
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Elias J. Lolis,
Yale University, United States

REVIEWED BY

Chayan Munshi,
Berlin School of Business and Innovation
(BSBI), Germany
Roland Ruscher,
James Cook University, Australia

*CORRESPONDENCE

Yoshishige Miyabe

yoshishige.miyabe@marianna-u.ac.jp

SPECIALTY SECTION

This article was submitted to
Cytokines and Soluble
Mediators in Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 17 November 2022
ACCEPTED 31 January 2023

PUBLISHED 13 February 2023

CITATION

Murayama MA, Shimizu J, Miyabe C,
Yudo K and Miyabe Y (2023) Chemokines
and chemokine receptors as promising
targets in rheumatoid arthritis.
Front. Immunol. 14:1100869.
doi: 10.3389/fimmu.2023.1100869

COPYRIGHT

© 2023 Murayama, Shimizu, Miyabe, Yudo
and Miyabe. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 13 February 2023

DOI 10.3389/fimmu.2023.1100869
Chemokines and chemokine
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Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes

inflammation and bone destruction in multiple joints. Inflammatory cytokines,

such as IL-6 and TNF-a, play important roles in RA development and pathogenesis.

Biological therapies targeting these cytokines have revolutionized RA therapy.

However, approximately 50% of the patients are non-responders to these

therapies. Therefore, there is an ongoing need to identify new therapeutic

targets and therapies for patients with RA. In this review, we focus on the

pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs)

in RA. Inflamed tissues in RA, such as the synovium, highly express various

chemokines to promote leukocyte migration, tightly controlled by chemokine

ligand-receptor interactions. Because the inhibition of these signaling pathways

results in inflammatory response regulation, chemokines and their receptors could

be promising targets for RA therapy. The blockade of various chemokines and/or

their receptors has yielded prospective results in preclinical trials using animal

models of inflammatory arthritis. However, some of these strategies have failed in

clinical trials. Nonetheless, some blockades showed promising results in early-

phase clinical trials, suggesting that chemokine ligand-receptor interactions

remain a promising therapeutic target for RA and other autoimmune diseases.
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1 Introduction

Chemokines are a family of small chemotactic cytokines (approximately 8-15 kDa).

Chemokine ligand-receptor interactions control leukocyte migration during inflammation,

promoting migration from the circulation into the extravascular space in inflamed tissues (1,

2). Nearly 50 chemokines have been identified in mammals (3), commonly formed by four

conserved cysteine residues—the first and third and the second and fourth forming disulfide

bridges. Chemokines are divided into four subclasses according to the position of the first two

conserved N-terminal cysteine residues: CC-chemokines (b-chemokines), having adjacent
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cysteine residues; CXC-chemokines (a-chemokines), having two

cysteine residues separated by another amino acid; CX3C-

chemokines (d-chemokines), having two cysteine residues separated

by three other amino acids; and C-chemokines (g-chemokines), with

only the second and fourth cysteine residues (4, 5). The glutamate-

leucine-arginine (ELR)-positive (CXCL1, CXCL2, CXCL3, CXCL5,

CXCL6, CXCL7, and CXCL8) but not ELR-negative CXC chemokines

(CXCL4, CXCL4L1, CXCL9, CXCL10, and CXCL11) have three

amino acid residues (Glu-Leu-Arg) before the first conserved

cysteine residue. The ELR motif is important for angiogenesis (6,

7). Some chemokines are activated by matrix metalloproteinase-

mediated (MMPs)-mediated proteolysis (8).

Chemokine receptors are expressed on the surface of immune

cells. “Classical” chemokine receptors are G-protein-coupled

transmembrane receptors (GPCRs) and induce cell migration,

whereas “atypical” chemokine receptors (ACKRs) are not coupled

to G proteins and regulate cell migration (9, 10). ACKRs scavenge

chemokines to regulate chemokine gradients and dampen

inflammation in a G protein-independent manner (3, 11, 12).

Chemokine ligand-receptor interactions are presented in Table 1 (13).

The chemokine system may play a central role in rheumatoid

arthritis (RA) pathogenesis. Several chemokines are highly expressed

in the blood and inflammatory tissues, such as arthritic joints, of

patients with RA. Furthermore, some genes encoding chemokine

ligands and receptors have been reported as risk factors for RA

development (14–42), and their expression is associated with

clinical disease activity and severity (43–69). The regulation of

immune cell recruitment into joints represents a major hallmark for

therapeutic intervention, as the inhibition of the chemokine system

can suppress the characteristic inflammation of RA, thereby halting

its pathogenesis.

In this review, we summarize the pathogenic roles of chemokines

and their receptors in RA. In addition, we provide evidence from

recent human clinical trials using inhibitors of the chemokine system

in RA and discuss the potential clinical benefits of chemokine

blockade in patients with RA.
2 Rheumatoid arthritis

RA is an autoimmune disease characterized by autoantibody

production, leading to the settlement of inflammatory processes

with cytokine and chemokine production. This results in synovial

inflammation, hyperplasia and swelling, cartilage and bone

destruction and deformity, and systemic features, such as

cardiovascular, pulmonary, and skeletal disorders (70).

Inflammatory cytokines, including interleukin (IL)-1, IL-6, and

tumor necrosis factor (TNF)-a, play important roles in RA

development. Biological agents, such as TNF-a and IL-6 inhibitors,

have revolutionized RA therapies (71). However, approximately 50%

of patients with RA are non-responders to these therapeutic

approaches (72). Therefore, there is an ongoing need to identify

novel targets and treatment strategies for RA.

Animal models of inflammatory arthritis have provided

determinant information for the understanding of RA pathogenesis

and development of RA therapeutics. Models such as type II collagen-
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induced arthritis (CIA) (73), collagen antibody-induced arthritis

(CAIA) (74), K/BxN arthritogenic serum transfer model of arthritis

(K/BxN) (75), and adjuvant-induced arthritis (AIA) (76) show RA-

like arthritic phenotypes, including synovial hyperplasia with

leukocyte infiltration and bone destruction. Furthermore, models of

inflammatory arthritis and RA also show upregulated expression of

chemokine ligands and their receptors in the serum, immune cells,

and synovium (77–84). Thus, these animal models are useful for

elucidating the pathogenic role of chemokines in RA.
2.1 Chemokines in RA

Various chemokines are highly expressed in the serum, synovial

fluids (SFs), and synovial tissues (STs) of patients with RA compared

with those of healthy donors (HD) (Table 2). For instance, the CC-

chemokines CCL2, CCL5, CCL11, CCL13, CCL18, CCL19, CCL20,

CCL22, CXC-chemokine CXCL2, CXCL5, CXCL8, CXCL9, CXCL10,

CXCL11, CXCL12, CXCL13, and CXCL16 were increased in the

serum and/or plasma of patients with RA compared with those of HD

(43, 44, 46, 47, 54, 57, 85–90).

Peripheral blood mononuclear cells (PBMCs) derived from

patients with RA highly express CCL2, CCL3, CXCL2, and CX3CL1

compared to those derived from HD (91–93). These chemokines are

differentially produced by different immune cells in patients with RA:

T cells produce CCL3, CCL4, CCL5, and CXCL13 (93–96); B cells

express CXCL9/10 (97); monocytes generate CCL2, CCL18, CCL19,

and CX3CL1 (93, 98, 99); macrophages express CCL25, CXCL4,

CXCL7, and CX3CL1 (93, 100, 101); dendritic cells (DCs) produce

CCL17, CCL18, and CCL19 (102–104); and neutrophils generate

CCL3 and CCL18 (103, 105, 106).

CC-chemokines are expressed in RA synovial endothelial cells

(ECs) in different concentrations (high-abundance: CCL7, CCL8,

CCL14, CCL16, CCL19, and CCL22; low-abundance: CCL1-3, CCL5,

CCL10, CCL11, CCL12, CCL13, CCL15, CCL17, CCL18, CCL20,

CCL21, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28 (107),

whereas ELR+ CXC-chemokines (CXCL1, CXCL2, CXCL3, CXCL5,

and CXCL6) are expressed in the SFs of patients with RA (108).

Additionally, various CC-chemokines (CCL1, CCL2, CCL3, CCL4,

CCL5, CCL7, CCL11, CCL13, CCL15, CCL17, CCL18, CCL19,

CCL20, CCL21, CCL25, and CCL28), CXCL8, CXCL9, and CXCL10

are also expressed in SFs, STs, and/or fibroblast-like synoviocytes

(FLSs) derived from patients with RA (86, 91, 100, 102, 109–121).

Cartilage and chondrocytes from patients with RA express CCL2,

CCL5, CCL13, CCL18, CCL25, CXCL1, CXCL8, CXCL10, and XCL1

(109, 118, 122, 123). In addition, osteoclasts (OCs) and OC

progenitors (OCPs) from patients with RA produce CCL2, CCL3,

CCL4, CCL5, CXCL9, CXCL10, and CX3CL1 (124, 125).

Several chemokines (CCL3, CCL4, CCL5, CCL3L1, CCL21,

CCL26, CXCL8, CXCL9, CXCL10, CXCL12, and CXCL13) have

been reported as risk factors for RA development (11–25). Certain

chemokines (CCL2, CCL5, CCL20, CCL23, CCL25, CXCL2, CXCL5,

CXCL7, CXCL8, CXCL9, CXCL11, CXCL12, and CXCL13) are

associated with disease activity and/or severity (40–58). Moreover,

CCL23, CXCL9, CXCL10, CXCL11, and CXCL13 may be potential

biomarkers for RA (48, 56).
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TABLE 1 The chemokines and chemokine receptors.

Name Other names Receptors

CC chemokine (b chemokine)

CCL1 I-309, TCA3 CCR8

CCL2 MCP-1 CCR2, CCR4, ACKR1, ACKR2

CCL3 MIP-1a CCR1, CCR5, ACKR2

CCL3L1 LD78b CCR1, CCR3, CCR5, ACKR2

CCL4 MIP-1b CCR5, ACKR2

CCL4L1 LAG-1 CCR5

CCL5 RANTES CCR1, CCR3, CCR4, CCR5, ACKR2

CCL6 C-10, MRP-1 Unknown

CCL7 MARC, MCP-3 CCR2, CCR3, ACKR1, ACKR2

CCL8 MCP-2 Human: CCR1, CCR2, CCR3, CCR5, ACKR1, ACKR2 Mouse: CCR8, ACKR1, ACKR2

CCL9/10 MIP-1g, MRP-2, CCF18 Unknown

CCL11 Eotaxin-1 CCR3, ACKR2

CCL12 MCP-5 CCR2

CCL13 MCP-4, NCC-1, Ckb10 CCR2, CCR3, CCR5, ACKR1, ACKR2

CCL14 HCC-1, MCIF, Ckb1, NCC-2, CCL CCR1, ACKR1, ACKR2

CCL15 Leukotactun-1, HCC-2, MIP-5, NCC-3 CCR1, CCR3

CCL16 HCC-4, NCC-4, LEC (human only) CCR1, CCR2, CCR5, ACKR1

CCL17 TARC, dendrokine, ABCD-2 CCR4, ACKR1, ACKR2

CCL18 PARC, DC-CK1, AMAC-1, Ckb7, MIP-4 CCR8, ACKR6

CCL19 MIP-3b, ELC, Exodus-3, Ckb11 CCR7, ACKR4

CCL20 MIP-3a, LARC, Exodus-1, Ckb4 CCR6

CCL21 SLC, 6Ckine, Exodus-2, Ckb9, TCA-4 CCR6, CCR7, ACKR4

CCL22 MDC, DC/b-CK CCR4, ACKR1, ACKR2

CCL23 MPIF-1, Ckb8, MIP-3, MPIF-1 Unknown

CCL24 Eotaxin-2, MPIF-2, Ckb6 CCR3

CCL25 TECK, Ckb15 CCR9, ACKR4

CCL26 Eotaxin-3, MIP-4a, IMAC, TSC-1 CCR3, CX3CR1

CCL27 CTACK, ILC, Eskine, PESKY, skinkine CCR10

CCL28 MEC CCR3, CCR10

CXC chemokine (a chemokine)

CXCL1 Gro-a, GRO1, NAP-3 CXCR2, ACKR1

CXCL2 Gro-b, GRO2, MIP-2a CXCR2, ACKR1

CXCL3 Gro-g, GRO3, MIP-2b CXCR2, ACKR1

CXCL4 PF-4 Unknown

CXCL4L1 PF4V1 Unknown

CXCL5 ENA-78 CXCR2, ACKR1

CXCL6 GCP-2 CXCR1, CXCR2, ACKR1

CXCL7 NAP-2, CTAPIII, b-Ta, PEP CXCR2, ACKR1

CXCL8 IL-8, NAP-1, MDNCF, GCP-1 CXCR1, CXCR2, ACKR1

(Continued)
F
rontiers in Immunology
 03
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1100869
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Murayama et al. 10.3389/fimmu.2023.1100869
2.2 Chemokine receptors in RA

Multiple chemokine receptors as well as chemokines contribute to

RA pathogenesis (Table 3). Polymorphisms in CCR2, CCR5, CCR6,

and CCR7-encoding genes are considered risk factors for RA

development (29–42). CD4+ cells expressing CCR5 are increased in

the blood of patients with active RA compared with that of patients

with inactive RA patients and HD. Furthermore, CD4+ cells

expressing CX3CR1 are decreased in patients with RA, and the

CD4+ CD95+ T cell subset expressing CCR7 is associated with

disease activity (63). In addition, CXCR4 and CXCL12 show higher

expression in the serum and joints of patients with active RA than in

those of HD and patients with RA remission. Moreover, the
Frontiers in Immunology 04
expression of these chemokines in the synovium has been

correlated with disease score in patients with RA treated with TNF-

a inhibitors (54, 55).

Chemokine receptors on T cells [CCR2, CCR4, CCR5, CCR6,

CCR7, CXCR3, CXCR4, CXCR6, and CX3CR1 (111, 126–129)], B

cells [CCR5, CCR6, CCR7, CXCR3, CXCR4, and CXCR5 (130–132)],

monocytes [CCR1, CCR2, CCR5, CCR9, CXCR4, and CX3CR1 (33,

100, 133–137)], macrophages [CCR7, CCR9, and CXCR3 (100, 138)],

and neutrophils [CCR1, CCR5, CXCR1, and CXCR2 (79, 106, 139)]

were more highly expressed in patients with RA than in HD.

Stromal cells of patients with RA also express chemokine

receptors. For instance, ECs express CCR7, CCR10, CXCR2,

CXCR4, CXCR5, CXCR6, CXCR7, and ACKR1 (6, 140–147),
TABLE 1 Continued

Name Other names Receptors

CXCL9 MIG, CRG-10 CXCR3

CXCL10 IP-10, CRG-2 CXCR3

CXCL11 I-TAC, b-R1, IP-9 CXCR3, ACKR1, ACKR4

CXCL12 SDF-1, PBSF CXCR4, ACKR3

CXCL13 BCA-1, BLC CXCR5, ACKR1, ACKR4

CXCL14 BRAK, bolekine Unknown

CXCL15 Lungkine, WECHE Unknown

CXCL16 SRPSOX CXCR6

CXCL17 DMC, VCC-1 Unknown

CX3C chemokine (d chemokine)

CX3CL1 Fractalkine, Neurotactin, ABCD-3 CX3CR1

C chemokine (g chemokine)

XCL1 Lymphotactin a, SCM-1a, ATAC XCR1

XCL2 Lymphotactin b, SCM-1b XCR1
This Table is modified from Miyabe Y et al., Targeting the Chemokine System in Rheumatoid Arthritis and Vasculitis. JMA J. 2020;3(3):182-192 (13). The authors have the right to use the original
Table 1 in Reference 13 and got the permission from Japan Medical Association.
TABLE 2 The chemokine production in RA patients.

Source Chemokine

Blood CCL2, CCL5, CCL11, CCL13, CCL18-20, CCL22, CXCL2, CXCL5, CXCL8-13, CXCL16

PBMC CCL2, CCL3, CXCL2, CX3CL1

T cell CCL3, CCL4, CCL5, CXCL13

B cell CXCL9, CXCL10

Moncyte CCL2, CCL18, CCL19, CX3CL1

Macrophage CCL25, CXCL4, CXCL7, CX3CL1

Dendritic cell CCL17, CCL18, CCL19

Neutrophil CCL3, CCL18

Endothelial cell CCL7, CCL8, CCL14, CCL16, CCL19, CCL22

Fibroblast-like synoviocytes CCL1-5, CCL7, CCL11, CCL13, CCL15-21, CCL25, CCL28, CXCL1-3, CXCL5, CXCL6, CXCL8-10

Chondrocyte CCL2, CCL5, CCL13, CCL18, CCL25, CXCL1, CXCL8, CXCL10, XCL1

Osteoclast CCL2-5, CXCL9, CXCL10, CX3CL1
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whereas FLSs express CCR2, CCR3, CCR5, CCR6, CCR9, CXCR2,

CXCR4, CXCR6, and ACKR6 (86, 100, 115, 148–150). OCs and OCPs

express CCR1, CCR2, CCR3, CCR4, CCR7, CCR9, CXCR2, CXCR3,

CXCR4, and CX3CR1 (124, 125).
2.3 The pathological function of chemokine
receptors in RA

Chemokines and their receptors control lymphocyte recruitment

to inflamed joints in RA patients and animal models (Figure 1). In RA

patients, the recruitment of T cells into the synovium is controlled by

CCR4, CCR5, CXCR3, CXCR4, and CXCR6 (95, 97, 102, 126, 127,

129, 151–154). Inhibition of CCL2, CCL5, or CXCL12 suppresses Th1

cell migration in vitro, suggesting that these chemokines might

promote Th1 cell recruitment to the RA synovium (129). CD4+ T

cells of patients with RA treated in vitro with anti-CCL22 antibodies

differentiate into regulatory T cells (Tregs) via STAT5 activation (85).

In SCID mice implanted with human RA synovium, recruitment of

CD4+ CD28-T cells, resembling effector memory T cells, is controlled

by CCL5 and CXCL12 (127). CCR6 promotes Th17 cell recruitment

into the inflamed joint in SKG arthritic mice (155), myostatin-

deficient (KO) mice, TNF-a transgenic (Tg) arthritic mice (156),

and chemotactic ability of Th17 cells derived from patients with RA in

vitro model (155, 157). In addition, the CCR4 blockade suppresses

Th17 cell migration to the arthritic joints in CIA mice (84). The CIA

model also shows joint infiltration of CCR6+ type 3 innate lymphoid

cells (iLC3s), which highly express IL-17A and IL-22. Furthermore,

the number of CCR6+ iLC3s in the SF of patients with RA is

correlated with disease activity (158).

Follicular helper T (Tfh) cells contribute to the formation and

maintenance of germinal centers (GC). CXCR5+ Tfh cells are

increased in the blood of patients with RA and CIA mice.

Furthermore, the number of these cells correlates with the levels of

clinical RA markers, such as C-reactive protein, rheumatoid factor,

and erythrocyte sedimentation rate (159). In transwell experiments,

the CXCL13/CXCR5 axis showed chemotactic activity in B cells of

patients with RA (130). CXCR5 KO mice are resistant to CIA

development; B cell-specific CXCR5 deficiency leads to mild

arthritis with impaired germinal center (GC) response and antibody

production, whereas T cell-specific CXCR5 deficiency promotes
Frontiers in Immunology 05
resistance to arthritis development by impaired GC response,

antibody production, and inflammatory cytokine response (160).

CCL19, CXCL12, and CXCL13 levels in the serum of patients

with RA are associated with the clinical response to rituximab (89). In

addition, these chemokine levels in the SFs of patients are also

correlated with both the number of CD19+ CD24hi CD27+ B cells

and disease activity and severity (161). The CCL20/CCR6, CXCL12/

CXCR4, and CXCL13/CXCR5 axes regulate B cell migration into RA

SFs (130, 161, 162), whereas the CCL19/CCR7, CCL20/CCR6,

CCL21/CCR7, and CXCL12/CXCR4 axes regulate B cell

recruitment into the RA synovium (130, 131).

CCL2 and CXCL8 enhance neutrophil chemotactic ability in cells

from patients with RA, and CCR2 KO mice are resistant to AIA

model through the suppression of CCL2/CCR2-induced neutrophil

recruitment (163). CCL3 expression is associated with the neutrophil

number in the SFs from patients with RA (106). Furthermore, the

chemotactic activities of CCL4 and CCL5 are also correlated with the

number of neutrophils in the SFs from patients with RA (94). An

amino-terminal-modified methionylated form of CCL5 (Met-

RANTES) antagonized the binding of CCL3 and CCL5 to their

receptors CCR1 and CCR5, respectively, and the blockade inhibited

arthritis in AIA rats via the suppression of neutrophil and

macrophage migration into the joints (164).

ELR-positive CXC chemokines (CXCL1, CXCL2, CXCL3,

CXCL5, CXCL6, CXCL7, and CXCL8) regulate neutrophil

migration and angiogenesis via the receptor CXCR2 (6). CXCL5

expressed in RA SFs promotes neutrophil recruitment to EC in vitro

(165). CXCL1 and CXCL5 induce neutrophil migration into the

articular cavity of AIA mice, and chemotaxis is inhibited by the

blockade of CXCR1/CXCR2 with repertaxin (79). CXCL1 and CXCL8

induce neutrophil chemotaxis in vitro, which is also inhibited by the

blockade of CXCR1/CXCR2 and DF 2162, the later inhibiting

neutrophil recruitment in zymosan-induced arthritis in mice and

AIA in rats (166, 167). Furthermore, in vitro, the ligand for CXCR1,

CXCR2, CXCL2 enhances murine neutrophil migration, and the

CXCL2-neutralizing antibody inhibits migration (139). Both

CXCR2 and CCR1 are expressed in mice neutrophils, and their

abrogation attenuates inflammatory arthritis in K/BxN mice (168).

Recent in vivo imaging of joints showed that CCR1 promotes

neutrophil crawling on the joint endothelium, whereas CXCR2

amplifies late neutrophil recruitment and survival in the joint (169).
TABLE 3 The expression of chemokine receptors in RA patients.

Cell Chemokine receptor

T cell CCR2, CCR4, CCR5, CCR6, CCR7, CXCR3, CXCR4, CXCR5, CXCR6, CX3CR1

B cell CCR5, CCR6, CCR7, CXCR3, CXCR4, CXCR5

Monocyte CCR1, CCR2, CCR5, CCR9, CXCR4, CX3CR1

Macrophage CCR7, CCR9, CXCR3

Neutrophil CCR1, CCR5, CXCR1, CXCR2

Endothelial cell CCR7, CCR10, CXCR2, CXCR4, CXCR5, CXCR6, CXCR7, ACKR1

Fibroblast-like synoviocytes CCR2, CCR3, CCR5, CCR6, CCR9, CXCR2, CXCR4, CXCR6, ACKR6

Osteoclast CCR1, CCR2, CCR4, CCR7, CCR9, CXCR2, CXCR3, CXCR4, CX3CR1
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CXCL9 blocking peptide decreases neutrophil recruitment into the

joints of AIA mice (170).

In vitro approaches further clarified the role of some of these

chemokines in RA samples. CCL2/CCR2 and CCL5/CCR5 enhance

monocyte chemotaxis (171). CCL3, highly expressed in RA SFs,

enhances macrophage chemotaxis (172). CCL25 induces the

chemotactic activity of monocytes and differentiation into

macrophages (100). CCR9 abrogation suppressed CD11b+ cell

migration into joints in a CIA model (82). The CXCL12/CXCR4

axis promotes monocyte migration into the joints of RA ST-

transplanted SCID mice (173). Furthermore, increased CX3CL1

expression in SFs of RA patients induced monocyte chemotaxis via

CX3CR1 in vitro (93).

Increased OC differentiation and activity lead to bone loss and

joint destruction in patients with RA. CCL3 enhanced

osteoclastogenesis via OC migration and activation in the AIA rat

model (174). CCL11/CCR3 induced OCP migration and bone

resorption in vitro (175). CCL19 and CCL21, increased in RA SFs

and serum, and their receptor CCR7, expressed in murine OCPs.
Frontiers in Immunology 06
These chemokines did not affect OC differentiation but promoted OC

migration and increased OC resorption activity in vitro and in vivo

(176). The CCL25/CCR9 axis initiates the transformation of OCPs

into mature OCs in vitro (100). CXCL2 promotes monocyte

recruitment and osteoclastogenesis in RA samples in vitro, as well

as in mouse bone marrow-derived macrophages (90, 177). CXCL10

KO and CXCR3 KO in mice ameliorated arthritis in CAIA model by

suppressing macrophage and T cell accumulation in arthritic joints.

In addition, CXCL10 and CXCR3 inhibition decreased

osteoclastogenic cytokine levels in the serum and spleen of CAIA

(154). Furthermore, in vitro, CX3CL1/CX3CR1 regulates monocyte,

DC, and OCP differentiation into osteoclasts (125, 178).

Several chemokines contribute to cartilage damage in arthritic

joints. For instance, interferon-g (IFN-g) enhances CCL13 expression,
inducing RA FLS proliferation in the cartilage of patients with RA in

vitro (123). CXCL12, which induces MMP-3 production in

chondrocytes in vitro, is also highly expressed in the SFs of patients

with RA (179). CCL5 induces both MMP-1- and MMP-13-mediated

collagen degradation in the SFs of patients with RA (180). In addition,
FIGURE 1

The major contribution of chemokine ligand-receptor interactions in RA patients. I. T cell recruitment: FLSs generate CCL2, CCL5, CCL20, CXCL13, and
CXCL16; OCs produce CXCL10; ECs release CCL22; monocytes, macrophages, and OCs produce CX3CL1, promoting T cell recruitment into the arthritic
joints through the indicated chemokine receptors. II. B cell recruitment: FLSs generate CCL19-21, CXCL12, and CXCL13, enhancing B cell recruitment
into arthritic joints through the respective chemokine receptors. III. Neutrophil recruitment: FLSs generate CCL3-5, CXCL1, CXCL2, CXCL5, and CXCL8,
leading to neutrophil recruitment into arthritic joints through the indicated chemokine receptors. IV. Monocyte recruitment: FLSs generate CCL2, CCL5,
CCL25, and CXCL12; synovial macrophages produce CCL25 and CX3CL1; OCs produce CCL2, CCL5, and CX3CL1, promoting monocyte recruitment into
the arthritic joints through chemokine receptor signaling. V. Synovial macrophage development: FLSs and macrophages generate CCL25, which
promotes monocyte differentiation into macrophages. VI. Osteoclast progenitor recruitment: FLSs generate CCL11, CCL19, and CCL21, while ECs
generate CCL19, leading to OCP recruitment into arthritic joints through the indicated chemokine receptors. VII. Osteoclast differentiation: FLSs and
macrophages generate CCL25, and synovial macrophages and OCs generate CX3CL1, promoting osteoclast differentiation through chemokine receptors.
VIII. Osteoclastogenesis: FLSs, T cells, and neutrophils generate CCL3; FLSs generate CXCL2; and OCs generate CXCL10, ensuring osteoclastogenesis
through the indicated chemokine receptors. IX. Endothelial cell recruitment: FLSs generate CCL28, CXCL13, and CXCL16, stimulating endothelial cell
recruitment into arthritic joints through the indicated chemokine receptors. X. Angiogenesis: FLSs generate CCL21, CCL28, CXCL8, CXCL12, CXCL13, and
CXCL16, supporting angiogenesis through indicated chemokine receptors. Black arrow indicates chemokine production, and red bar shows chemokine
ligand-receptor interaction.
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CXCR4-CXCL12 signaling increased both MMP-9 and MMP-13

production in human chondrocytes in vitro (181).

Chemokine receptors are also expressed in stromal cells, although

their functions remain unknown. Angiogenesis is determinant for RA

pathogenesis, namely for synovial proliferation and pannus formation

(182). CCL21, in vitro, induces human microvascular ECs

angiogenesis and migration via CCR7, suggesting that the CCL21/

CCR7 axis may contribute to angiogenesis in RA (140). The CXCL12/

CXCR4 axis also showed angiogenic activity in RA SFs in Matrigel in

vivo (145) and the CXCL13/CXCR5 axis facilitated EC migration and

angiogenesis in CIA mice (142). CCL28 and CCR10, highly expressed

in RA synovium, regulate angiogenesis by EC recruitment, and

CCL28 blockade inhibits EC migration and capillary formation

(141). The CXCL16/CXCR6 axis promoted chemotactic and

angiogenic activity in human umbilical vein ECs (HUVEC), which

is a cell line (147). The CXCL12/CXCR4 and CXCL12/CXCR7 axes

promote angiogenic activity in HUVEC, contributing to RA

angiogenesis. CXCR7 is also expressed on ECs in the RA synovium.

Furthermore, CXCR7 blockade ameliorated arthritis in CIA mice by

suppressing angiogenesis (183).

FLS-producing inflammatory cytokines and degenerative

enzymes initiate synovial inflammation and joint damage in RA

(184). Several chemokines (CCL11, CCL25, CXCL4, CXCL7,

CXCL10, and CX3CL1) mediate the FLS chemotactic activity in RA

in vitromodels (82, 86, 100, 185, 186). In addition to this chemotactic

activity, some chemokines (CCL2, CCL5, CCL18, CCL20, and

CXCL12) increase the production of IL-6, CCL2, CXCL8, MMP-3,

and COX-2 from FLS of patients with RA in vitro models (100, 115,

149, 150). The CX3CL1/CX3CR1 axis enhances MHVEC migration in

vitro and angiogenesis in Matrigel in vivo (187). The CCL21/CCR7

axis induces VEGF and angiotensin 1 (Ang1) production in RA

fibroblasts and CXCL8 and Ang1 production in macrophages (119).
3 Targeting the chemokine
system in RA

In general, the signaling of “classical” G protein-coupled

chemokine receptors is mediated by activating pertussis toxin-

sensitive Gi-type G proteins. Activated G proteins regulate multiple

downstream signaling cascades, such as the JAK/STAT pathway and

PI3K phosphorylation (188). In contrast, signaling of “atypical”

chemokine receptors is independent of G proteins and remains

somewhat unclear. In this section, we provide an update on arthritis

animal models and clinical trials using drugs targeting chemokines and

their receptors while discussing their potential as therapeutic targets.
3.1 Targeting the chemokine system in
animal models of inflammatory arthritis

Animal experiments are useful in the testing and development of

new therapeutic agents and treatment approaches. Some chemokine

ligands and receptors in KO, Tg, and naturally mutant mice are used as

arthritic models (Table 4). For instance, CCL3 KOmice showed milder

clinical and histopathological scores in the CAIA model (189), whereas

plt/plt mice, a naturally occurring CCL19 and CCL20 mutant strain,
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also showed mild arthritis in CIA model (190). CXCL10 KO mice

showed mild arthritis in CAIA model through the inhibition of

macrophage and T-cell migration into the synovium (154). CXCL14

Tg mice showed exacerbated autoimmune arthritis in a CIA model,

caused by an excessive immune response against type II collagen (191).

CCR2 KO in the DBA/1J background exacerbated the CIA model

because of the enhanced Th17 cell response and increased

autoantibody production (192, 193). CCR2 deficiency in IL-1Ra KO

mice enhanced neutrophil migration (194). Furthermore, CCR2

deficiency in DBA/1J caused severe arthritis in CIA with cutaneous

M. avium infection (195). In contrast, CCR2 KO in C57BL/6 mice

showed decreased neutrophil infiltration into arthritic joints in AIA

model (163). CCR4, CCR6, CCR7, CCR9, CXCR5, and CXCR6

deficiency ameliorated arthritis in CIA mice by suppressing the

migration of Th17 cells (CCR4), DC (CCR7), and CD11b+

splenocytes (CCR9) (82, 84, 160, 190, 196, 197). CCR5 KO mice

showed conflicting results, with a reduced clinical score in CIA model

in one study (198) and no changes in others (193). Although CCR6

KO mice were resistant to CIA model, the deficient CCR6 did not

improve in an animal model of K/BxN and TNF-a Tg mice (196). In

addition, CCR7 inhibition decreased autoantibody production and T

cell proliferation in AIA mice (199). CXCR3 KO mice showed mild

arthritis in CAIA model via the inhibition of both macrophage and T

cell migration into the synovium (154). CXCR4-conditional KO in T

cells reduced arthritic symptoms in CIA mice by inhibiting T cell

migration (200). T cell- or B cell-specific CXCR5 KO mice, as well as

fully CXCR5 KO mice, were resistant to both CIA and AIA models

(160). CXCR6 KO mice showed resistance to K/BxN serum-induced

arthritis and CIA model (147).

The blockade of a single chemokine (CCL2, CCL5, CCL24, CXCL8,

CXCL9, CXCL10, and CXCL16) or chemokine receptor (CCR2, CCR5,

CCR9, CXCR1, CXCR2, CXCR3, and CXCR4) demonstrated

preventive and/or therapeutic effects in distinct animal models

(Table 5). For instance, monomeric mutant CCL2, but not CCL5

mutant (44AANA47), ameliorated arthritis in AIA rats (201). Met-

RANTES, which antagonizes the binding of CCL5 to CCR1 and CCR5,

reduced the arthritic score and decreased macrophage infiltration into

STs in CIA mice and AIA rats (83, 164). The anti-CCL5 antibody, but

not the anti-CCL3 antibody, reduced the arthritic score in AIA rats

(202). CCL24 blockade ameliorated arthritic symptoms in rats with

AIA model (203). Anti-CXCL5 antibody ameliorated arthritis in the

AIA rat model by inhibiting neutrophil migration (204). CXCL8-based

decoy proteins prevented CXCR1 and CXCR2 signaling in neutrophils

and ameliorated arthritis in AIA mice (205). The CXCL9 blocking

peptide, which competes with CCL3 and CXCL6 binding, reduced

neutrophil migration in AIA mice (170). Monoclonal bispecific

antibodies against TNF-a and CXCL10 attenuated arthritis

symptoms in mice by inhibiting CXCL10-mediated CD8+ T cell

migration (206). Anti-CXCL16 antibody attenuated arthritis in CIA

mice by suppressing T cell recruitment (126). Anti-CX3CL1 antibody

decreased arthritic symptoms by inhibiting osteoclast migration into

the synovium of CIA mice (207).

Regarding chemokine receptors, CCR1 antagonist J-113863

decreased the arthritic score but did not affect auto-antibody

production in CIA mice (208). Small-molecule inhibitors of CCR2

combined with Methotrexate (MTX) treatment reduced both the

arthritic score and bone destruction via the suppression of OC activity
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in CIA mice (209). Compound 22, a CCR4 inhibitor, ameliorated

arthritis by reducing Th17 cell migration into the joints of CIA mice

(84). A CCR5 antagonist (maraviroc) decreased the arthritic score

and CD8+ T cell activation in CIA mice (210); however, other CCR5

antagonists (MCC22) did not change the arthritic score in K/B.g7

arthritic mice (211). In CIA monkeys, a CCR5 antagonist (SCH-X)

reduced arthritic score but did not change biomarker expression

(212). CCR9 antagonist (CCX8037) reduced the arthritic score by

inhibiting CD11b+ splenocyte recruitment into joints in CIA mice

(82). The CXCR1/CXCR2 antagonist (SCH563705), but not the

CCR2 antagonist (MK0812), reduced the arthritic score in CAIA

mice (213). Furthermore, the blockade of CXCR1 and CXCR2 (DF

2162) ameliorated arthritis by inhibiting neutrophil migration in AIA

rats (167). Anti-CXCR3 antibody reduced the arthritic scores and T
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cell influx into joints in adaptive transfer-induced arthritic rats (214).

The CXCR3 antagonist (AMG487) contributed to the modulation of

the Th17/Treg cell balance in CIA mice (215). Other CXCR3

antagonists, such as SCH 546738 and JN-2, also treated arthritis in

CIA mice (216, 217). A CXCR4 antagonist (T140) reduced the

arthritic score and auto-antibody production in CIA mice (218).
3.2 Clinical trials of chemokine-targeted
therapy in human RA

Based on valuable animal research, various therapeutic agents

against chemokine ligands or their receptors have been developed and

tested in patients with RA (219). However, several chemokines or
TABLE 4 The phenotypes of chemokine ligands and receptors gene-modified mice in RA models.

Gene RA model and phenotypes

CCL3 CCL3 KO mice (C57BL/6 background) showed a mild arthritis and decreased serum amyloid P level in CAIA

CCL19,
CCL21

plt/plt mice, a naturally occuring CCL19 and CCL21 mutation strain (B6N.DDD-plt/NknoJ), showed a mild arthritis in CIA

CXCL10 CXCL10 KO mice (C57BL/6 mice) showed mild arthritis, and decrease of macrophage and T cell accumulation in arthritic joints in CAIA

CXCL14 CXCL14 Tg mice (C57BL/6 background) showed severe arthritis and increased T cell and B cell response in CIA

CCR2

CCR2 KO mice (C57BL/6 background) showed decrease of neutrophil recruitment into the joints in AIA

CCR2 KO mice (DBA/1J background) showed severe arthritis in CIA and increase of Th17 cell population, autoantibody production, and neutrohpil
infiltration into joints in CIA

CCR2 KO mice (DBA/1J, but not BALB/c background) developed arthritis than WT mice in CIA with cutaneous M. avium infection

CCR2 KO mice (DBA/1J background) showed severe arthritis and elevated autoantibody production in CIA

CCR2 KO mice (DBA/1J background) showed severe arthritis in CAIA and enhanced protease activation from monocytes and neutrophils in CAIA

CCR2 deficiency promoted spontaneous arthritis development and neitrophil infiltration into joints in IL-1R antagonist KO mice (BALB/c background)

CCR4 CCR4 KO mice (C57BL/6 background) showed mild arthritis via inhibition of Th17 cell expansion in CIA

CCR5
CCR5 KO mice (DBA/1J background) showed mild arthritis and decrease of autoantibody production in CIA

CCR5 KO mice (DBA/1J background) showed comparable severity with WT mice in CIA

CCR6

CCR6 KO mice (C57BL/6 background) showed mild arthritis and decrease of autoantibody production in CIA

CCR6 KO mice (C57BL/6 background) showed comparable severity with WT mice in K/BxN

CCR6 deficiency did not affect the arthritis development in spontaneous RA model, human TNF-a Tg mice (C57BL/6 background)

CCR7

CCR7 KO mice (C57BL/6 background) showed a completely resistance to arthritis and decrease of autoantibody production in CIA, via inhibition of DC
chemotactic ability

CCR7 KO mice (C57BL/6 background) showed mild arthritis, decrease of autoantibody production and T cell proliferation in AIA

CCR9 CCR9 KO mice (C57BL/6 background) showed mild arthritis and inhibition od CD11c-positive splenocyte migration in CIA

CXCR3 CXCR3 KO mice (C57BL/6 mice) showed mild arthritis, and decrease of macrophage and T cell accumulation in arthritic joints in CAIA

CXCR4 CXCR4 KO mice (DBA/1 background) showed resistance to arthritis in CIA

CXCR5

CXCR5 KO mice (C57BL/6 background) showed mild arthritis, decrease of autoantibody production and T cell proliferation in AIA

CXCR5 null KO mice (C57BL/6 background) showed completely resistance to arthritis and decrease of autoantibody production, but did not affect leukocyto
migration into joints in CIA

B cell-specific CXCR5 KO mice (C57BL/6 background) showed mild arthritis and decrease GC formation in CIA

T cell-specific CXCR5 KO mice (C57BL/6 background) showed completely resistance to arthritis and decrease GC formation in CIA

CXCR6
CXCR6 KO mice (C57BL/6 background) showed resistance to arthritis and decrease leukocyto recruitment in K/BxN

CXCR6 KO mice (C57BL/6 background) showed resistance to arthritis and impaired cytokine polarization in T cells in CIA
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chemokine receptor inhibitors have failed to show positive results in

clinical trials (Table 6). For instance, the CCL2-blocking antibody

(ABN912) did not promote clinical improvements in patients with

RA (220). In addition, the CCR2 antibody (MLN1202) failed at phase

IIa of the clinical trial due to the reduction of monocyte levels and no

changes in synovial biomarkers (221).

Animal experiments have suggested CCR5 as a good RA

therapeutic candidate (198, 210–212, 222). However, reports

showed that CCR5 is not determinant for RA development (223–

225), and all clinical trials using CCR5 antagonists failed (226–228).

A phase II clinical trial with a CCR1 antagonist (CCX354-C)

showed good efficacy in the ACR20 response in patients with

abundant CCX354-C in plasma but not in those with poor

CCX354-C plasma concentration. However, ACR responses did not
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significantly vary between placebo- and CCX354-C-treated patients

(229). CCR1 antagonist (MLN3897, 10 mg, once, daily) combined

with MTX had no discernible effects on the disease, despite high

MLN3897 plasma concentrations and receptor occupancy of the

therapeutic target (230). Another trial using a CCR1 antagonist

(CP-481,715) and MTX also failed in phase II (231). CCR1 ligands,

CCL3 and CCL5, can bind to other chemokine receptors, CCR3,

CCR4, and CCR5 (Table 1). Therefore, even though CCR1 on

leukocytes might be inhibited, other chemokine receptors can still

promote leukocyte recruitment into inflamed joints in RA. This could

explain the failures in the use of CCR1 as a therapeutic target.

In contrast, the combination of CXCL10 blocking antibody

(MDX-1100) and MTX showed a mild therapeutic effect on the

ACR20 response; however, ACR50, ACR70, and EULAR were not
TABLE 5 The therapeutic effect of chemokine-targeted agents in RA models.

Target Therapeutic effect

CCL2 Recombinant monomeric mutant CCL2 (p8A-MCP-1) protein reduced arthritic score and cytokine production in AIA rat

CCL3 Anti-CCL3 antibody did not affect arthritic score in AIA rat

CCL5 Met-RANTES reduced arthritic score in CIA mice

Met-RANTES reduced arthritic score and macrophage infiltration into STs in AIA rat

Recombinant CCL5 mutant (44AANA47) protein did not affect arthritic score in AIA rat

Anti-CCL5 antibody reduced arthritic score in AIA rat

CCL24 Anti-CCL24 antibody reduced arthritic score in AIA rat

CXCL5 Anti-CXCL5 antibody reduced arthritic score and inflammatory cytokine production in AIA mice

CXCL8 CXCL8-based decoy protein reduced arthritic score and neutrophil recruitment in AIA mice

CXCL9 Antagonistic CXCL9 fragment (74–103) reduced arthritic score, neutrophil influx and cytokine production in AIA mice

CXCL10 Bispecific antibody against CXCL10 and TNF-a reduced arthritic score and CD8+ T cell migration in TNF-a Tg mice and K/BxN mice

CXCL16 Anti-CXCL16 antibody reduced arthritic score in CIA mice

CX3CL1 Anti-CX3CL1 antibody decreased arthritic symptoms by inhibition of osteoclast migration into synovium in CIA mice

CCR1 CCR1 antagonist (J-113863) reduced arthritic score, but not autoantibody production in CIA mice

CCR2 Small-molecular inhibitor of CCR2, comnined with MTX treatment reduced arthritic score and bone loss in CIA mice

Anti-CCR2 antibody (MC) reduced arthritic score and monocyte population in blood in CIA mice

CCR2 antagonist (MK0812) did not affect arthritic score in CAIA mice

CCR4 CCR4 antagonist (Compound 22) reduced arthritic score and decrease Th17 cells in joints in CIA mice

CCR5 CCR5 antagonist (maraviroc) decreased arthritic score and CD8+ T cell activation in CIA mice

CCR5 antagonist (SCH-X) reduced arthritic score,but did not affect biomarkers expression in CIA monkey

CCR5 antagonist (MCC22) did not affect arthritic score in K/B.g7 arthritic mice

CCR9 CCR9 antagonist (CCX8037) reduced arthritic score and inhibited CD11b-positive splenocyte influx into joints in CIA mice

CXCR1/ CXCR2 CXCR1/CXCR2 antagonist (SCH563705) reduced arthritic score, inflammatory cytokine production and neutrophil frequency in blood inCAIA mice

CXCR1/CXCR2 inhibitor (DF 2162) reduced arthritic score, cytokine production and neutrophil influx in AIA rat

CXCR3 Anti-CXCR3 antibody reduced arthritic score and T cell influx into joints in adaptive transfer-induced arthritic rat

CXCR3 antagonist (AMG487) reduced arthritic score and modulated Th17/Treg cell balance in CIA mice

CXCR3 antagonist (SCH 546738) reduced arthritic score in CIA mice

CXCR3 antagonist (JN-2) reduced arthritic score and cytokine production in CIA mice

CXCR4 CXCR4 antagonist, 14-mer peptide T140 reduced arthritic score and autoantibody production in CIA mice
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TABLE 6 The chemokine ligands and receptors-targeted therapy in RA patients.

Target/
Drug
type

Drug
name/

Synonym

Released
year

StudyEfficacy

Study outcome Adverse event Inhibitory
mechanism

CCL2/
Antibody

ABN912/Not
Available

2006Pgase Ib
Not effective

There was no detectable clinical benefit of ABN912 compared
with placebo.

There were no differences in the
number of nature of Aes between
ABN912-treated and placebo-
treated patients.

The
neutralizing
anti-CCL2
monoclonal
antibody
prevents
binding of the
CCL2 and its
receptorCCR2.

CXCL10/
Antibody

MDX1100/
Eldelumab,
BMS-936557

2012Phase II
Effective

The ACR20 response was 54% (MDX-1100 and MTX) and 17%
(placebo and MTX) at weeks 12. However, ACR50, ACR70 and
EULAR good responses were not significantly difference
between MDX-1100- and placebo-treated patients.

51.5% of MDX-1100-treated and
30.3% of placebo-treated patients
experienced AE. Serious AEs were
not reported in MDX-1100-
treated patients.

This
neutralizing
anti- CXCL10
monoclonal
antibody binds
to CXCL10,
but not other
CXCR3
ligands,
CXCL9 or
CXCL11.

CX3CL1/
Antibody

E6011/
Quetmolimab

2023Phase III
Effective

The ACR20 response rates in E6011 200 mg and 400/200 mg
were maintained 50-70% during the extension phase, and the
ACR20 response rates in 100 mg were fluctuated but were
maintained >45% at most time points. The ACR50 response
rates in 200 mg and 400/200 mg ware maintained 25-45%
during extension phase, and the ACR20 response rates in 100
mg were fluctuated but were maintained >20% at most time
points. The ACR70 response rates in 400/200 mg ware
maintained 15-35% during extension phase, and the ACR20
response rates in 100 mg and 200 mg were fluctuated but were
maintained >10% at most time points.

The incidence of AE and TEAEs
were similar across the four
treatment groups (AE, 97.9% in
placebo, 100.0% in E6011 200 mg,
100% in 200 mg, and 98.8% in
400/200 mg groups, and TEAE,
55.3% in placebo, 57.7% in 100
mggroup, 58.0% in 200 mg group,
and 54.3% in 400/200 mg group).
The incidence of serious AE was
10.7% overall.

This
neutralizing
anti- CX3CL1
monoclonal
antibody
prevents
binding of the
CX3CL1 and
its receptor
CX3CR1.

CCR1/
Small
molecule

CCX354-C/
Not Available

2013Phase IINot
Effective

The ACR responses were not significantly difference between
placebo and CCX354-C at week 12. Only CCX354-C abundant
patients in plasma showed good ACR20 response.

39% of CCX354-C (200 mg once
daily)- treated, 57% of CCX354-C
(100 mg twice daily) and 49% of
placebo-treated patients
experienced TEAR. The drug-
related serious TEAE was not
reported.

This orally-
active small
molecule is a
potent and
selective
antagonist of
CCR1.

CP-481,715/
Not Available

2010Phase IINot
Effective

The ACR20 response was 34.0% (CP- 481,715 with MTX) and
47.9% (placebo with MTX) at week 6. Not significantly
difference.

Not shown. This small
molecule binds
CCR1 and
inhibits
chemotaxis
activity of
CCL3, CCL5,
CCL7, CCL8,
CCL14, CCL15
and CCL23.

MLN3897/
AVE-9897,
GSK2941266

2009Phase IIa
Not effective

The ACR20 response was 35% (MLN with MTX) and 33%
(placebo with MTX).

The rates of drug-related AEs
(12% of both groups) and serious
AEs (1% of MLN3897 and 2% of
placebo) were no notable
differences between MLN3897-
and placebo treated patients.

This oral small
molecule is
CCR1
antasonist.

CCR2/
Antibody

MLN1202/
Plozalizumab,
hu1D9

2008Phase IIa
Not effective

Monocyte levels was decreased, but not synovial biomarkers
(clinical response rates were similar between MLN1202 and
placebo).

One patients (0.5 mg/kg
MLN1202) experienced a serious
AE (pericarditis) at day 42 after
the last dose of study drug.

Anti-CCR2
antagonistic
antibody
prevents
binding of the
CCL2 and its
receptor
CCR2.

(Continued)
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significantly different between the treatment and placebo groups. The

frequency of adverse events (AEs) in MDX-1100-treated patients was

higher than that in placebo-treated patients; but any MDX-1100-

treated patients experienced serious AEs (232). Phase III of the

clinical trial using MDX-1100 has not yet been launched.

The clinical trial using CX3CL1 blocking antibody (E6011, 200-

400 mg) was effective for ACR20, ACR50 and ACR70 responses in RA

patients with an inadequate response to MTX. The incidence of AEs

and treatment-related AEs (TEAEs) were similar across the four

treatment groups (placebo, E6011 100 mg, 200 mg, and 400/200 mg

groups). Nonetheless, the incidence of serious AEs was similar

between E6011- and placebo-treated patients. AEs such as

nasopharyngitis, upper respiratory tract infections, bronchitis,

pharyngitis, stomatitis, and back pain occurred in over 5% of the

overall patients (233). However E6011 was no clear benefit in the

ACR20 response rate was observed in RA patients with an inadequate

response to biological DMARDs (234).

Chemokine-targeted therapy encompassed several AEs;

however, the overall incidence of AEs was 40-50%, and the

incidence of serious AE was 0-5% in chemokine-targeted therapies

(Table 6). These numbers increased to an AE incidence of 60-80%

and serious AEs of 5-25% in patients treated with anti-IL-6R

antibody, tocilizumab (235–237). Furthermore, AE incidence was

50-70%, and serious AE incidence was 5-10% in trials using anti-

TNF-a antibody, infliximab (238–240). These clinical findings

suggest that chemokine-targeted therapy is safer for patients with

RA than cytokine-targeted therapy.

In addition to the above-mentioned blockade agents, other inhibitors

of chemokine ligands or their receptors have demonstrated therapeutic

effects on arthritis in RA models. Thus, these chemokine ligands and

respective receptors may be promising targets for new RA therapies.
Frontiers in Immunology 11
4 Conclusion

In this review, we summarize the functional roles of chemokine

ligand–receptor interactions in arthritic joints of animal models and

RA patients. Although several inhibitors of chemokines and/or their

receptors have shown therapeutic effects in animal models of arthritis

and clinical trials of patients with RA, limited therapeutic effects have

been reported, suggesting that chemokine-targeted therapy still

requires improvement. In targeting chemokine receptors, the choice

of the most relevant receptor and ensuring high receptor occupancy at

all times might be the key to therapeutic effects. In addition, inhibition

of a single chemokine alone may not be sufficient to completely

suppress leukocyte migration due to the functional overlap between

chemokine systems. Therefore, the combined targeting of multiple

chemokines and/or their receptors may be a more effective approach

for human RA. Our previous study in animal models demonstrated

that broadly cross-reactive chemokine-blocking antibodies for

CXCR2 ligands dramatically ameliorated inflammatory arthritis

compared with inhibition with antibodies against a single

chemokine (241).

Further understanding of the importance of different chemokines

at different stages of RA is required for the development of drugs that

effectively target the system. We have previously developed an in vivo

imaging technique to fully dissect the functional roles of chemokines

and their receptors in inflamed joints in animal models (242).

Interestingly, CXCR2 and ACKR1 are required for neutrophil

apoptosis in the joint space, whereas the classical C5aR1 and

atypical C5a and C5aR2 receptors are required for neutrophil

apoptosis in the joint (146, 169). Altogether, the development of

effective inhibitors of chemokines and their receptors has untapped

therapeutic potential in RA.
TABLE 6 Continued

Target/
Drug
type

Drug
name/

Synonym

Released
year

StudyEfficacy

Study outcome Adverse event Inhibitory
mechanism

CCR5/
Small
molecule

Maravinoc/
Celsentri,
Selzentry, UK
427857

2012Phase IIa
Not effective

Maravinoc(UK-427,857) showed no significant difference in
ACR20 responders (23.7%: maraviroc and 23.8: placebo) atweek
12.

55% of Maraviroc-treated patients
showed TEAE such as
constipation (7.8%), nausea
(5.2%) and fatigue (3.9%). The
serious AEs were none.

This orally
bioavailable
small molecule
is a potent and
selective
antagonist of
CCR5.

SCH351125/
Ancriviroc,
SCH-C

2010Phase Ib
Not effective

No improvement was observed by medication (3 patients did
not complete, 9 patients caused serious phenotype).

20 patients received SCH351125,
and 3 patients did not complete
the study due to AE.

This orally
bioavailable
small molecule
is an
antagonist of
CCR5.

AZD5672/Not
Available

2010Phase IIb
Not Effective

The ACR response was 35% (AZD5672) and 38% (placebo). 23% of AZD5672-treated and
12% of placebo- treated patients
experienced infection-related AE.

This orally
bioavailable
small molecule
is a potent and
selective
antagonist of
CCR5.
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