaluate the effects of these two
viruses on the regulation of host gene expression, we downloaded
the sequencing data of influenza (GSE111368, GSE101702) and
COVID-19 (GSE157103) from the GEO database. The analysis of
the differentially expressed genes showed that the number of
differentially expressed genes in COVID-19 patients was
significantly higher than that of influenza patients, which may
lead to an increase in complex clinical symptoms in COVID-19
patients. This is in line with the finding by Bai and Ryabkova that
COVID-19 is a systemic inflammatory disease that is not confined
to pulmonary processes, compared with influenza (6, 7). The GO
results showed that functions of DEGs in the COVID-19 dataset
were significantly enriched in the mitotic nuclear division, nuclear
division, specific mutational division, and microtubule binding.
This may lead to the overproduction of inflammatory cytokines
in patients, which is consistent with the findings of Varvara et al.
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FIGURE 4

Expression analysis of the 22 DEGs in GSE157103, GSE111368, and GSE101702 datasets between types of severity and healthy control groups. (A)
MRNA expression levels of 22 DEGs between control and COVID-19 in GSE157103 dataset, (B) mRNA expression levels of 22 DEGs between control
and influenza in GSE111368 dataset, (C) mRNA expression levels of 22 DEGs between control and influenza in GSE101702 dataset (*p<0.05,

**p<0.01, ***p<0.001)

(7). The DEGs in the GSE111368 dataset were significantly enriched
in defense response to fungus, defense response to bacteria, specific
accumulation, and immune receptor activity. The functions of the
differentially expressed genes in GSE101702 were significantly
enriched in negative regulation of viral genome replication,
defense response to viruses, defense response to the symbiont,
and immune receptor activity. This is consistent with the study
by Kalil et al. that the pathogenesis of influenza viral infection is a
respiratory inflammatory process caused by a direct viral infection

Frontiers in Immunology

07

of respiratory epithelial cells that stimulates innate and adaptive
immune responses, whose main purpose is to control the
transmitted disease (29). We found a similar process in the same
KEGG analysis of the COVID-19 dataset, which was mainly
enriched in cell cycle and other processes. In contrast, the
GSE111368 dataset was mainly enriched in Staphylococcus aureus
infection. For transcriptional misregulation in cancer, GSE101702
was mainly enriched in the Nod-like receptor signaling pathway
and Staphylococcus aureus infection. These results indicate that the
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The gene-disease association network represents diseases associated with mutual DEGs.

SARS-CoV-2 and influenza viruses differ at the transcriptome level.
The novel coronavirus may cause changes in the cell cycle and
proliferation to resist infections by changing the level of
metabolism. The differential genes of the influenza virus may play
a more important role in activating immunity and immune
response in the body. These results reveal differences between
SARS-CoV-2 and influenza viral infection from the perspective of
gene expression regulation. We identified 22 common differential
genes between the COVID and influenza datasets. The GO and
KEGG analyses showed that these genes were mainly involved in
fungus defense response, defense response to Gram-negative

bacterium, glycosaminoglycan binding, and Sulfur compound
binding. This suggests that the common genes may be responsible
for fever, cough, pneumonia, and other clinical manifestations in
influenza and COVID patients (6, 8, 11).

Furthermore, TFs and miRNAs are two key regulatory factors at
the transcriptional and post-transcriptional levels. The regulatory
network formed with TFs and miRNAs as the core is effective for
analyzing the complexity of biological regulation. Thus, studying
the regulatory network composed of TF and miRNA might provide
important clues for the occurrence and pathogenesis of diseases at
the system level. In the TFs-DEG and miRNA interaction analysis,
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(A) PPI network of common DEGs among SARS-CoV-2, HIN1, and Influenza. The PPl network was generated using String and visualized in
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(A) The correlation between hub genes-immune cells and the fraction of infiltrated immune cells in COVID-19, (B) The correlation between hub
genes-immune cells and the fraction of infiltrated immune cells in HIN1, (C) The correlation between hub genes-immune cells and the fraction of

infiltrated immune cells in Influenza. *p < 0.05, **p < 0.01, ***p < 0.001.

we found associations between intersecting genes, TFs, and
miRNAs. TP63, FOXA1, STATI1, ELK1, FOS, and JUN are TFs in
various lung injury or infection types. Some studies have shown that
TP63 is involved in airway repair following injury (30), while
FOXAI plays an important role in maintaining airway epithelial
barrier integrity and lung cell differentiation (31, 32). The AK2/
STAT1 pathway mediated lung inflammation and cell death in a
ventilator-induced lung injury model (27). The intersecting genes-
miRNA analysis showed that miRNA302, miRNA126, miRNA21,
miRNA486, and miRNA206 are associated with the pathogenesis of
various types of lung injury. miRNA302 promotes host recovery
from pneumonia caused by Streptococcus pneumoniae (28), while
miRNA126 attenuates LPS-induced lung injury and may be
involved in the pathogenesis of asthma (33, 34). miRNA21 is a
potential biomarker of chronic lung disease in preterm infants and
may also be a potential biomarker of lung nodules (35, 36).
Currently, little is known about the role played by miRNAs and
TFs in the pathogenesis of COVID-19. Previous studies have shown
that most TFs and miRNAs are significantly upregulated in patients
with COVID-19 and influenza (37, 38). The upregulated miRNAs
and TFs may be involved in the inflammatory storm of patients and
can be used as circulating biomarkers for disease diagnosis or
prognosis (39). Currently, 19 TES have already received FDA
approval to be used as drug targets for COVID-19 (40). Targeting
TFs and miRNAs associated with cytokine release syndromes may
provide drug candidates and targets for treating influenza and
COVID-19 infections. However, further research is needed to
confirm these findings.

Then, we performed a PPI network analysis. Five hub genes
were identified in Cytoscape software using the MCC algorithm of
cytoHubba: IFI127, IFI44L, RSAD2, OSAL, and IFI6. The ROC
analysis showed that the AUC of all Hub genes was > 0.6,
suggesting they may be potential biomarkers. Studies have
found that IFFI44, IFI6, RSAD2, and OSAL are significantly up-
regulated in COVID-19 patients and are involved in immune
regulation (41). The infected macrophages of COVID-19 patients
release large amounts of interferon into the blood, which activates
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mitochondrial IFI27 expression and disrupts the energy metabolism
of immune cells (42). Genes such as IFI27 that exert antiviral effects
and neutrophil activation are downregulated during treatment in
COVID-19 patients, which is consistent with the dynamically
enhanced inflammatory response of COVID-19 patients (43). In
patients with influenza virus infection, IFFI44L, IFI6, and RSAD2
were key antiviral factors against IAV infection in alveolar basal
epithelial cells (44). As a novel immune biomarker, IFI27 can
accurately distinguish between influenza and bacterial
infections (45).

The critical role of the immune response in infectious diseases
has received increasing attention. In this analysis, we found that the
numbers of activated CD8 T cells, effector memory CD4 T cells,
memory B cells, and central memory CD8 T cells were significantly
reduced in influenza and COVID patients. This is consistent with
the findings of Yu Bai, which indicate that the number of CD4 and
CD8 T cells in the peripheral blood was significantly decreased in
COVID-19 patients and that the severe damage during the late stage
was immune-related rather than virus-related (6). This study also
showed that lymphocytopenia is common in COVID-19 patients,
indicating both immune cell depletion and impaired cellular
immune function (6). The hematological parameters for COVID-
19 are similar. Cao et al. also found that half of the influenza
patients during the 2009 HIN1 pandemic had abnormal CD4:CD8
ratios (46). Furthermore, we also found that the expression of the
five hub genes was associated with Eosinophils, Type 17 T helper, T
follicular helper, Natural killer T, Natural killer, and Immature B
cells. These results demonstrate the importance of immune cell
infiltration for the pathogenesis and typing of influenza and
COVID-19. Previous reports have suggested a close relationship
between the central genes identified in this study and immunity (27,
45, 47-49). Hub genes may be the main cause of these changes and
may be used as immunotherapeutic targets.

In this study, we aimed to identify the effects of COVID-19 and
influenza viruses on the regulation of host gene expression using a
computational systems biology approach. Moreover, we explored
the immune cell infiltration in COVID-19 and influenza. We used it
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to identify molecular mechanisms associated with comorbidities
interactions, which may also facilitate the discovery of new
knowledge from published datasets. However, our study has some
limitations. First, external validation was not run for the results.
Second, regarding the specificity of the blood sample, ssGSEA is a
relatively quantitative result, and we could not achieve the accuracy
required by the algorithm. Third, since the datasets included
different ethnicities, it was difficult to accurately determine
whether the different ethnicities could influence the related gene
expression because of the small sample size. Therefore, our results
still need further verification through in vivo and in vitro
experiments and clinical studies.

5 Conclusion

In summary, five HUB genes were identified between COVID-
19 and influenza virus infection, which might be helpful in the
diagnosis and treatment of COVID-19 and influenza. Our results
suggest that the regulatory effects exerted by both the influenza
virus and COVID virus on host gene expression may be responsible
for their similarities and differences in clinical manifestations. We
provide molecular insights into potential biomarkers and regulatory
elements that may contribute to developing novel drugs that can be
used to control the progression of COVID-19 and influenza. The
differentially expressed genes, GO terms, and signaling pathways
identified in this study can help us gain a deeper understanding of
how genes and clinical manifestations are associated. This
knowledge can also guide future mechanistic studies that seek to
develop pathogen-specific interventions.
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