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Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had

compromised efficacy to prevent breakthrough infections due to both limited

durability and spike sequence variation, the vaccines have remained highly

protective against severe illness. This protection is mediated through cellular

immunity, particularly CD8+ T cells, and lasts at least a few months. Although

several studies have documented rapidly waning levels of vaccine-elicited

antibodies, the kinetics of T cell responses have not been well defined.

Methods: Interferon (IFN)-g enzyme-linked immunosorbent spot (ELISpot) assay

and intracellular cytokine staining (ICS) were utilized to assess cellular immune

responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells,

PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate

serum antibodies against the spike receptor binding domain (RBD).

Results: In two persons receiving primary vaccination, tightly serially evaluated

frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly

short-lived responses, peaking after about 10 days and becoming undetectable by

about 20 days after each dose. This pattern was also observed in cross-sectional

analyses of persons after the first and second doses during primary vaccination

with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered

persons using the same assay showed persisting responses in most persons

through 45 days after symptom onset. Cross-sectional analysis using IFN-g ICS

of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated

undetectable CD8+ T cells against spike soon after vaccination, and extended the

observation to include CD4+ T cells. However, ICS analyses of the same PBMCs

after culturing with themRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell

responses that were readily detectable in most persons out to 235 days after

vaccination.
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Discussion: Overall, we find that detection of spike-targeted responses from

mRNA vaccines using typical IFN-g assays is remarkably transient, which may be a

function of the mRNA vaccine platform and an intrinsic property of the spike

protein as an immune target. However, robust memory, as demonstrated by

capacity for rapid expansion of T cells responding to spike, is maintained at least

several months after vaccination. This is consistent with the clinical observation of

vaccine protection from severe illness lasting months. The level of such memory

responsiveness required for clinical protection remains to be defined.
KEYWORDS

SARS-CoV-2, cellular immunity, T cells, elispot, intracellular cytokine staining, SARS-CoV-
2 mRNA vaccines, T cell memory
Introduction

The mRNA vaccines against SARS-CoV-2 have had a remarkable

impact reducing morbidity and mortality of the COVID-19

pandemic. They encode the spike protein to elicit two major classes

of adaptive immune responses, including neutralizing antibodies and

T cells. These responses appear to have rather distinct roles in

protection, with antibodies predominantly reducing early

symptomatic infection and T cells (particularly the CD8+ cytotoxic

subset) preventing severe illness and death after infection (1–4).

It has become clear that vaccine protection has limited durability,

resulting in recommendations for intermittent “booster” vaccinations

(5). Many studies have demonstrated the rapid decay of anti-spike

antibodies elicited by vaccination (6–15), as well as those from SARS-

CoV-2 infection (16–26). This is likely a factor in the high frequency

of “breakthrough” infections and re-infections among vaccinees (27–

32) and COVID-19-recovered persons (33–37), although variation of

the spike sequence (particularly the receptor binding domain that is

the main target of neutralizing antibodies) is a major contributor (13,

29, 38–42). Vaccine protection from severe illness has been more

durable (43–45), which might be due at least in part to cellular

immunity and epitope sequences being less affected by spike sequence

variation than neutralizing antibodies (38, 46–50). However,

protection by vaccines against severe illness also appears to decline

with time (31, 43, 51–53), suggesting the waning of cellular immunity

as well.

The contribution of waning cellular immunity is unclear, and the

kinetics of T cell responses are not well understood. Early trials of

mRNA-1273 (54) and BNT162b2 (55) mRNA vaccines documented

cellular immune responses, subsequently confirmed by several groups

that have described both CD4+ and CD8+ T cell anti-spike responses

elicited by vaccination (56–58). Detailed data on the long-term

persistence of these responses and those from SARS-CoV-2

infection have been limited, although some reports have suggested

at least some waning of both vaccine-elicited (14, 59, 60) and

infection-elicited (61, 62) responses over months. Here we

investigate the durability of cellular immune responses against

SARS-CoV-2 spike protein, comparing those elicited by mRNA

vaccines versus SARS-CoV-2 infection.
02
Methods

Study participants

All participants gave written informed consent through an

institutional review board-approved protocol at the University of

California Los Angeles. Persons with immunocompromising

conditions such as diabetes mellitus, HIV-1 infection, or iatrogenic

immunosuppression were excluded. Vaccinee participants had no

prior history of COVID-19, and negative antibodies against the

receptor binding domain (RBD) of the SARS-CoV-2 spike protein

before vaccination. Participants who were COVID-19-recovered

persons had been infected in January 2021 or earlier.
Samples

PBMC were separated by Ficoll density gradient centrifugation

and cryopreserved viably in heat-inactivated fetal calf serum with 10%

dimethylsulfoxide for storage in vapor phase liquid nitrogen. They

were thawed immediately before experimental use.
CD8+ T cell IFN-g ELISpot assays

Spike-specific CD8+ T cell responses were quantified using

expanded CD8+ T cells as previously described in detail (61) and

shown to produce results closely reflecting measurements using

unexpanded peripheral blood CD8+ T cells (63–65). In brief,

peripheral blood mononuclear cells (PBMC) were non-specifically

expanded for approximately 14 days using a CD3:CD4 bi-specific

antibody (generous gift of Dr. Johnson Wong). These were screened

in a standard ELISpot assay against 12 peptide pools of 15-mer

synthetic peptides spanning the SARS-CoV-2 spike protein (BEI

Resources catalog #NR-52402). Negative control wells included

triplicate wells with no peptide, duplicate wells with pooled

peptides spanning the SARS-CoV-2 nucleocapsid protein, and

duplicate positive control wells included phytohemagglutinin

(PHA). Counts from each well were background subtracted using
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the average count from the negative control wells, and the total spike

response was determined as the sum of all 12 peptide pool wells.

Results totaling ≤ 50 spot forming cells (SFC) per million CD8+ T cells

were considered negative, based on a prior ELISpot validation

study (66).
Anti-RBD antibody measurements

Serum immunoglobulin G SARS-CoV-2 spike RBD-specific

antibodies were quantified as described in detail (6). Briefly,

duplicate serum samples were added to 96-well microtiter plates

that had been coated with recombinant RBD protein. After washing,

goat anti-human IgG conjugated with horseradish peroxidase was

added, followed by washing and addition of tetramethylbenzidine

substrate. Measurements were performed at 450 and 650 nm, and the

results were compared to a standard curve generated by a control

titration of the anti-RBD monoclonal antibody CR3022 (Creative

Biolabs, Shirley, NY). Serum anti-RBD IgG binding activity was

expressed as equivalence to a concentration of CR3022.
Assessment of spike-specific T cells by
intracellular cytokine staining (ICS) flow
cytometry

ICS staining and flow cytometry were performed as described in

detail (61), except differing in the peptide target. In brief, PBMC were

incubated with pooled overlapping 15-mer peptides spanning spike

(67) containing 1µg/ml each peptide, with brefeldin A (catalog #00-

4506-51, eBioscience, San Diego, CA) and monensin (#00-4505-51,

eBioscience, San Diego, CA), followed by surface staining with CD3-

Super Bright 436, CD8-Super Bright 600, CD4 PE-Cy7, and Fixable

Aqua viability dye (catalog #62-0037-42/eBioscience/San Diego/CA,

#63-0088-42/eBioscience/San Diego/CA, #25-0049-42/San Diego/

CA, and #L34957/Invitrogen/Waltham/MA respectively),

permeabilization (catalog #00-5523-00, eBioscience, San Diego,

CA), and intracellular cytokine staining for IFN-g-FITC, IL-2-
PerCP-Cy5.5, IL-4-PE, and IL-10-APC (catalog #506504/Biolegend/

San Diego/CA, #500322/Biolegend/San Diego/CA, # 130-091-647/

Miltenyi Biotec/Bergisch Gladbach/Germany, and #506807/

Biolegend/San Diego/CA respectively) followed by flow

cytometric analysis.
Culture of PBMC with mRNA-1273 vaccine
for enriched detection of memory T cells
targeting spike

When PBMC were utilized to measure anti-spike T cell responses

by ICS immediately upon thawing, a portion was cultured with the

mRNA-1273 vaccine in vitro. One to two million PBMC per well were

cultured in RPMI 1640 (supplemented with L-glutamine, HEPES

buffer, and antibiotic) with recombinant human IL-2 at 50U/ml (NIH

AIDS Reagent Repository Program) and initially added mRNA-1273
Frontiers in Immunology 03
vaccine (Moderna) at the specified concentration, in 24-well flat

bottom tissue culture plates. Medium was replenished twice a week

for about 14 days of culture, after which the cells were evaluated by

ICS for anti-spike T cell responses as described above, with viable

cryopreservation of a portion. If this analysis yielded fewer than

10,000 events in the CD4+ or CD8+ T cell compartments, ICS was

repeated on the cryopreserved cells and weighted averaging was

performed to combine the results.
Results

Longitudinal evaluation of CD8+ T cell
responses by IFN-g ELISpot assay after
mRNA vaccination against SARS-CoV-2
demonstrates remarkably short-lived
detection compared to natural infection,
while antibody responses showed
classical kinetics

To demonstrate the acute kinetics of anti-spike CD8+ T cell

responses to mRNA SARS-CoV-2 vaccination in detail, IFN-g
ELISpot assays were performed serially for SARS-CoV-2-naïve

persons every two to four days after receiving BNT162b2

vaccination (Figures 1A, B). Detection of anti-spike responses

was surprisingly short-lived, demonstrating sharp peaks lasting

less than 10 days after each dose. However, humoral responses

exhibited more typical kinetics; anti-RBD antibodies rose with

persistence and progressive boosting after each dose. By

comparison, a third person who got ChAdOx1-S vaccination

(Figure 1C) showed different CD8+ T cell response kinetics, with

a later initial anti-spike response that persisted to the second

vaccine dose, although the second peak was minimal. In this

person, the anti-RBD antibody level kinetics also evolved with

similar kinetics to the mRNA vaccinees. These results suggested

that mRNA vaccines yielded distinct kinetics compared to other

vaccine platforms that yield CD8+ T cell responses.
Cross-sectional evaluation of additional
mRNA vaccinees confirms similar kinetics of
CD8+ T cell responses, which differ from the
kinetics after natural SARS-CoV-2 infection

More SARS-CoV-2-naïve mRNA vaccinees were evaluated for

CD8+ T cell responses by IFN-g ELISpot cross-sectionally after the

first (Figure 1D) and second (Figure 1E) vaccine doses (25 and 24

persons respectively). This analysis revealed results consistent with

the detailed longitudinal evaluations. By comparison, cross-sectional

evaluation of recently COVID-19-recovered persons exhibited more

stable anti-S CD8+ T cell responses over a similar time span

(Figure 1F). These results overall confirmed that the frequency of

detectable anti-spike CD8+ T cells elicited by mRNA vaccination is

very short-lived, and that these kinetics differ from natural infection

and likely other vaccine types.
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Evaluations by intracellular cytokine staining
of both CD4+ and CD8+ T cell responses by
elicited by mRNA vaccination against SARS-
CoV-2 similarly reveal short-lived detection
of CD4+ T cell responses

To further confirm the ELISpot findings and extend analyses to

CD4+ T cells, peptide-stimulated intracellular IFN-g staining was

performed (Figure 2) to assess anti-spike responses on vaccinees

cross-sectionally. By this assay, minimal CD4+ and CD8+ T cell

responses were detectable from 13 and 235 days after completing

vaccination (Figures 3A, B), consistent with the above ELISpot assay

results on CD8+ T cells alone. These findings extended the finding of

short-lived detection of T cell responses to spike after mRNA

vaccination to the CD4+ T cell compartment as well, with both

CD8+ and CD4+ T cell responses falling below a detectable frequency

of 0.01% within days after vaccinations.
Intracellular cytokine staining also reveals
longer-lived CD4+ and CD8+ T cell
responses from natural infection compared
to mRNA vaccination

Evaluation of COVID-19-recovered persons by intracellular

cytokine staining was performed for comparison to mRNA

vaccination. In contrast to mRNA vaccination, both CD4+ and
Frontiers in Immunology 04
CD8+ T cell responses against spike were readily observable up to

50 days after symptom onset in COVID-19-recovered persons with

relative stability over this time span (Figures 3C, D). The magnitudes

of anti-spike CD4+ and CD8+ T cell responses correlated positively

(Figure 3E). Simultaneously assayed anti-spike T cells producing IL-4

or IL-10 were minimal for vaccinees (Supplementary Figures 1, 2),

whereas several COVID-19-recovered persons exhibited IL-4 but not

IL-10 responses (Supplemental Figure S3) of unclear significance.

Overall, these findings confirmed that cellular immune responses

elicited by COVID-19 were more persistent compared to those from

mRNA vaccination.
Capacity to detect vaccine-elicited anti-
spike memory T cell responses by culture of
PBMC with lipid nanoparticle mRNA spike
vaccine in vitro

To investigate whether the fall of vaccine-elicited spike-specific T

cell responses below detection indicated the absence of immune

memory, we developed a novel assay for enriching memory T cells

against SARS-CoV-2 spike (Figure 4). Conditions were established

showing that in vitro culture of PBMCs with the mRNA-1273 vaccine

at an optimal concentration of 125 mg/ml mRNA-1273 vaccine

maximized expansion of memory T cells targeting spike-specific T

cells, after which they could be readily detected by intracellular

cytokine staining for IFN-g (Supplemental Figure S4). Lower
A B

D E F

C

FIGURE 1

Transience of peripheral blood SARS-CoV-2 spike-specific CD8+ T cells elicited by mRNA vaccination compared to natural infection, as assessed by
IFN-g ELISpot. Spike-specific CD8+ T cells were assayed by IFN-g ELISpot assay using pooled overlapping peptides. (A, B) Serial CD8+ T cell responsesc
against spike (open circles) and IgG responses against the spike RBD (Xs) are plotted for two SARS-CoV-2-naïve persons who received the BNT162b2
vaccine. The X-axis starts with the first vaccine dose, and the timing of the second dose is indicated by an arrow. (C) Serial CD8+ T cell responsesc
against spike (closed squares) and IgG responses against the spike RBD (Xs) are plotted for a SARS-CoV-2-naïve person who received the ChAdOx1-S
vaccine. The X-axis starts with the first vaccine dose, and the timing of the second dose is indicated by an arrow. (D) CD8+ T cell spike-specific
responses are plotted for 25 persons who were SARS-CoV-2-naïve after the first vaccine dose with BNT162b2 (16 persons, 20 data points, circles) or
mRNA-1273 (9 persons, 9 data points, triangles). (E) CD8+ T cell spike-specific responses are plotted for 24 persons who were SARS-CoV-2-naïve after
the second vaccine dose with BNT162b2 (15 persons, 20 data points, circles) or mRNA-1273 (9 persons, 9 data points, triangles). (F) CD8+ T cell spike-
specific responses are plotted for 45 COVID-19-recovered persons according to time after symptom onset (diamonds).
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concentrations resulted in less enrichment, while higher

concentrations were toxic. The results demonstrated the capacity of

this assay to enrich low frequency memory T cell responses against

spike in PBMC to be readily detectable.
Despite being undetectable in standard IFN-
g-based assays, vigorous mRNA vaccine-
elicited T cell memory responses against
spike persist for months after vaccination

Given the above-noted overall lack of directly detectable

responses in vaccinees 13 to 235 days after completed vaccination

(Figures 3A, B), the memory T cell assay described above was utilized

using the same PBMC samples. This evaluation demonstrated

detectable spike-specific CD4+ and CD8+ T cell responses detected

by IFN-g production after culturing with mRNA-1273 for the

majority of persons (Figures 5A, B). These memory responses

generally correlated between the CD4+ and CD8+ T cell

compartments (Figure 5C). Parallel analysis for spike-specific IL-4

and IL-10 production revealed minimal enrichment by culturing with

mRNA-1273 vaccine (Supplementary Figures 1C, D and 2C, D). In
Frontiers in Immunology 05
sum, these findings confirmed vigorous persisting mRNA vaccine-

elicited memory T cell responses against spike despite their lack of

detection in standard IFN-g-based T cell assays.
Discussion

Study of the durability of antiviral immune responses after

vaccination in general has mostly centered on antibodies, and has

been observed to vary drastically for different vaccines and pathogens.

In one study comparing several common vaccines, antibody half-lives

ranged from 11 years for tetanus to more than 200 years for measles

(68). The determinants of humoral immune durability are not entirely

clear, but durability may relate to the vector (69–71) or vary by the

target antigen itself (72, 73), and may be affected by factors such as

cross-reactivity with other antigens that act to restimulate memory

(74). For COVID-19 vaccines, the majority of studies have observed

vaccine-elicited antibodies declining to low levels over weeks to

months. Because infection-elicited anti-spike antibodies also decline

rapidly after recovery from SARS-CoV-2 infection, it is likely that this

reflects an intrinsic property of the spike protein rather than the mode

of vaccine delivery. Given the rapid decline of protective antibodies
FIGURE 2

Example of intracellular cytokine staining for CD4+ and CD8+ T cell responses against SARS-CoV-2 spike. PBMC from a person 13 days after symptom
onset of COVID-19 were cultured in the absence or presence of overlapping 15-mer synthetic peptides spanning the SARS-CoV-2 spike protein and
assessed for production of IFN-g, IL-2, IL-10 (not shown) and IL-4 (not shown) by intracellular cytokine staining and flow cytometry. Controls included
cells cultured without peptides and PMA-ionomycin stimulated cells.
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for other common human coronaviruses and susceptibility to

reinfection within months (75), this is not surprising and may be a

shared property of coronaviruses.

The durability of antiviral cellular immunity, particularly CD8+

T lymphocytes (CTLs), is far less well defined. Accessing the human

leukocyte antigen class I pathway generally has required using live

vaccines such as vaccinia. Given the eradication of smallpox and

cessation of vaccinia vaccination, vaccinia reactivity has been

studied to address the issue of cellular immune memory. While
Frontiers in Immunology 06
antibody responses against vaccinia appear to be stable for many

decades after vaccination (76), the cellular immune response

including CTLs appears to wane to undetectable levels by

sensitive ELISpot assays within about two to three decades (77–

79). However, in vitro enrichment assays using vaccinia stimulation

of PBMC demonstrated durable memory lasting five decades or

more (77, 80). The degree to which memory detected in this

manner would be protective against infection is unknown,

although evaluations of vaccinees during smallpox outbreaks
frontiersin.org
A B
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FIGURE 3

CD4+ and CD8+ T cell responses against spike measured by IFN-g intracellular cytokine staining after mRNA SARS-CoV-2 vaccination versus natural
infection. Background-subtracted values are plotted for CD4+ and CD8+ T cell spike-specific IFN-g productiondetermined as shown in Figure 2. (A)
CD4+ T cell responses are plotted for 22 persons vaccinated with BNT162b2 (18 points from 16 persons, circles) or mRNA-1273 (7 points from 6
persons, triangles). Time points ranged from 13 to 235 days after the second vaccine dose. Only one response was detectable above 0.01%
frequency. (B) CD8+ T cell responses measured in parallel are plotted for the same 22 persons in (A) Only one response was detectable above 0.01%
frequency. (C) CD4+ T cell responses are plotted for 25 COVID-19-recovered persons ranging from 15 to 49 days after symptom onset. 17/25 (68.0%)
had responses greater than 0.01%. (D) CD8+ T cell responses are plotted for the same 25 persons in (C) Again, 17/25 (68.0%) had responses greater than
0.01%. (E) The frequencies of responding CD4+ and CD8+ T cells from (C, D) are compared, demonstrating Pearson correlation r2 = 0.66, p<0.00001.
FIGURE 4

PBMC cultured with the mRNA-1273 vaccine in vitro reveal enrichment of spike-specific memory CD4+ and CD8+ T cell responses . An example is
shown for detection of spike-specific T cells (as described in Figure 2.) in PBMCs from a SARS-CoV-2-naïve person who had completed vaccination with
mRNA-1273 128 days prior. Top row: The PBMC were directly tested for T cell reactivity against spike. Bottom row: Prior to testing, the PBMC were
cultured with the addition of mRNA-1273 vaccine for 14 days before testing for spike-specific T cells.
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have suggested that protection may persist for many decades or life

(81–83).

In comparison to vaccinia, our findings demonstrate strikingly

rapid waning of mRNA vaccine-generated circulating spike-specific

CTL to undetectable levels within days, not decades. In comparison,

we observe that infection-generated spike-specific responses decay

more gradually over months (61), which may explain why some have

observed CTL responses after infection but failed to find them in

COVID-naïve vaccinees (38). The observation that anti-spike

memory can be detected after using mRNA-1273 vaccine to

enhance responses in PBMC parallels analogous findings that

vaccinia can be used to enhance memory responses that are

otherwise below the limit of detection by IFN-g ELISpot (77, 80).
Our methodology for detecting memory T cell responses against

SARS-CoV-2 spike protein is novel for its use of the mRNA-1273 as

an in vitro stimulus, but the general strategy of antigen-specific

stimulation to enrich memory T cells for ELISpot detection has

been utilized widely. As mentioned above, vaccinia infection of

PBMC has been employed to reveal memory responses against

vaccinia (77, 80), and this approach has been applied for other

indications typically using small peptide antigens (84–87). While

the generation of de novo T cell responses from naïve T cells rather

than expansion of low-level memory responses by such protocols is a

theoretical caveat to our approach, experimentally doing so purposely

has been a technically challenging goal that requires dedicated

enrichment and differentiation of specialized dendritic cells (88–91).

In agreement with prior studies on T cell responses to SARS-

CoV-2 infection (92–94), we found persistence of responses over

many months. However, our parallel evaluations of vaccine-elicited

spike-specific T cell responses showed rapid decay to undetectable

levels (by IFN-g ELISpot) shortly after vaccination but persistence as

detectable memory after spike-specific in vitro enrichment. In

contrast to this finding, Goel et al. found an early contraction phase

of the T cell response over the first three months after vaccination,

with CD4+ and CD8+ T cell responses having half-lives of 47 and 24

days respectively (60). Methodologic differences likely contribute to

these discordant results; they measured responses using activation

markers in only the memory T cell subset, while we evaluated IFN-g
Frontiers in Immunology 07
production in the total T cell population. Additionally, they assumed

a steady decay rate using three time points around 20, 90, and 180

days after vaccination, while our analysis focused more closely on

earlier time points. Our findings also contrast with those of Bonnet

et al. (14), likely due to differences in methodology. As opposed to

identifying cell frequencies by ELISpot or flow cytometry, they used a

whole blood IFN-g release assay to evaluate responses three and six

months after vaccination and noted a decline over that time. Finally,

our results are generally compatible with those of Lozano-Rodriguez

et al. (59). They detected both early (~4 days after vaccination) and

late (~8 months after vaccination) T cell responses through cytokine

production and proliferation after stimulating PBMC with an

overlapping peptide pool spanning spike. Thus, they also measured

in vitro enriched memory T cell responses. They additionally noted

dropping memory over time; we did not see reduced memory over a

similar time span, but our analysis was cross-sectional and theirs

was longitudinal.

The reasons for our observation of extremely rapid decay of anti-

spike cellular immune responses after mRNA vaccinations are

unclear. In contrast to CTL responses to vaccinia (77–79) or yellow

fever (95) that persist over years, overall T cell responses to natural

infection decay over months (61, 62) and spike-specific responses are

shorter-lived than those against nucleocapsid (61). Thus, spike

targeting appears intrinsically to be relatively short-lived compared

to T cell responses against other pathogens. The mRNA vaccine-

induced responses are still even more remarkably short-lived than

those in natural infection, suggesting that the mRNA vaccine format

may additionally contribute to particularly rapid decay of T cell

responses. Whether this is due to the brevity of mRNA persistence

and antigen expression remains to be determined, but this would be

consistent with an observation that the adenoviral Ad26.COV2.S

vaccine appears to give more durable cellular responses than the

mRNA BNT162b2 vaccine (40).

The clinical implications of the observed rapid drop in circulating

cellular immunity to undetectable levels after mRNA vaccination are

unclear. Because protection from severe illness, which is

predominately mediated by cellular immunity, lasts many months

after mRNA vaccination (31, 43, 51–53), the lack of detection by IFN-
A B C

FIGURE 5

Vaccine-elicited spike-specific memory CD4+ and CD8+ T cells are persistent. In parallel to Figure 3 panels A and B, the same PBMC from 22 vaccinees
were assessed for spike-specific T cell memory responses as shown in Figure 4. (A) 22/25 (88.0%) vaccinees had detectable spike-specific CD4+ T cell
memory responses of greater than 0.01% frequency (14/18 BNT162b2 vaccinees, circles, and 7/7 mRNA-1273 vaccinees, triangles). (B) 18/25 (76.0%)
vaccinees had detectable CD8+ T cell memory responses greater than 0.01% frequency (15/18 BNT162b2 vaccinees, circles, and 4/7 mRNA-1273
vaccinees, triangles). (C) The frequencies of spike-specific memory CD4+ and CD8+ T cells after in vitro enrichment are compared, demonstrating
Pearson correlation r2 = 0.49, p<0.0001.
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g ELISpot does not indicate inadequate frequency of cellular immune

memory cells. This suggests that the required frequency for protection

falls below the lower limit of reliable detection by ELISpot, which is

generally about 50 SFC/million cells, or 0.005%. Culture of PBMC

with the mRNA-1273 vaccine demonstrates the persistence of

memory for many months after vaccination. This memory

enrichment assay is at best semi-quantitative and our analysis is

cross-sectional, so our data do not reveal a decay rate for memory

below the limit of ELISpot detection that could be utilized to estimate

a protective level of memory T cells. Finally, this raises questions

about the utility of commonly utilized assays of T cell responses, such

as ELISpot and intracellular cytokine staining, as correlates

of immunity.

In summary, we find that cellular immune responses targeting

spike typically decline to low frequencies below the limit of detection

of standard assays remarkably quickly after mRNA vaccination

(within days), while responses elicited by SARS-CoV-2 are more

persistent (months). However, culture of PBMC from vaccinees with

mRNA-1273 vaccine results in consistent enrichment of detectable T

cell responses at least 8 months after vaccination, indicating

persistence of memory. This is consistent with clinically observed

protection from severe illness that lasts several months after

vaccination, and raises questions regarding the utility of common

assays of T cell responses as correlates of immunity. These findings

are similar to studies of vaccinia cellular immunity and protection

from smallpox, although T cell responses against vaccinia decay to

undetectable levels over about two decades while remaining

detectable after PBMC culture with vaccinia to enrich memory

responses. Overall, our results suggest that the levels of memory T

cells required for protective immunity against severe COVID-19

persist at least several months despite being too low to detect by

standard assays. The threshold required for protection from severe

disease remains to be determined.
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