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Elevated IFNA1 and suppressed
IL12p40 associated with
persistent hyperinflammation in
COVID-19 pneumonia
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Introduction: Despite of massive endeavors to characterize inflammation in

COVID-19 patients, the core network of inflammatory mediators responsible for

severe pneumonia stillremain remains elusive.

Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory

factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347

confirmedCOVID-19pneumoniapatients (samplen=875), including8deceasedpatients.

Results: Differential expression analysis showed that 76% of plasmaproteins (145

factors) were upregulated in severe COVID-19 patients comparedwith moderate

patients, confirming overt inflammatory responses in severe COVID-19

pneumonia patients. Global correlation analysis of the plasma factorsrevealed

two core inflammatory modules, core I and II, comprising mainly myeloid cell and

lymphoid cell compartments, respectively, with enhanced impact in a severity-
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dependent manner. We observed elevated IFNA1 and suppressed IL12p40,

presenting a robust inverse correlation in severe patients, which was strongly

associated with persistent hyperinflammation in 8.3% of moderate pneumonia

patients and 59.4% of severe patients.

Discussion: Aberrant persistence of pulmonary and systemic inflammation might

be associated with long COVID-19 sequelae. Our comprehensive analysis of

inflammatory mediators in plasmarevealed the complexity of pneumonic

inflammation in COVID-19 patients anddefined critical modules responsible for

severe pneumonic progression.
KEYWORDS
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Introduction

Coronavirus disease 2019 (COVID-19), caused by respiratory

infection with severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has spread worldwide with a disastrous impact on humankind.

Currently, there have been more than 607 million infections globally,

leading to over six million deaths due to acute respiratory distress

syndrome (ARDS) as of September 2022 (https://covid19.who.int/).

The pathogenesis of SARS-CoV-2-induced pneumonia is rather

heterogeneous depending on clinical stage and may occur in two

phases. First, the initial viral phase is characterized by viral replication

resulting indirect virus-mediated tissuedamage. Second, the extentof this

damage response may sequentially determine the complex

immunopathogenesis causing a local and systemic inflammatory

response that can persist even after viral clearance (1, 2). Therefore, an

optimal combinationof antiviral andanti-inflammatory therapiesmaybe

required to prevent severe pneumonic progression and disease mortality

in a stage- and severity-dependent manner (3). Further studies

incorporating the impact of direct viral damage and sequential

immunopathogenesis might be required to identify the best targets for

early intervention and severity-specific treatment of COVID-19 since we

havea limitedunderstandingofkeydriving initiators of severepulmonary

inflammation and long COVID syndrome, also known as post-acute

sequelae of SARS-CoV-2 infection.

In this study, we performed extensive quantitation of 191 proteins

involved in various innate and adaptive immune responses and

inflammation in plasma samples collected longitudinally from 347

confirmed COVID-19 pneumonia patients with well-defined clinical

information and an additional 80 uninfected normal subjects. Plasma

proteomics may reflect the integrated landscape of pulmonary and

systemic inflammation in COVID-19 patients. Systemic analysis of

kinetic changes and correlation according to disease stage and severity

may also hold the promise of revealing causal relationships among the

various inflammatory mediators. In addition, we confirmed their

primary cellular sources based on single cell RNA (scRNA) sequencing

data sets from lung autopsy and respiratory specimens. These results

enabled us to define key inflammatorymodules ofmolecular and cellular

components involved in severe pneumonic progression, deduce their

functional and causal relationship with stronger correlation power, and
02
provide important insights into underlying mechanisms of driving

effectors in severe COVID-19 patients in the context of relevant

clinical outcomes. Therefore, our study may present key prognostic

predictors required for biomarker development of effective therapeutics

as well as advanced criteria for selecting patients for intensive care.
Materials and methods

Study design, patient information, and
ethics statement

We enrolled 80 uninfected volunteers without respiratory disease and

347 SARS-CoV-2 PCR-positive patients admitted to Chungnam

National University Hospital (Daejon, Republic of Korea), Seoul

Medical Center (Seoul, Republic of Korea), and Samsung Medical

Center (Seoul Republic of Korea). COVID-19 patients were categorized

based on WHO severity definitions (https://covid19.who.int/) (4).

General information on the baseline characteristics of the study

participants included in this study are summarized in Table 1.

Peripheral blood was collected in ethylenediaminetetraacetic acid

(EDTA) tubes during hospitalization and centrifuged to collect plasma

within 24 h after collection. Then, plasma samples were stored at -80°C

before analysis. Lung autopsy samples were obtained from six deceased

COVID-19 patients. Experiments conformed to the Declaration of

Helsinki principles, and written informed consent was obtained from

all donors or their legal guardians prior to the study. The clinical research

was approved by the institutional review boards of Chungnam National

University Hospital (IRB no.: CNUH 2020-12-002-008), Seoul Medical

Center (IRB no.: SEOUL 2021-02-016), Samsung Medical Center (IRB

no.: SMC-2021-03-160), Seoul National University Hospital (IRB no.: C-

1509-103-705), and the Korea National Institute of Health (IRB no.:

2020-09-03-C-A).
Multiplex immunoassay of plasma proteins

To identify the differentially regulated plasma factors depending on

COVID-19 disease severity, 350 plasma factors (Supplementary Table
frontiersin.org
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S1) from 20 plasma samples (10 from 3moderate patients and 10 from 5

severe patients) were screened by quantitative immunoassays using a

total of 21multiplex panels according to themanufacturers’ instructions

via a multiplex assay service (Koma Biotech., Seoul, Republic of Korea).

Four types of commercially available kits were used for measurement

(SupplementaryTable S1).TheMILLIPLEXMAPHumanComplement

Magnetic Bead Panel 2 (Millipore, Burlington,MA,USA) included C1q,

C3, C3b/iC3b, C4, complement factor B, complement factor H, and

properdin. TheMILLIPLEXMAPHuman SepsisMagnetic BeadPanel 3

(Millipore) included elastase 2, lactoferrin, NGAL, resistin, and

thrombospondin-1. Magnetic Luminex Performance Assay multiplex

kits (R&DSystems, Inc.Minneapolis,MN,USA)were used for TGF-b1-
3.MagneticLuminexScreeningAssaymultiplexkits (R&Dsystems, Inc.)

included all the other factors measured in this study. Assay plates were

read with a Luminex 100/200TM analyzer (ThermoFisher, Waltham,
Frontiers in Immunology 03
MA, USA). For quantification for each factor, the supplied standard

proteins were used, and a standard curve was drawn by the best fit

algorithm using MasterPlex QT 2010 software (MiraiBio, Hitachi, CA,

USA). We used detection limit values of non-detected factors below the

detection range (Supplementary Table S2). Based on the screening

results, 191 plasma factors were selected for further studies

(Supplementary Tables S3).
Lung tissue preparation, H&E staining, and
scRNA sequencing

Lung autopsy samples obtained from deceased patients were

immediately fixed in 10% formalin or immersed in RNAlater

solution (ThermoFisher) for paraffin embedding or scRNA
TABLE 1 Demographics and baseline characteristics of COVID-19 patients.

Variables Normal Control (N = 80) COVID-19 p-value***

Total (N = 347) Moderate (N = 315) Severe (N = 32)

WHO severity Grade 4 (N = 280) Grade 6-9 (N = 24)

Grade 5 (N = 35) Grade 10 (N = 8)

Sex, N (%) 0.791

male 40 (50.0%) 188 (54.0%) 171 (54.1%) 17 (53.1%)

female 40 (50.0%) 159 (46.0%) 144 (45.9%) 15 (46.9%)

Age, year <0.0001

mean ± SD. 45.6 ± 16.9 53.5 ± 17.6 52.0 ± 17.3 68.1 ± 13.5

range 21-78 19-92 19-92 36-91

BMI, kg/m2 0.091

mean ± SD. 24.0 ± 3.6 24.2 ± 3.9 24.2 ± 3.9 23.4 ± 4.3

range 17.0-31.0 12.4-39.4 12.4-39.4 15.9-31.2

Comorbidity, N (%)

Hypertension 18 (22.5%) 113 (32.7%) 94 (29.9%) 19 (59.4%) 0.0012

Diabetes 7 (8.8%) 78 (22.5%) 60 (19.1%) 18 (56.3%) <0.0001

Cardiovascular ds. 2 (2.5%) 21 (6.1%) 16 (5.1%) 7 (21.9%) 0.1814

Respiratory ds. 0 (0.0%) 14 (4.0%) 10 (3.2%) 4 (12.5%) 0.0159

Kidney ds. 0 (0.0%) 13 (3.8%) 11 (3.5%) 2 (6.3%) 0.1474

Other chronic ds.* 1 (1.3%) 31 (9.0%) 26 (8.3%) 5 (15.6%) <0.0001

Treatment, N (%)

Antibiotics 56 (16.2%) 44 (14.0%) 12 (37.5%)

Antiviral drugs 44 (12.7%) 23 (7.3%) 19 (59.4%)

Corticosteroids 73 (21.1%) 43 (13.7%) 30 (93.8%)

Other therapies** 101 (29.2%) 93 (29.6%) 8 (25%)

Time from onset to O2 therapy, Days

mean ± SD. 7.1 ± 4.0 7.4 ± 3.6 6.7 ± 4.4

range 1-18 1-18 1-18
*neoplasia, chronic liver ds., or dementia.
**Immune plasma, monoclonal antibodies, anticoagulant, or Pyramax.
***One-way ANOVA was used to estimate p-values for significant difference in demographic features among normal control, moderate, and severe groups.
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sequencing, respectively. Paraffin-embedded lung tissue samples were

prepared as previously reported (5). Briefly, the tissues that were fixed

overnight were dehydrated and defatted by immersing in ethanol and

xylene sequentially and treated with melted paraffin (58-60°C).

Paraffin-embedded tissues were cut at a thickness of 4 mm and

stained with hematoxylin and eosin (H&E). Lung pathology was

evaluated and analyzed by two experienced pathologists under a light

microscope (BX-53, Olympus, Tokyo, Japan). For scRNA sequencing,

lung tissues were dissociated into single cells by chopping with a blade

and were incubated in RPMI1640 containing 1 mg/ml Collagenase IV

(ThermoFisher) and 0.1 mg/ml DNase I (Worthington, Columbus,

OH, USA) at 37°C for 30 min. Lung single cells were filtered by nylon

mesh and 70 mm cell strainers (Falcon) and centrifuged at 1,000 x g

for 5 min. After RBC lysis, cell counts and viability were measured

with a Countess 3 Automated Cell Counter (ThermoFisher), and

20,000 live cells were used to generate gel beads-in-emulsion (GEMs)

by using the Chromium Single Cell 5’ Library and Gel Bead Kits v.1

and a Chromium Controller (10x Genomics) according to the

manufacturer’s instructions, as we previously reported (6). After

GEM-RT incubation and cDNA amplification, the cDNA quality

and concentration were analyzed and calculated using an Agilent

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and

scRNA sequencing was performed using the NextSeq 550 platform

(Illumina, San Diego, CA, USA).
Bioinformatics of scRNA-seq and
statistical analysis

The raw sequencing data for scRNA-seq were processed with

CellRanger (version 3.1.0) (7). Reads were aligned to the combined

genome of human (GRCh38, Ensembl) and SARS-CoV-2

(ASM985889v3, NCBI). The feature-barcode matrices were

generated using the CellRanger count. The cells of the feature-

barcode matrices were filtered by the numbers of expressed genes

and the mitochondrial-to-total gene count ratio. The filtered feature-

barcode matrices were used to create Seurat (version 4.1.1) objects (8).

The Seurat objects were normalized using the SCTransform

algorithm. To align the cells originating from different samples,

3,000 highly variable genes from each sample were selected.

Anchors representing a similar biological state across samples based

on the overlap in their nearest neighbors were sought, and samples

were aligned based on the top 20 canonical correlation vectors. The

aligned samples were scaled, and principal component analysis (PCA)

was conducted. The cells were clustered by unsupervised clustering

(0.2 resolution) and visualized by UMAP. To identify marker genes,

upregulated genes in each cluster relative to the other clusters were

selected on the basis of the Wilcoxon rank sum test implemented in

Seurat FindAllMarkers function with >0.25 log fold change compared

with other clusters and a Bonferroni-adjusted P < 0.05. By manual

inspection, the 17 different clusters were assigned to 13 cell types.

Unsupervised clustering of samples, patients, or plasma factors

was performed using the k-means algorithm. The optimum number

of clusters was determined by using silhouette coefficient analysis in

NBClust and factoextra packages (R package Version 1.0.7.). Before

data visualization, each feature was scaled and centered as a z score
Frontiers in Immunology 04
using the scale function in R software. Multiple group comparisons

were performed using the two-tailed Mann−Whitney test or Kruskal

−Wallis test. Spearman’s correlation test was performed using the

corrplot package in R software. For visualization, heatmaps and dot

plots were generated using the ComplexHeatmap (9) and ggplot2

packages, respectively. Correlation plots were generated with the

corrplot package by only showing correlations with p < 0.05 and

ordered by hierarchical clustering. Core I and core II in the global

correlation network are indicated based on hierarchical clustering

results in the correlation plot.
Gene ontology and pathway
enrichment analysis

Plasma factors were considered to be expressed differentially if there

were significant differences (p < 0.05) in comparison among the NC

group,moderate group (grades 4 and 5), and severe group (grades 6~10).

These differentially expressed proteins were subjected to gene set

enrichment analysis to assess the biological function related to

COVID-19 severity. Enrichment analysis of GO biological pathways

and hallmark gene sets was performed using the clusterProfiler (10) and

enrichR (11) packages of R statistical software (R core team, 2020),

respectively. Enriched terms were visualized using ggplot2 (12).
Linear mixed model analyses

Demographic and baseline characteristics were expressed as the

mean with standard deviation and range for continuous variables and

frequencies with percentages for categorical variables. Differences

among group severities in plasma factors were assessed with

independent samples t test or Wilcoxon rank sum test according to

their normality. In addition, if the results of group comparison were

statistically significant, pairwise multiple comparison with Bonferroni

correction was applied. We performed hierarchical clustering with all

plasma factors to distinguish biologically distinct subgroups with a

distance-based algorithm. A linear mixed model was used to

investigate the periodically measured plasma factor changes over

time, adjusting for age and sex. Statistical analysis was conducted

using SAS 9.4 software (SAS system for Windows, version 9.4; SAS

Institute, Cary, NC, USA) and the R package (version 4.2.1, R Core

Team, 2020; R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/).
Quantitation of viral loads

Real-time reverse transcription-polymerase chain reaction (RT−PCR)

assays for the detection of SARS-CoV-2 were performed according to the

manufacturer’s instructions (Kogenebiotech, Seoul, Republic of Korea) (5).

Total RNA was obtained from nasopharyngeal and throat swab (upper

respiratory tract) and sputum (lower respiratory tract) samples. Primer

sets targeting the E and RdRP genes of SARS-CoV-2 were used with a

cutoff cycle threshold (Ct) value higher than 38 cycles.
frontiersin.org
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Results

Patient characteristics

The baseline characteristics of the confirmed COVID-19 patients

included in this study are summarized in Table 1 and Figure 1A. The

uninfected normal control (NC) group included 80 sex- and age-

matched individuals who provided 80 plasma specimens. A total of
Frontiers in Immunology 05
347 hospitalized patients with confirmed COVID-19 pneumonia

participated in our cohort and were classified based on WHO

clinical grading (grade 4-10: 4, moderate disease without oxygen

therapy; 5, moderate COVID-19 with oxygen therapy by mask or

nasal prongs; 6, severe disease treated with noninvasive ventilation or

high flow oxygen; 7, severe disease with intubation and mechanical

ventilation [pO2/FiO2 ≥ 150 or SpO2/FiO2 ≥ 200]; 8, severe disease

with mechanical ventilation [pO2/FiO2 < 150 or SpO2/FiO2 < 200] or
A B

D

C

FIGURE 1

Overt inflammatory responses associated with severe COVID-19 pneumonia. (A) Overview of the study cohort. (B) Unsupervised hierarchical clustering
of 191 plasma factors measured by multiplexed immunoassay presented four separated clusters, C1-C4. The plasma samples are arranged according to
COVID-19 severity (M: moderate pneumonia, S: severe pneumonia) and the collection days post-symptom onset (DPS). Eighty plasma samples collected
from uninfected volunteers (NCs) are also included. The heatmap shows z scores and clustering determined using correlation and average linkage.
(C) Bubble plots show the relative fold change in the average level of each plasma factor in comparison with indicated patient groups. The statistical
significance in difference among the subject groups was calculated with the Mann–Whitney test or Kruskal−Wallis test. (D) Gene Ontology (GO) and
hallmark gene set-based enrichment analyses of differentially regulated plasma proteins among NCs and COVID-19 patients present representative
biological processes and the number of counts with statistical significance.
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vasopressors; 9, severe COVID-19 treated with mechanical

ventilation [pO2/FiO2 < 150] and vasopressors, dialysis, or

extracorporeal membrane oxygenation; and 10, deceased patients)

(https://covid19.who.int/) (4). The moderate group with grade 4 (M4)

or 5 (M5) COVID-19 included 280 and 35 patients, respectively. The

severe COVID-19 group with grades 6 to 10 (S6 ~ S10) included 32

patients, with 8 deceased patients due to fatal ARDS. The NC,

moderate, and severe COVID-19 groups had similar proportions of

male and female patients, but the age distribution in the severe group

(mean ± S.D.: 68.1 ± 13.5) was older than those in the NC (45.6 ±

16.9) and moderate groups (52.0 ± 17.3). The severe group presented

a significantly higher proportion of comorbidities, such as

hypertension and diabetes, than the NC and moderate groups

(Table 1). All patients were recruited before July 2021 and were not

immunized with the COVID-19 vaccine before infection.

First, we investigated the potential association of disease severity

with viral loads in respiratory secretions (13). The overall viral loads

in the upper (nasopharyngeal swab specimens) and lower (sputum

specimens) respiratory tract samples were not significantly different

between the moderate and severe groups (Supplementary Figure S1A-

C). When we assessed the potential effect of age on viral dynamics,

overall viral loads tended to be similar among the patient groups

regardless of age (old: ≥60, young: <60) and severity (Supplementary

Figure S1C), even though older patients in the M4 group showed

significantly higher viral loads than older patients in the severe group,

especially based on lower respiratory tract specimens.
Overt inflammatory responses associated
with severe COVID-19 pneumonia

To screen plasma factors differentially regulated according to the

disease severity of COVID-19, we performed quantitative immunoassays

using 21 multiplex panels detecting 350 plasma factors that are

functionally associated with various types of inflammation and

immune responses (Supplementary Table S1). In the pilot test, 20

plasma samples (10 from 3 moderate patients and 10 from 5 severe

patients) collected after symptom onset were analyzed (Supplementary

Table S2), and we selected 191 plasma factors (Supplementary Table S3),

namely, 60 factors showing significant differences between the samples

from the moderate and severe groups in the initial screening and 131

plasma proteins potentially associated with pulmonary and systemic

inflammation reported in previous studies (14–19). Plasma samples were

longitudinally collected from 347 COVID-19 patients 1~6 times at 3~7-

day intervals. Quantitative analysis of the 191 selected factors in 955

plasma specimens from 80 NCs (n=80 plasma samples) and 347

COVID-19 patients (n=875 plasma samples) was performed, and the

results are summarized in Figure 1B. Unbiased hierarchical clustering of

the Z-score trajectories of all the plasma factors demonstrated four clearly

separated major clusters (C1 ~ C4). C1 and C2 were generally elevated in

severe patients when compared to NCs and moderate patients, whereas

the C3 group tended to be decreased in severe patients (Figure 1C). The

C1 factors showed more persistent responses, but the C2 factors tended

to be decreased gradually at later stages. The C4 group factors presented

heterogeneous responses with fluctuations depending on disease severity

and course. A comparison of the overall mean values of the plasma
Frontiers in Immunology 06
factors among the NC and patient groups revealed that 180 factors were

significantly and differentially regulated (Figure 1C). A comparison of the

mean values between the NC and COVID-19 groups revealed that 153

plasma factors were significantly and differentially regulated (128 factors

upregulated and 25 factors downregulated in COVID-19 patients).When

we performed linear mixedmodel analysis to assess significant differences

among the severity groups after adjusting for the age and sex of the

patients to further confirm the specific association of the plasma factors

with disease severity (Supplementary Table S4), 167 factors showed

significant differences between the NC and COVID-19 groups and

their time-dependent trajectories, even after adjusting for age and sex.

Differential expression analysis between the moderate and severe

COVID-19 groups indicated that 169 factors were significantly

upregulated (145 factors) or downregulated (24 factors) in plasma

from severe COVID-19 patients compared to moderate pneumonia

patients (Figure 1C). Even though most of the differentially expressed

plasma factors were gradually increased or decreased depending on

disease severity, it is noteworthy that several factors, including IL12p40,

GZMB, IFNG, MMP12, and IL1B, were significantly upregulated in the

M5 group compared with the NC, M4, or severe COVID-19

groups (Figure 1C).

The 180 differentially regulated plasma factors in the NC and

COVID-19 groups were subjected to Gene Ontology enrichment and

hallmark gene set enrichment analyses (20, 21). Even though our

quantitative assay was based on selected panels mainly related to

immune responses and inflammation, relative enrichment of specific

pathways was observed (Figure 1D). These included pathways

primarily involved in leukocyte chemotaxis, cell−cell adhesion,

response to bacterial molecules, T-cell activation, humoral immune

response, vascular development, extracellular matrix organization,

and epithelial-mesenchymal transition.

The kinetic responses of 170 plasma proteins showing significant

differences among the NC, M4, M5, and severe groups are presented

in Supplementary Figure S2. Kinetic changes in representative factors

involved in the enriched functional pathways showed significant

differences among the patient groups, as summarized in Figure 2.

For example, a type I interferon, IFNA1, presenting a significantly

higher response in severe COVID-19 patients, surged during the early

phase of symptom onset and gradually declined, whereas IFNL3, a

type III interferon, which was also significantly elevated in the severe

group compared with the moderate group, gradually increased in

severe patients during disease progression (Figure 2B). Other plasma

factors involved in inflammation (IL6, IL10, IL13, MPO, and LBP),

endothelial activation and coagulation (THBD, F3, VWF, PROS1, and

MMP8), T-cell homeostasis and activation (IL7, IL15, IL18, IL4, and

IL23A), and humoral response (IL4R, IL1RL1, IL33, TNFSF13B, and

C9) were also significantly upregulated with various kinetic responses

(Figures 2D–G). These overt inflammatory responses associated with

severe disease progression were concomitantly presented with

elevated tissue damage responses, such as vascular development

(HGF, ENPP2, CHI3L1, THBS2, and ANGPT2), extracellular

matrix organization (MMP2, MMP3, MMP9, PTX3, and SPP1),

and epithelial mesenchymal transition (TGFB1, PLAUR, IGFBP2,

IGFBP4, and SDC1) (Figures 2H–J), suggesting the complexity of

dysregulated systemic inflammation potentially initiated from severe

pulmonary insults by SARS-CoV-2 infection (5, 22, 23).
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FIGURE 2

Kinetic changes in representative plasma factors differentially regulated among NCs and COVID-19 patients. Kinetic responses of representative
inflammatory factors involved in leukocyte chemotaxis (A), type I and III interferon response (B), Th1 cytokines (C), general inflammation (D), endothelial
activation and coagulation (E), T-cell homeostasis and activation (F), humoral response (G), vascular development (H), extracellular matrix organization
(I), and epithelial-mesenchymal transition (J). The overall protein level of an indicated factor in plasma is compared among the NC and patient groups
with the Kruskal−Wallis test (left panels) and their kinetic responses according to days post-symptom onset (DPS) (right panels). Solid lines indicate
nonlinear regression. R squared values are colored accordingly if the value of any regression is above 0.1. Gray: NC, blue: M4 group, green: M5 group,
red: severe group, and black dots for fatal cases. **p < 0.01, ***p < 0.001.
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Cellular sources of plasma factors in the
inflamed lungs of COVID-19 patients

Histopathologic examination of the lungs of patients who died

due to COVID-19 revealed variable phases of diffuse alveolar damage

from the acute exudative phase to the proliferative and fibrotic phases

(Supplementary Figure S3). The pathologic findings from the lungs

included diffuse interstitial thickening, fibrosis, granulation tissue

formation and lymphoplasma cell infiltration with reactive type II

pneumocyte hyperplasia and hyaline membrane formation in the

alveolar wall. Occasional foci of macrophages, neutrophil infiltration

with seromucinous fluid or hemorrhage in alveolar spaces were also

observed. Focal pulmonary microthrombi or large vessel thrombi

were identified in some patients.

SARS-CoV-2 RNA was barely detected in our autopsy samples by

scRNA sequencing analysis, and 13 cell types were identified and

manually annotated (Supplementary Figure S4, S5A). Macrophages

were the predominant inflammatory cells, ranging from 47.9% to

78.7% of lung-infiltrating leukocytes. T cells were the second most

dominant cell type, comprising 4.2% to 28.1%, and neutrophils

accounted for 7.4~14.5% of the pulmonary leukocytes. NK and

NKT cells represented approximately 5.2% and 1.9% of the

pulmonary leukocytes, respectively, and B cells accounted for ~

1.1% (Supplementary Figure S5B). We also observed that 0.7~3.0%

of the leukocytes were mast cells in the lung autopsy samples from the

patients who died. Some notable differences between the NC and fatal

COVID-19 lungs were a relative decrease in NK cells in the patients

(0.5–9.7%, mean=5.7%) vs. controls (mean: 16.1%) as well as an

increase in macrophages (47.9–78.7%, mean=59.4%) and NKT cells

(0.2–4.5%, mean=1.9%) in COVID-19 patients vs. controls

(mean=43.7% and 0.4% for macrophages and NKT cells,

respectively), even though the differences were not statistically

significant. To further examine the respiratory leukocyte population

in COVID-19 patients, we utilized two public scRNA data sets based

on analyses of respiratory samples (nasopharyngeal and

bronchoalveolar lavage fluid samples) (Supplementary Figure S6A)

(24, 25). These included 9 NC sets and 36 COVID-19 samples from

28 patients (11 moderate and 17 severe patients, including 4 fatal

cases). The relative proportions of specific leukocyte populations in

the combined data set from COVID-19 patients revealed remarkable

reductions in NK (moderate: 12.8%, severe: 2.6%) and T (moderate:

11.3%, severe: 5.1%) cell populations in the severe COVID-19 group

compared to the moderate COVID-19 group (Supplementary Figure

S6B). In contrast, neutrophils were increased in severe patients

(30.1%) compared with moderate patients (19.5%). In addition,

NKT cells (moderate: 5.5%, severe: 6.9%), B cells (moderate: 2.6%,

severe: 3.7%), and macrophages (moderate: 48.2%, severe: 51.6%)

were slightly increased in the severe group compared with the

moderate group.

When we examined transcriptional expression of the plasma

factors in the scRNA data sets to identify the cellular sources of the

plasma proteins, we detected 180 transcripts among 191 factors in the

scRNA data sets from our lung autopsy samples or previously

deposited respiratory samples (24, 25). RNA transcripts for 124

plasma factors were detected in more than 10% of a specific cellular

type and are summarized in Supplementary Figure S5C, S6C.
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Global correlation map of 191 plasma
proteins in COVID-19 patients

To assess the potential associations of all 191 quantified proteins

with each other in COVID-19 patient plasma, we generated a global

correlation map (Figure 3). This consists of the pairwise correlation of

191 plasma factors in 875 patient samples (36,481 correlation

coefficients) that were subjected to unsupervised hierarchical

clustering (Figure 3A). This approach revealed 14,801 significantly

(p < 0.05) correlated pairs showing either positive (12,584 pairs) or

negative (2,217 pairs) correlations (Figure 3B). Among the

significantly correlated pairs, 195 pairs presented robust positive

correlation (Spearman’s r ≥ 0.7), and 2,745 pairs displayed

moderate positive correlation (0.7 > Spearman’s r ≥ 0.4), whereas

only 37 pairs showed moderate negative correlation (-0.7 <

Spearman’s r ≤ -0.4). Based on the correlation coefficients and the

number of significant correlators of each plasma factor displaying

absolute Spearman’s r ≥ 0.4, we generated a global correlation map

including 159 proteins (Figure 3C). We also annotated the primary

cellular sources of each factor, as shown in Supplementary Figure

S5C, S6C. The global correlation map presenting robust correlation

(Spearman’s r ≥ 0.7 in red lines) highlighted two core modules, cores I

and II. The core I module comprised 23 plasma factors mainly derived

from macrophages (PTX3, MMP8, MPO, TIMP1, CD274, IL6,

IL1RN, TREM1, CXCL9, LGALS3, and MMP9), neutrophils (PTX3,

S100A9, MMP8, MPO, TIMP1, CD274, IL1RN, TREM1, MMP9, and

S100A12), epithelial cells (WFDC2, GDF15, SDC1, TNFRSF10B, F3,

LGALS3, LCN2, and FSTL3), and endothelial cells (IL6, FSTL3, and

THBD) (Figure 3C). The core II module included 12 proteins

primarily expressed in epithelial cells (IL7, IL36B, NECTIN4, and

CXCL6), NK(T) and T cells (GZMA, CD40LG, and IL3), and

fibroblasts (CCL11) (Figure 3C). The core I and II components

displayed robust and multiple correlations with each other and

significant correlations with approximately 170 factors on average,

suggesting a strong and wide functional relationship. In addition,

several core I factors, such as TIMP1, CD274, and IL6, were strongly

correlated with LRG1 and LBP derived from epithelial cells and

macrophages, respectively, as well as complement factors C2 and

C9. Components of core II also strongly correlated with PDGFA,

CXCL2, and TGFB1, which were primarily expressed in alveolar

epithelial cells and T cells, respectively. Notably, CCL4 derived from

NKT and T cells showed a strong positive correlation with several

components of the core I and core II networks, suggesting a

connective role between both inflammatory networks (Figure 3C).

We next examined changes in patterns of the correlation network

in each severity group to assess the impact of plasma factors according

to COVID-19 severity (Figure 4 and Supplementary Figure S7). The

total number of significant correlation pairs with absolute Spearman’s

r ≥ 0.4 gradually increased in a severity-dependent manner, and the

severe group presented 3,121 correlated pairs, whereas the M4 group

and M5 group had 1,576 and 2,086 significant correlated pairs,

respectively, suggesting stronger and more diverse functional

associations of the plasma factors during more severe disease

progression (Supplementary Figure S7B). The global correlation

map of the M4 and M5 groups (moderate pneumonia) with the

robust correlated pairs (absolute Spearman’s r ≥ 0.7) included 39 and
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66 proteins, respectively (Figures 4A, B). The severe group presented

72 factors with robust correlations, and the number of significantly

(absolute Spearman’s r ≥ 0.4) correlated pairs of robust correlators

(n=1,975) was drastically increased when compared with those of the

M4 (n=710) and M5 (n=1,191) groups (Figure 4C and Supplementary

Figure S7B). We observed that the number of robust correlators in the

core I module in the M5 (n=17) and severe (n=16) groups was higher

than that in the M4 group (n=9). In contrast, the robust correlators in

the core II module seemed to be rather conserved regardless of disease

severity, but the number of significantly correlated pairs (absolute

Spearman’s r ≥ 0.4) was increased, especially those of CXCL6, IL15,
Frontiers in Immunology 09
GZMA, and NECTIN4. These results suggest that pneumonic

progression requiring oxygen supply (M5 and severe groups) might

be facilitated by more diverse inflammatory mediators in the core I

module, whereas critical pneumonic commitment requiring intensive

respiratory care (severe group) may be associated with enhanced

impact on other mediators by the members of the core II module.

Additionally, several factors, such as ENPP2, C5, FASLG, VWF,

IFNA1, and CSF1, newly appeared as robust positive correlators

strongly associated with more diverse plasma factors in the severe

group than in the moderate group (Figure 4C), also indicating their

enhanced impact on other plasma factors during severe pneumonic
A

B

C

FIGURE 3

Global correlation map of 191 plasma proteins from COVID-19 pneumonia patients. (A), Correlation matrix across all time points of 191 plasma factors
from COVID-19 patients. Only significant correlations (p < 0.05) are represented as dots. Spearman’s correlation coefficients from comparisons of
protein measurements within the same specimen are visualized by color intensity. (B) Distribution of the number of significant correlation pairs (p <
0.05). Red (robust positive correlation): Spearman’s r ≥ 0.7, orange (moderate positive correlation): 0.7 > Spearman’s r ≥ 0.4, and sky blue (moderate
negative correlation): -0.7 < Spearman’s r ≤ -0.4. There was no robust negative correlation pair (Spearman’s r ≤ -0.7). (C) Global correlation map of 159
proteins based on the correlation coefficients and the number of significant correlators of each plasma factor displaying an absolute Spearman’s r ≥ 0.4.
The circle size is proportionally adjusted depending on the number of significant correlators, and the color code of each component is determined
based on primary cellular source (see Supplementary Figure S5C, S6C). All the correlation pairs with Spearman’s r ≥ 0.7 are linked by a red line. If the
absolute r value of maximum correlation was more than 0.4 but less than 0.7, only the best correlator is linked by either a pink line (positive corr.) or a
sky blue line (negative corr.).
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progression in COVID-19 patients. Consistently, we observed a

gradual increase in correlation power among the top correlators,

such as IL-15, CXCL6, FASLG, ENPP2, C5, and VWF, in the severe

group as the disease severity was aggravated (Figure 4D).

Furthermore, we noticed that IL12p40 and CX3CL1 displayed

strong positive correlations with each other but showed robust

negative correlations with other inflammatory mediators, such as

C5, ENPP2, CCL22, FASLG, CCL4, VWF, IL15, and CXCL6, in the

severe patient group (Figure 4C, 5, and Supplementary Figure S8).

The degree of negative correlation of IL12p40 and CX3CL1 with
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inflammatory factors gradually increased depending on COVID-19

severity (Figure 5A, B), suggesting that suppression of IL12p40 and

CX3CL1 might be associated with enhanced inflammatory responses

driving critical pneumonic progression in patients. In addition,

IL12p40 was the top negative correlate of IFNA1 in the severe

group, and their inverse correlation was gradually enhanced

according to COVID-19 severity (Figures 5C, D). IFNA1 also

presented a robust positive correlation with CCL11, FASLG, and

IL23A in severe patients, and their correlation power was gradually

enhanced as COVID-19 severity increased.
A B

D
C

FIGURE 4

Enhanced correlation in quantity and quality among the plasma factors according to COVID-19 severity. Correlation maps of plasma proteins displaying
robust correlation power (absolute Spearman’s r ≥ 0.7) in plasma samples from moderate (A) M4 and (B) M5 and severe patients (C) S are presented. The
circle size is proportionally adjusted depending on the number of significant correlators (absolute Spearman’s r ≥ 0.4), and the color code of each
component is determined based on primary cellular source. All the correlated pairs with a Spearman’s r ≥ 0.7 are linked by either pink (positive corr.) or
sky blue lines (negative corr.). (D) Representative correlation plots of the indicated plasma factors which show enhanced correlation power in quantity
and quality according to COVID-19 severity. Spearman’s r value for each plot is presented.
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FIGURE 5

Robust inverse correlation of IL12p40 and CX3CL1 with various inflammatory mediators and IFNA1 in severe COVID-19 patients. (A) Top 5 positive and
negative correlators of IL12p40 and CX3CL1 in NC and COVID-19 patients with various disease severities (M4 and M5: moderate pneumonia, S: severe
pneumonia). Upper factors are the best 5 positive correlators and lower mediators are the best 5 negative correlators of IL12p40 and CX3CL1. The color
of each factor is annotated according to the value of their correlation coefficient; red and blue: robust correlation with absolute Spearman’s r ≥ 0.7,
orange and sky blue: moderate correlation with 0.7 > absolute Spearman’s r ≥ 0.4, and gray: no significant correlation (p > 0.05). (B) Representative
correlation plots of IL12p40 with C5 (upper panels) and CCL22 (lower panels). Spearman’s r and p value for each plot are presented. (C) Top 5 positive
and negative correlators of IFNA1 in NC and COVID-19 patients with various disease severities (M4 and M5: moderate pneumonia, S: severe pneumonia).
Color code of each factor is applied as in (A, D). Representative correlation plots of IFNA1 with IL12p40 (upper panels) and CCL11 (lower panels).
Spearman’s r and p value for each plot are presented.
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Association of elevated IFNA1 and
suppressed IL12p40 with hyperinflammation
in COVID-19 pneumonia

When we examined the plasma factors in the plasma samples or

patient data sets with average values from the moderate patients by

principal component analysis (PCA) and unbiased clustering, there

were two separate groups, MG1 (n=289, 91.7%) and MG2 (n=26,

8.3%) (Figures 6A, C, and Supplementary Figure S9). Interestingly,

MG2 patient samples presented consistent elevation of a group of

plasma factors regardless of plasma collection time (Supplementary

Figure S9A). Even though this does not clearly differentiate the disease

severity, MG2 patients tended to present significantly higher levels of

inflammatory mediators than MG1 patients (Figure 6E) and

associated with more severe COVID-19 than MG1 patients

(Figure 6F). Comparison of the mean values between MG1 and

MG2 patients revealed that 155 plasma factors were significantly

and differentially regulated (145 factors upregulated and 10 factors

downregulated in MG2 patients) (Supplementary Table S5). Among

them, MMP8 (7.8-fold), CXCL1 (7.0-fold), PTX3 (6.4-fold), VWF

(5.0-fold), C1Q (4.9-fold), CXCL10 (4.8-fold), TNFSF14 (4.7-fold),

EGF (4.6-fold), MPO (4.6-fold), PDGFA (4.6-fold), CSF1 (4.6-fold),

SERPINC1 (4.6-fold), and CSF3 (4.3-fold) in MG2 patients compared

to MG1 patients were upregulated by more than four times on average

(Figure 6C). In addition, IFNA1 was significantly elevated in MG2

patients by 2.8-fold compared with MG1 patients. In contrast,

IL12p40 (0.3-fold), KIT (0.3-fold), and CX3CL1 (0.3-fold) were

significantly suppressed in MG2 patients compared with MG1

patients by more than 60% on average (Figure 6C).

PCA and blinded clustering of the plasma samples or patient data

sets with average values of the plasma factors from the severe group

also defined two patient groups, SG1 (n=13, 40.6%) and SG2 (n=19,

59.4%) (Figures 6B, D, and Supplementary Figure S10). The average

z-score distribution of plasma factors in SG2 patients was significantly

higher than that in SG1 patients, indicating more robust

inflammatory responses in SG2 patients than in SG1 patients

(Figure 6E). It is notable that the average z-score distribution in

MG2 patients was even higher than that of SG1 patients, indicating

that a proportion of moderate patients (MG2) could present even

higher inflammatory responses than SG1 patients despite their lower

clinical severity (Figure 6E). Nevertheless, we observed no significant

difference in disease severity (Figure 6F) and patient age between the

two severe patient groups (Figure 6G). A comparison of the mean

values between SG1 and SG2 patients revealed that 102 plasma factors

were significantly differentially regulated (85 factors upregulated and

17 factors downregulated in SG2 patients) (Supplementary Table S5).

Among them, CXCL10 (4.3-fold), VWF (4.2-fold), PTX3 (3.7-fold),

EGF (3.6-fold), CSF1 (3.6-fold), C5 (3.6-fold), REG3A (3.3-fold),

CCL22 (3.3-fold), and IFNA1 (3.1-fold) in SG2 patients compared to

SG1 patients were upregulated by more than three times on average.

In contrast, IL12p40 (0.1-fold), THPO (0.2-fold), IFNG (0.3-fold),

CX3CL1 (0.3-fold), KIT (0.3-fold), MMP12 (0.4-fold), and MICA

(0.4-fold) were significantly suppressed in SG2 patients compared

with SG1 patients by more than 60% on average (Figure 6D).

Nonetheless, 14 factors, namely, IL18, WFDC2, HGF, VCAM1,

ANGPT2, GDF15, IL1RL1, MUC16, TGFA, CCL23, MMP7, SPP1,

PLAUR, and LGALS3, were consistently and significantly elevated in
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the severe patients (SG1 and SG2) compared with the moderate

patients (MG1 and MG2) (Supplementary Table S5). Notably, the

majority of these factors were mainly derived from respiratory

epithelial cells (IL18, WFDC2, GDF15, MUC16, TGFA, MMP7,

and LGALS3) and macrophages (IL18, SPP1, PLAUR, CCL23, and

LGALS3) (Figure 3C; Supplementary Figure S5C , S6C).
Discussion

The main target of SARS-CoV-2 in gas exchange units is type II

alveolar cells, which serve as progenitor cells for type I cells and

provide homeostatic repair mechanisms after injury. Hence, direct

viral damage to type II cells can significantly impair respiratory

function, often leading to severe pneumonic progression (26).

Higher viral loads may not be critically associated with severe

disease, as demonstrated by our current and previous studies (13,

27). Moreover, when we compared viral loads and kinetics in

respiratory samples from our COVID-19 cohort and more

pathogenic MERS-CoV-infected patients (mortality: 20.4%) during

the 2015 Korean outbreak (Supplementary Figure S1D, E) (28), viral

loads of SARS-CoV-2 in respiratory specimens generally peaked upon

symptom onset and rapidly declined thereafter, whereas MERS-CoV

loads peaked 4-10 days after symptom onset. There was no significant

difference in overall viral loads and kinetics in COVID-19 patients

depending on age and disease severity, but the viral loads of MERS-

CoV were significantly higher among non-survivors than among

survivors. Viral kinetics display more persistent replication with a

clear delay in the peak response approximately 12-14 days after

symptom onset in deceased MERS patients with older age

(Supplementary Figure S1D, E) (28). Viral kinetics in pathogenic

SARS-CoV-1 infections (mortality: ~10%) also show a peak response

approximately 10 days after symptom onset (29). These results clearly

indicate that more pathogenic CoVs, such as SARS-CoV-1 and

MERS-CoV, present more sustained viral replication in the

respiratory tracts of severe patients, with peak responses at

approximately the second week after symptom onset, and the

higher viral loads tend to be correlated with disease severity and

patient age. In contrast, viral loads of SARS-CoV-2 peaking upon

symptom onset declined rapidly as the disease and inflammation

progressed regardless of disease severity and patient age, strongly

suggesting that the degree of pathogenic inflammatory response

seems to be determined primarily by host factors rather than higher

viral loads.

Although previous studies have already reported massive

proteomic analysis in sera or plasma from COVID-19 patients by

mass spectrometry or proximity extension assays (16, 17, 30–34), our

current study used highly sensitive and multiplexed immunoassays to

measure precise concentration ranges in plasma. In addition, our

cohort included a relatively large patient size, focused only on

pneumonic patients with well-defined clinical scores and stages,

and analyzed the majority of inflammatory factors associated with

pulmonary and systemic inflammation reported in previous studies

(14–19). In differential expression analysis between the moderate and

severe COVID-19 groups, 169 factors out of 191 proteins were

significantly upregulated (145 factors) or downregulated (24

factors) in plasma from severe patients compared to moderate
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FIGURE 6

Heterogeneity of inflammatory responses in COVID-19 pneumonia patients. (A, B) PCA of plasma proteins in moderate (MG1 and MG2, (A) and severe
(SG1 and SG2, 9B) COVID-19 patients. Each dot represents 1 plasma sample or the mean value of a single patient. (C) Z-score heatmap with
unsupervised clustering of the mean concentrations of plasma factors defines the MG1 and MG2 groups of moderate COVID-19 patients. Representative
plasma proteins differentially expressed between the MG1 and MG2 groups were selected and presented. The average z scores of the NCs (NC_mean)
and severe patients (severe_mean) are shown in the left panel. (D) Z-score heatmap with unsupervised clustering of the mean concentration of plasma
factors defines the SG1 and SG2 groups of severe COVID-19 patients. Representative plasma proteins differentially expressed between the SG1 and SG2
groups or significantly elevated in both severe groups when compared to the moderate groups were selected and presented. The average z scores of
the NCs (NC_mean) and moderate patients (M4_mean and M5_mean) are shown in the left panel. (E) Distribution of the mean z scores of 191 factors in
the NC group, moderate groups (MG1 and MG2), and severe groups (SG1 and SG2). (F) Distribution of disease severity in the moderate groups (MG1 and
MG2) and severe groups (SG1 and SG2). (G) Age distribution in the moderate groups (MG1 and MG2) and severe groups (SG1 and SG2). Statistical
significance among the patient groups was calculated with the Kruskal−Wallis test (**p < 0.01, ***p < 0.001).
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patients (Figure 1C). These include a type I interferon, IFNA1, mainly

derived from activated macrophages, and various inflammatory

features of hyperinflammatory responses (IL6, IL10, IL13, MPO,

and LBP), chemokine responses (CXCL10, CXCL9, CXCL11, IL-8,

CCL4, CXCL13, CXCL2, CCL11, CXCL6, CCL2, CCL26, CCL19,

CCL18, CCL24, CCL14, PF4, and CCL23), endothelial activation and

coagulation (THBD, F3, VWF, PROS1, and MMP8), T-cell

homeostasis and activation (IL7, IL15, IL18, IL4, and IL23A), and

humoral responses (IL4R, IL1RL1, IL33, TNFSF13B, and C9) as well

as elevated tissue damage responses, including vascular development

(HGF, ENPP2, CHI3L1, THBS2, and ANGPT2), extracellular matrix

organization (MMP2, MMP3, MMP9, PTX3, and SPP1), and

epithelial mesenchymal transition (TGFB1, PLAUR, IGFBP2,

IGFBP4, and SDC1). These results suggest the complexity and

acute initiation of dysregulated systemic inflammation induced by

SARS-CoV-2 infection in patients with severe COVID-19. In

addition, our extensive correlation analysis of the plasma factors

together with scRNA sequencing data from lung autopsy and

respiratory samples further defined two core inflammatory

modules, cores I and II, and their primary cellular sources

(Figure 3C). The core I components were mainly contributed by

activated macrophages, neutrophils, epithelial cells, and endothelial

cells, whereas the core II network was primarily linked to activated

epithelial cells, NK(T) cells, and T cells. The quantity and quality of

correlation power tended to be increased in the core I and core II

networks in a severity-dependent manner (Figure 4), suggesting

enhanced complexity and functional interactions among leukocytes

and pulmonary parenchymal cells as viral pneumonia progresses (1,

2, 17, 25, 35). Considering the enhanced infiltration of neutrophils,

macrophages, and NKT cells into inflamed lung tissue but reduced

NK- and T-cell responses in severe COVID-19 patients compared

with moderate patients (Supplementary Figure S5B, S6B), our current

data implied a differential role of innate and adaptive immune cells in

pathological changes during disease progression via specific

expression and interactions among the key players of both core

modules. Of note, a substantial increase in the correlation power

and expression level of the core II network members involved in

NKT-cell homeostasis and effector function promoting both humoral

and cell-mediated immunity (36–38) may support the pathogenic role

of the NKT-cell population in severe inflammation, although the

specific contribution of their subpopulations to COVID-19 is still

controversial and needs to be verified (39). Moreover, the core I and II

modules were further associated with complement activation (5, 40)

and aberrant TGFB response (41), respectively, observed in severe

COVID-19 patients. Several inflammatory mediators, such as ENPP2,

C5, FASLG, VWF, and CSF1, additionally presented a more robust

correlation with the core inflammatory networks in the severe group

(Figure 4C), and these factors were reported as independent

significant indicators of severe COVID-19 in previous studies (1, 5,

42–44). We also observed that the plasma levels of several proteins

mainly derived from respiratory epithelial cells (IL18, WFDC2,

GDF15, MUC16, TGFA, MMP7, and LGALS3) and macrophages

(IL18, SPP1, PLAUR, CCL23, and LGALS3) were capable of

distinguishing moderate and severe COVID-19 significantly and

consistently regardless of the overall inflammatory status of the

patients (Supplementary Table S5); hence, the damaging response
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of pulmonary epithelial cells and dysregulated macrophage activation

might be critical determinants of severe pneumonic progression.

Interestingly, we noticed that IL12p40 and CX3CL1 displayed

strong positive correlations with each other but showed robust

negative correlations with several core inflammatory modules, mainly

in the severe patient group (Figure 4C). In addition, molecular

signatures of cell-mediated immunity, such as IL12p40, IFNG, and

GZMB, in the M5 group were specifically and significantly higher than

those in the NC, M4, and severe groups (Figure 1C and 2C), suggesting

their protective and pathogenic roles in moderate pneumonia. An

elevated IFNA1 response displayed a strong negative correlation with

IL12p40 and CX3CL1, whereas it presented a robust positive

correlation with CCL11, FASLG, and IL23A, especially in severe

COVID-19 patients (Figure 5). This also suggested that an aberrant

type I IFN response during the acute phase of SARS-CoV-2 infection

may be associated with immune dysregulation and disease progression

in severe COVID-19 patients requiring extensive respiratory support.

Indeed, our current data using sensitive immunoassays of the plasma of

pneumonic COVID-19 patients support the pathogenic role of an acute

surge in the IFNA1 response, at least in a proportion of severe

pneumonia patients and COVID-19 patients who died, even though

the specific role of type I and III interferons in severe COVID-19

progression is still controversial (45, 46). One of the striking features is

the heterogeneous phenotype of hyperinflammation associated with the

strong inverse correlation of IL12p40 and IFNA1 observed in both

moderate and severe COVID-19 pneumonia patients (Figure 5 and 6).

Given that IL12p40 is a common subunit of IL12p70 (heterodimer of

IL12p35 and IL12p40) and IL23 (heterodimer of IL23p19 and IL12p40)

(47), it is also intriguing to see significant upregulation of both IL12p70

and IL23 in severe patients than in moderate subjects (Figure 1C). In

addition, IL12p40 presented significant negative correlation with both

IL12p70 and IL23 (IL23p19) in COVID-19 patients (Supplementary

Figure S11). Differential expression of these cytokine subunits may be

due to heterogeneity of their primary cellular resources (IL12p40 from

macrophages, IL12p35 and IL23p19 from non-hematopoietic epithelial

cells or endothelial cells, see Figure S5 and S6) and heterodimeric

interactions among various IL12 family cytokine subunits (47) during

COVID-19 inflammation. Even though the heterodimeric subunits of

IL-12 and IL23 are known to be simultaneously co-expressed in

activated myeloid cells, they can also assemble to form functionally

active heterodimers after secretion from different cell types via alternate

two-cell pathway (48). Further study on regulation mechanisms

governing the differential expression of various IL12 family cytokine

subunits might be required to define their specific role in COVID-19

inflammation. Nonetheless, enhanced IFNA1 and a suppressed

IL12p40 response strongly associated with persistent and overt

inflammatory responses were detected even in a proportion of

moderate pneumonia patients (8.3%, MG2) and in more than half

(59.4%, SG2) of severe COVID-19 patients. Therefore, this unexpected

reciprocal correlation of IFNA1 and IL12p40, mainly expressed in

macrophages (Figure 4C), might also be strongly associated with the

heterogeneity of dysregulated inflammation in pneumonic COVID-19

patients. Given that the severity of illness during acute COVID-19 is

significantly but partially associated with long COVID-19 syndrome or

post-acute COVID-19 (49), further follow-up studies on the potential

linkage of post-acute COVID-19 with the overt inflammatory response
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associated with an inverse correlation of higher IFNA1 and lower

IL12p40 are needed. A recent review on long COVID-19 after

breakthrough SARS-CoV-2 infection also suggested that vaccination

before infection confers only partial protection in the post-acute phase

of the disease and emphasized the need for continued optimization of

strategies against post-acute syndrome even for people with

breakthrough infection (50).

A limitation of our study is the inclusion of plasma samples rather

biased toward moderate pneumonia cases (sample n=745) than severe

pneumonia cases (sample n=130), and all these samples were

obtained from unvaccinated patients with primary SARS-CoV-2

infection. The patients were also treated with various combinations

of antiviral drugs and corticosteroids depending on disease severity

during hospitalization. Therefore, further validation with a larger

scale of plasma specimens from clinically variable COVID-19

patients, even after vaccination or reinfection, is needed.
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