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Transcriptomic analysis reveals
shared gene signatures and
molecular mechanisms between
obesity and periodontitis
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Weiwei Pang1, Keqiang Ma1, Qiaorong Yi1, Lijun Tan1,
Hongwen Deng2, Xiaochao Qu1* and Xiangding Chen1*

1Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal
Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University,
Changsha, China, 2Tulane Center for Biomedical Informatics and Genomics, Deming Department of
Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
Background: Both obesity (OB) and periodontitis (PD) are chronic non-

communicable diseases, and numerous epidemiological studies have

demonstrated the association between these two diseases. However, the

molecular mechanisms that could explain the association between OB and PD

are largely unclear. This study aims to investigate the common gene signatures

and biological pathways in OB and PD through bioinformatics analysis of publicly

available transcriptome datasets.

Methods: The RNA expression profile datasets of OB (GSE104815) and PD

(GSE106090) were used as training data, and GSE152991 and GSE16134 as

validation data. After screening for differentially expressed genes (DEGs) shared

by OB and PD, gene enrichment analysis, protein-protein interaction (PPI)

network construction, GeneMANIA analysis, immune infiltration analysis and

gene set enrichment analysis (GSEA) were performed. In addition, receiver

operating characteristic (ROC) curves were used to assess the predictive

accuracy of the hub gene. Finally, we constructed the hub gene-associated

TF-miRNA-mRNA regulatory network.

Results: We identified a total of 147 DEGs shared by OB and PD (38 down-

regulated and 109 up-regulated). Functional analysis showed that these genes

were mainly enriched in immune-related pathways such as B cell receptor

signalling, leukocyte migration and cellular defence responses. 14 hub genes

(FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2,

P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis.

The results of immune infiltration analysis showed that immune cells such as

macrophages, activated CD4 T cells and immune B cells were present at high

infiltration levels in both OB and PD samples.The results of GeneMANIA analysis

and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and

P2RY13) may be strongly associated with macrophages. Finally, we constructed a

TF-miRNA-mRNA regulatory network consisting of 233 transcription factors

(TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained

from the database.
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Conclusions: Five key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important

biomarkers of OB and PD. These genes may play an important role in the

pathogenesis of OB and PD by affecting macrophage activity and participating

in immune regulation and inflammatory responses.
KEYWORDS
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Introduction

Obesity (OB) is a complex, multifactorial chronic inflammatory

disease characterized by abnormal or excessive deposition of fat in

adipose tissue (1). It is also a major risk factor for many diseases,

including type 2 diabetes, cardiovascular disease, osteoarthritis and

certain cancers (2). The prevalence of OB has tripled in the last few

decades (3). The number of people with OB worldwide was reported

to be as high as 671 million (12% of the world’s adult population) in

2016 (4). Periodontitis (PD) is one of the most common chronic

multifactorial inflammatory diseases affecting the global population,

leading to loss of connective tissue attachment, alveolar bone

erosion, tooth loss and systemic inflammation (5, 6). There is

evidence that OB increases susceptibility to PD (7). An earlier

study reporting the association between OB and PD found changes

in periodontal tissue in addition to greater alveolar bone resorption

in obese rats compared to non-obese rats (8). Several recent studies

have also suggested a comorbid effect between OB and PD (9, 10).

OB increased the risk of PD by two to three times and was

independent of traditional risk factors, including smoking, age,

and gender (11). Animal studies have indicated that an increased

alveolar bone loss in obese animals with PD and significantly

greater alveolar bone loss in obese rats than in lean controls (12,

13). In addition, obese individuals who consume an excessively

high-fat diet have an enhanced metabolic response to PD and show

a metabolic susceptibility to increased periodontal destruction (14).

These findings highlighted the existence of an association between

OB and PD. However, the molecular mechanism of this association

is still unknown. Therefore, exploring the common genetic features

of OB and PD and their potential molecular mechanisms holds

great promise for the diagnosis and treatment of OB and PD

co-morbidities.

A growing body of clinical and experimental evidence suggests

that immune cell infiltration and inflammatory factors play a

critical role in the development of OB or PD (2, 14). On the one

hand, mouse models of OB and diabetes were found to be

characterized by impaired T and B lymphocyte-mediated immune

responses (2). A recent study reported that natural killer T cells are

regulators of adipose tissue inflammation in OB (15). Osborn O

et al. (16) pointed that in the obesity-induced inflammatory

response, immune cells are recruited and cause adipose tissue

inflammation. Monocytes receive chemotactic signals and

translocate into adipose tissue, polarizing it to a highly pro-
02
inflammatory M1-like state. Once recruited, these M1-like

macrophages secrete pro-inflammatory cytokines and act in a

paracrine manner (16). In addition, OB induces a shift in the

adipose tissue T-cell population, with decreased Treg content and

increased CD4+ TH1 and CD8+ effector T cells that secrete pro-

inflammatory cytokines (15). Recent studies have also indicated that

increased B-cell numbers can promote T-cell activation and

enhance M1-like macrophage polarization, inflammation, and

insulin resistance (17). Notably, cytokines and chemokines from

adipose tissue can also be released into the circulation and promote

inflammation in other tissues in an endocrine manner (18).

Meanwhile, T cells in adipose tissue are thought to play a role in

obesity-induced inflammation by altering the number of adipose

tissue macrophages and their activation status (19, 20). Nishimura

et al. (21) showed that CD8+ T cells were increased in obese adipose

tissue and promote the recruitment and activation of adipose tissue

macrophages (21). On the other hand, Dutzan N et al. (22) revealed

that IL-21, IL-1b, IL-17 and IL-23p19 were significantly

overexpressed in periodontal disease tissues compared to healthy

gingival tissues. In particular, IL-21 was overexpressed in chronic

periodontitis gingival tissues and was associated with pro-

inflammatory cytokines for periodontal destruction (22). IL-10

and TGF-b1 expression were down-regulated in periodontal

lesions and may be regulators of inflammation and alveolar bone

loss in periodontal disease (23). In addition, some researchers

suggested that one of the mechanisms related to PD and OB is

the increase in the production of inflammatory cytokines, i.e., OB

leads to an increase in the inflammatory stimulation of adipose

tissue, adipocytes secrete adipocytokines, which increases the

release of inflammatory cytokines, thus leading to the imbalance

between the reduction of anti-inflammatory mechanisms and

persistent low-grade inflammation (24). For example, in humans,

plasma levels of tumor necrosis factor a, interleukin-6 and C-

reactive protein are strongly associated with OB (25). In a mouse

model of OB/type 2 diabetes, resolvin E1 increased neutrophil

phagocytosis in wild-type mice with Pseudomonas gingivalis, but

had no effect on type 2 diabetic mice (26). Therefore, we speculate

that immune factors and inflammatory responses may be one of the

important reasons for the occurrence of OB and PD.

A number of previous studies have explored the potential

impact of OB on the pathogenesis and progression of PD,

highlighting the importance of common inflammatory processes

and immune dysfunction, but the immune-related mechanisms
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involved in OB and PD remain to be elucidated. The aim of this

study was to explore the molecular link between OB and PD using

publicly available transcriptomic data. We used an integrated

bioinformatics approach to study immune cell infiltration, reveal

molecular regulatory networks, and explore the molecular

mechanisms underlying the interaction of disease onset, hoping

to provide new perspectives on the biological mechanisms of

obesity-associated periodontitis.
Materials and methods

Data collection and processing

We searched the Gene Expression Omnibus (GEO) database for

gene expression profiles of obesity and periodontitis using the

keywords “periodontitis” and “obesity”. Four data sets met the

inclusion criteria: (1) the experimental data type was microarray or

high-throughput sequencing; (2) the number of samples per cohort

was greater than six; (3) the study samples were from humans. We

used the GSE104815 and GSE106090 datasets as the discovery

cohort for transcriptome analysis, and the GSE152991 and

GSE16134 datasets as the validation cohort. For OB, the

GSE104815 dataset contained 4 OB samples and 4 non-obese

samples; the GSE152991 dataset contained 34 OB samples and 11

control samples. For PD, the GSE106090 dataset contained 18

samples, of which 6 PD samples and 6 healthy samples

were selected, while 6 peri-implantitis samples were excluded;

the GSE16134 dataset contained 241 PD samples and 69

control samples. For the samples in these datasets, we excluded

the effects of medical history and medication, as these effects

may introduce bias in our study. Finally, we used the limma/

DEseq2 package to filter, log2 transform, and normalize all

datasets. Among these, probes were annotated as gene symbols,

and for genes matching multiple probes, the probe with the

highest expression value was retained. Details of the platforms,

experiment types and tissues of the four datasets are shown in

Supplementary Table 1.
Screening for differentially expressed genes

The empirical Bayesian approach in the limma package (27) in

R was applied to screen the GSE106090 and GSE104815 datasets.

Significant differentially expressed genes (DEGs) were identified based

on the cutoff criteria of |log2FoldChange| ≥1 and adjusted p-value <

0.05, and the commonDEGs between OB and PDwere obtained by the

intersection of the plotted Venn diagram using the ggVennDiagram

(28) package in R.
Functional enrichment analysis

To further reveal the functions of the common DEGs, Gene

Ontology (GO) annotation and Kyoto Encyclopedia of Genes and
Frontiers in Immunology 03
Genomes (KEGG) pathway enrichment analysis were performed.

The biological properties of the DEGs were annotated as molecular

function (MF), biological process (BP) and cellular component

(CC) by GO enrichment analysis using the clusterProfiler (29)

package in R, and the KEGG analysis was performed using the

KOBAS (30) online tool. An adjusted p-value < 0.05 was set as the

cut-off criterion.
Identification of hub genes

Based on the common DEGs in PD and OB, the STRING

(search tool for the retrieval of interacting genes) database (https://

string-db.org/) was used to construct the PPI network, whose

confidence score was set to the middle value (confidence score ≥

0.4), and then Cytoscape software (31) was used to visualize the PPI

network. The MCODE plugin (32) of Cytoscape was applied for

module analysis to identify the key gene clusters, and the

CytoHubba plugin (33) was used to identify the hub genes,

through which four methods including maximal clique centrality

(MCC), density of maximum neighborhood component (DMNC),

degree and maximum neighborhood component (MNC) (34) were

applied to identify the top 30 hub genes in the PPI network,

respectively, and the genes obtained by taking the intersection of

four gene lists were considered as hub genes.
Validation and efficacy evaluation of hub
genes

The expression matrics of GSE16134 and GSE152991 were

downloaded from the GEO database and the GREIN platform

(http://www.ilincs.org/apps/grein/) (35), respectively, which were

used to validate the expression levels of the hub genes. GSE16134

contains 241 PD and 69 control samples, and GSE152991 contains 34

OB and 11 control samples. Considering that our data do not conform

to a normal distribution, the Wilcoxon test was used to compare the

two groups in the two datasets defining a p-value < 0.05 as significant.

Meanwhile, the pROC package (36) in R was used to plot receiver

operating characteristic (ROC) curves to verify the validity and

predictive accuracy of the hub genes. The hub genes with an area

under the curve (AUC) > 0.7 were considered useful for disease

diagnosis (37).
GeneMANIA analysis

We used the GeneMANIA online website (38) to analyze the

hub genes and their co-expressed gene network by entering the

validated hub genes directly into the GeneMANIA website for

query, and GeneMANIA will find functionally similar genes using

a wealth of genomics and proteomics data, while also reporting the

weights of the predicted values for each gene used for query, and the

results will show in which biological terms and pathways the genes

are enriched.
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Immune infiltration analysis

Immune infiltration analysis was performed using the ssGSEA

(single sample gene set enrichment analysis) algorithm (39) for

GSE15299 (OB) and GSE16134 (PD), respectively. The ssGSEA

algorithm is an extension of the gene set enrichment analysis

(GSEA) method (40), it is a ranking based method that defines a

score indicating the absolute enrichment of a specific gene set in

each sample (41, 42). ssGSEA scores can be used to quantify the

relative abundance of immune cells in OB or PD tissues and

determine the level of immune infiltration in each sample.

The immune infiltration gene set was downloaded from http://

cis.hku.hk/TISIDB/ and the immune infiltration analysis was

performed using the GSVA package in R. To reveal the

relationship between the hub genes and the immune cells, we

then performed the correlation analysis between the hub genes

and the immune cells based on Spearman’s correlation coefficients.
Gene set enrichment analysis

To further explore the correlation between immune cell

infiltration and hub genes, we performed GSEA analysis. Gene

sets of pathways were obtained from the Molecular Signature

Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/).

Based on the gene expression profile data of GSE152991 (OB) and

GSE16134 (PD), the average expression value of each hub gene was

calculated separately, and all samples in the dataset were divided

into “high” and “low” groups according to whether the expression

value of the gene was higher or lower than its average expression

value, and the GSEA method was used to evaluate the relevant

molecular mechanisms between the two groups. Terms with p-value

< 0.05, |normalized enrichment score (NES)| > 1, and false positive

rate (FDR) p-value < 0.25 were considered to be significant.
Construction of TF-miRNA-mRNA network

Transcription factors (TFs) are proteins that can bind to specific

DNA sequences and regulate gene expression (43). MicroRNAs

(miRNAs) are a class of endogenous short non-coding RNAs that

mediate the degradation of target mRNAs or repress translation

(44). TFs and miRNAs mostly act in a combinatorial manner, where

many different TFs or miRNAs control the same gene, i.e., they act

synergistically on the target mRNAs (45). Moreover, TFs and

miRNAs can not only co-regulate the expression of target genes

but also regulate each other (46). Therefore, it is helpful to learn

about the dysregulation of gene expression in various physiological

and disease conditions through the transcriptional regulatory

network among TFs, miRNAs, and mRNAs. The Human

microRNA Disease Database (HMDD) (47) is a database for

manually collecting and organizing disease-associated miRNAs,

and the association information is experimentally validated. We

downloaded the miRNAs associated with OB and PD from the

HMDD database and obtained the co-miRNAs of OB and PD by

mapping. The multiMiR package (48) provides the target genes
Frontiers in Immunology 04
regulated by miRNAs, which are also experimentally validated. We

used the multiMiR package to find genes with possible regulatory

relationships with co-miRNAs of OB and PD. The TransmiR

database (49) collected TF-miRNA regulatory relationships in

publications, from which co-miRNA-related TFs of OB and PD

were obtained. Finally, a TF-miRNA-mRNA network was

constructed and visualized in Cytoscape.
Results

Identification of common DEGs between
OB and PD

A total of 875 DEGs were identified in the OB dataset using the

limma package, of which 440 genes were up-regulated and 435

genes were down-regulated (Figure 1A), and 2399 DEGs were

obtained in the PD dataset, of which 1336 genes were up-

regulated and 1063 genes were down-regulated (Figure 1B). After

taking the intersection of the DEGs in OB and PD datasets, a total of

147 overlapping DEGs were identified, including 109 commonly

up-regulated genes and 38 commonly down-regulated genes

(Figure 1C). Heatmaps of the overlapping DEGs in OB and PD

are shown in Supplementary Figure 1.
GO and KEGG enrichment analysis of DEGs

To investigate the potential biological processes and pathways

of the DEGs, we separately performed GO and KEGG enrichment

analysis using the clusterProfiler package and the KOBAS website.

The results of KEGG enrichment analysis demonstrated that these

genes were mainly enriched in “osteoclast differentiation”, “B cell

receptor signaling pathway” and “viral protein interaction with

cytokine and cytokine receptor” (Figure 2A). The results of GO

analysis revealed that biological processes such as “leukocyte

migration”, “cellular chemotaxis” and “cellular defense response”

were significantly enriched (Figure 2B). In terms of cellular

composition, terms such as “NADPH oxidase complex”,

“secondary lysosome” and “high-density lipoprotein particle”

were significantly enriched (Figure 2C). In terms of molecular

function, terms such as “superoxide-generating NADPH oxidase

activator activity”, “inhibitory MHC class I receptor activity” and

“MHC class I receptor activity” were significantly enriched

(Figure 2D). The detailed results of the GO and KEGG

enrichment analysis are shown in Supplementary Tables 2, 3.
Construction of PPI network and
identification of hub genes

To further reveal the potential relationships among the

common DEGs in OB and PD, a protein-protein interaction

(PPI) network of these genes was constructed in the STRING

database, which contained 72 nodes and 182 edges (Figure 3A).

Module analysis was performed using the MCODE plugin in
frontiersin.org
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Cytoscape to detect key clustering modules, from which three

modules were obtained, and module 1 contained 9 nodes and 17

edges with a cluster score of 4.25; module 2 contained 6 nodes and

10 edges with a score of 4, and module 3 contained 6 nodes and 8

edges with a score of 3.20 (Figure 3B).

To explore genes that may play an important role in the co-

occurrence of OB and PD, the CytoHubba plugin was used to identify

hub genes. Due to the heterogeneity of biological networks, several

topological analysis algorithms including MCC, MNC, Degree and

DMNC were applied in our research, and the top 30 most important

hub genes in the PPI network were obtained. The intersection of four

hub gene lists revealed 25 hub genes: FCGR3A, FGR, MNDA, SELL,

NCF2, FYB1, EVI2B, LY86, TREM1, LILRA1, IGSF6, CTSS, CXCR4,

LCK, CLEC12A, FCN1, CXCL2, VNN2 P2RY13, LYZ, CCR3, EOMES,

MMP7, CD3G and CLEC4E (Figure 3C). Details of the hub genes are

shown in Supplementary Table 4.
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Validation of hub genes

The 25 hub genes of OB and PD were validated using GSE152991

(for OB) and GSE16134 (for PD) datasets, respectively. The results

demonstrated that 14 hub genes were significantly differentially

expressed between the case and control groups in these two datasets

(p-value < 0.05), all of which were found to be up-regulated in both OB

and PD groups. The hub genes were FGR, MNDA, NCF2, FYB1,

EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13 and

MMP7 (Figure 4).

ROC analysis was performed on these two datasets to evaluate

the accuracy of the diagnostic features of the hub genes. The AUC

values of the 14 hub genes were all greater than 0.7 in the OB and

PD datasets, indicating excellent predictive ability of these genes

(Figure 5). The ROC curves of the hub genes in the four datasets are

shown in Supplementary Figures 2, 3.
A B

C

FIGURE 1

Volcano plot of DEGs and Venn diagram of common DEGs. (A) A total of 667 DEGs were identified between OB and healthy controls. (B) A total of
2191 DEGs were identified between PD and healthy controls. (C) A total of 109 common up-regulated genes and 38 common down-regulated
genes were identified in OB and PD. DEGs, differentially expressed genes; OB, Obesity; PD, Periodontitis.
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Correlation between hub genes and
immune cells

The 14 hub genes were imported to GeneMANIA to find

correlated genes based on physical interaction, co-expression,

prediction, co-localization, genetic interaction and shared protein

domains. The inner circle represents the hub genes, while the outer

circle represents the related genes that were newly obtained from

the database. The network revealed that these genes were

significantly enriched in “macrophage activation”, “phagocytosis”,

“leukocyte migration” , “regulation of mononuclear cell

proliferation”, “Fc receptor signaling pathway”, and “antigen

receptor-mediated signaling pathway” (Figure 6).

Immune infiltration analysis was performed to evaluate the

infiltration level of 28 immune cell types, and the correlations

between the 14 hub genes and 28 immune cells were analyzed

using Spearman’s method. The infiltration level of immune cells

including activated CD4 T cells, activated dendritic cells, central

memory CD8 T cells, immune B cells, macrophages, MDSC, natural

killer T cells, and plasmacytoid dendritic cells was significantly

higher in the OB and PD samples compared with the control

samples (Figure 7A; Supplementary Figure 4A), and the

infiltration level of immune cells such as MDSC, regulatory T
Frontiers in Immunology 06
cells and macrophages was positively correlated with the 14 hub

genes in both OB and PD. In addition, FGR, FYB1 and LCK were

significantly associated with immature B cells, monocytes, and

activated CD4 T cells. In PD samples from GSE16134, the 14 hub

genes were positively associated with most cell types except effector

memory CD4 T cells, type 2 T helper cells, and CD56 dim natural

killer cells (Figure 7B; Supplementary Figure 5).
GSEA results of hub genes

Both the immune infiltration results and the GeneMANIA

analysis suggested that the hub genes might be closely associated

with macrophages. Therefore, we explored the enrichment of hub

genes in macrophage-associated pathways based on their expression

in the GSE152991 (OB) and GSE16134 (PD) datasets using GSEA

analysis to determine whether these hub genes are also significantly

associated with macrophage-associated pathways. Macrophage-

re lated gene sets including “GOBP_MACROPHAGE_

ACTIVATION”, “GOBP_MACROPHAGE_MIGRATION”,

“GOBP_MACROPHAGE_CHEMOTAXIS ” , “GOBP_

MACROPHAGE_ACTIVATION_INVOLVED_IN_IMMUNE_

RESPONSE”, “GOBP_MACROPHAGE_ACTIVATION_IN_
A B

DC

FIGURE 2

Functional enrichment analysis of the common differentially expressed genes (DEGs) between obesity and periodontitis. (A) KEGG pathway analysis
of the DEGs. Where each bubble represents an enriched function, the size of the bubble represents 6 levels of enriched p-values, and the color of
the bubble indicates the clustering of different pathways corresponding to different clusters (C1, C2, C3, etc.). (B–D) GO enrichment results of the
DEGs for the categories of biological processes, cellular composition and molecular function. The red and blue colors of the gene represent up-
regulation and down-regulation respectively. An adjusted p-value < 0.05 was considered statistically significant. DEGs, differentially expressed genes.
KEGG, Kyoto Encyclopedia of Genes and Genomes. GO, Gene Ontology.
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A B

C

FIGURE 3

PPI network of hub genes. (A) PPI network of common DEGs constructed using the STRING database. (B) Three gene modules were identified by
the MCODE plugin. (C) Venn diagram showing 25 common hub genes identified by MCC, MNC, Degree and DMNC algorithms using the CytoHubba
plugin. PPI, protein-protein interaction; DEGs, differentially expressed genes; MCC, maximal clique centrality; DMNC, density of maximum
neighborhood component; MNC, maximum neighborhood component.
A

B

FIGURE 4

Identification and validation of hub genes. (A) Boxplots of the expression levels of hub genes in GSE152991. The expression levels of the 14 hub
genes are significantly higher in the obesity group. (B) Boxplots of the expression levels of hub genes in GSE16134. The expression levels of the 14
hub genes are significantly higher in the periodontitis group. A p-value < 0.05 was considered statistically significant.
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IMMUNE_RESPONSE ” , “GOBP_MACROPHAGE_

CHEMOTAXIS” , “GOBP_MACROPHAGE_CYTOKINE_

PRODUCTION”, “GOBP_MACROPHAGE_APOPTOTIC_

PROCESS” , “GOBP_PHAGOCYTOSIS” and “GOBP_

REGULATION_OF_MACROPHAGE_ACTIVATION” were

downloaded from MSigDB database and subsequently used for

GSEA analysis. The GSEA results indicated that high expression of

FGR, FYB1, LY86, LCK and P2RY13 were significantly associated

with several macrophage-related biological terms in both

GSE152991 (Figure 8A) and GSE16134 (Figure 8B) datasets, such

as “activation of macrophage”, “chemotaxis of macrophage”,

“migration of macrophage”, “regulation of macrophage apoptotic

process” and “macrophage activation involved in immune

response”. The nominal p-values, NES and FDR p-values for the

GSEA results of GSE152991 and GSE16134 are shown in

Supplementary Tables 8, 9.
TF-miRNA-mRNA regulatory network

The information of experimentally validated miRNAs and

disease associations were downloaded from the HMDD database

(Supplementary Table 5), from which we obtained a total of 80
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miRNAs associated with PD and 33 miRNAs associated with OB.

And 10 common miRNA (hsa-mir-17-5p, hsa-mir-130a-3p, hsa-

mir-30a-5p, hsa-mir-126-3p, hsa-mir-146a-5p, hsa-mir-21-5p, hsa-

mir-24-3p, hsa-mir-155-5p, hsa-mir-200b-3p and hsa-let-7b-5p)

between OB and PD were obtained.

Functional enrichment analysis of the 10 miRNAs was then

performed using the mirPath database, and the results indicated

that several terms were significantly enriched, including “fatty acid

biosynthesis”, “fatty acid metabolism”, “ErbB signaling pathway”

and “Wnt signaling pathway and endocytosis” (Figure 9A). The

“multiMiR” package was used to find validated target genes of the

miRNAs (Supplementary Table 6), and the TransmiR database was

used to find the regulatory information between TFs and the

miRNAs, from which 233 TFs were obtained (Supplementary

Table 7). Based on the regulatory relationships among TFs,

mRNAs and miRNAs, a TF-miRNA-mRNA network was

constructed (Figure 9B).
Discussion

Both OB and PD are common health problems that now cause

considerable economic damage and social burden worldwide (50).
A

B

FIGURE 5

ROC curves of the 14 hub genes in obesity. (A) and periodontitis (B). The AUC values are listed in the lower right-hand corner. ROC, receiver
operating characteristic; AUC, area under the curve.
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Previous studies have shown that the risk of periodontitis

progression is 15% higher in obese than in healthy populations

(51) and a systematic review of epidemiological studies has revealed

a significant association between OB and PD (52). OB and PD may

share overlapping pathogenic pathways, particularly immune cell

infiltration and inflammation (6, 53). However, it is unclear how

immune cell infiltration and inflammation accelerate the

progression of OB-associated PD.

In our study, the characteristic genes shared by both OB and PD

showed a close correlation with immune cell function. Based on

integrated bioinformatics analysis, we screened the common DEGs

between OB and PD, and functional enrichment analysis revealed

that these genes were mainly involved in immune-related biological

pathways such as “B cell receptor signaling pathway”, “chemokine

signaling pathway”, “leukocyte migration”, “cellular defense

response”, “phagocytic vesicle and immune receptor activity”.

Through PPI network and hub gene analysis, we identified 25

common hub genes in OB and PD, among which 14 hub genes

(FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4,
Frontiers in Immunology 09
LCK, FCN1, CXCL2, P2RY13, and MMP7) showed high sensitivity

and specificity in the ROC curve analysis, indicating that these

genes may be promising markers for diagnosis of OB and PD. GSEA

analysis of the 14 genes demonstrated that 5 genes including FGR,

LCK, FYB1, LY86 and P2RY13 were significantly involved in

multiple immune-related GO terms, such as “activation of

macrophage”, “chemotaxis of macrophage”, “migration of

macrophage”, “regulation of macrophage apoptotic process” and

“macrophage activation involved in immune response”. These

results suggest that these co-DEGs may accelerate disease

progression in OB and PD by affecting the activity of immune

cells, especially macrophages.

Furthermore, macrophage infiltration plays a key role in

inflammation in obese adipose tissue (54). In obese adipose

tissue, macrophage infiltration leads to an increase in pro-

inflammatory cytokines, which may lead to inflammation in other

tissues via endocrine pathways, thus accelerating the progression of

PD (55). In our study, the results of functional enrichment analysis

of five common hub genes of OB and PD suggest a possible strong
FIGURE 6

GeneMANIA analysis of the hub genes. The biological functions of the genes are shown. The hub genes are located in the inner circle and the genes
correlated with the hub genes are located in the outer circle.
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association with macrophages. Ortiz MA et al. (56) indicated that

both FGR and LCK belong to the Src family of protein tyrosine

kinases, a family of non-receptor tyrosine kinases consisting of nine

members in humans: SRC, FGR, LCK, FYN, HCK, YES, LYN, YRK

and BLK (56). Several Src family members are expressed in all cell

types and are involved in a variety of cellular processes, of which

FGR is mainly expressed in the hematopoietic system and LCK is

mainly found in T lymphocytes and natural killer cells (57, 58). Like

other members of the Src family, both FGR and LCK consist of a

kinase structural domain, SH2, SH3 and unique N-terminal

structural domains, and a regulatory C-terminal tail that
Frontiers in Immunology 10
phosphorylates tyrosine residues of a variety of proteins (59).

FGR transduces signals from cell surface receptors lacking kinase

activity and is involved in immunomodulatory responses, including

macrophage, monocyte, neutrophil and mast cell function,

cytoskeletal remodeling in response to extracellular stimuli,

phagocytosis, cell adhesion and migration (60). LCK plays a key

role in T cell antigen receptor (TCR)-related events: binding of the

TCR to the peptide antigen-binding MHC complex facilitates the

interaction of CD4 and CD8 with MHC class II and class I

molecules, respectively, thereby recruiting the associated LCK

protein to the vicinity of the TCR/CD3 complex. Subsequently,
A

B

FIGURE 7

The results of immune infiltration analysis in obesity (OB) and periodontitis (PD) datasets. (A) Boxplots of the immune infiltration abundance in OB
(left) and PD (right). (B) Heatmaps of the correlations between the 14 hub genes and the 28 immune cells in OB (left) and PD (right). * p < 0.05,
** p < 0.01, *** p < 0.001, ns, non-signicant.
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LCK phosphorylates tyrosine residues within the immunoreceptor

tyrosine-based activation motif (ITAM) in the cytoplasmic tail of

the TCR-g chain and CD3 subunit, thereby initiating the TCR/CD3

signaling pathway (61). In the present study, the OB and PD

enrichment results also showed that the co-DEGs were mainly

enriched for molecular functions such as inhibitory MHC class I

receptor activity and MHC class I receptor activity. Many studies

have found that FGR expression is high in macrophages and

monocytes and that high FGR expression can influence the

inflammatory milieu through M1-type macrophage polarization,

which in turn affects adipose tissue metabolism, leading to the

development of inflammation and OB (62–64). He L et al. (65) also

showed that high expression of LCK plays an important role in the

imbalance of the immune system in periodontitis (65). In another

study, FGR kinase was found to be a key regulator of pro-

inflammatory adipose tissue macrophage activation, diet-induced

OB, insulin resistance, and hepatic steatosis, knockdown of FGR

reduced lipid accumulation and lipogenic gene expression, and low

expression of FGR prevented macrophage polarization while

preventing high-fat diet-induced OB in mice (66). This is

consistent with our findings that FGR and LCK expression were

significantly up-regulated in OB and PD, and functional

enrichment analysis showed that they are involved in immune

processes activated by macrophages. Therefore, we speculate that

OB accelerates PD progression, at least in part, through immune

cell infiltration and inflammatory response, and that FGR and LCK

may play a key role in this process.
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FYB1, known as adhesion and degranulation promoting linker

protein (ADAP), is required for T cell activation as a bridging

protein for the FYN and LCP2 signaling cascades in T cells (67). In

addition, FYB1 can be expressed on primary natural killer cells and

on lymphocyte-activated killer cells stimulated by interleukin-2,

resulting in enhanced antitumor responses (68). Carmo AM et al.

(69) indicated that post-translational modification of FYB1 could

lead to increased tyrosine phosphorylation by affecting T-cell

receptor attachment (69). The protein encoded by the LY86 gene

is lymphocyte antigen 86, also known as MD-1 protein, a secreted

glycoprotein associated with RP105 (Toll-like receptor family

protein), which plays a key role in the B-cell surface expression of

RP105, while the RP105/MD-1 complex is expressed in immune

cells, including B cells, macrophages and dendritic cells (70). In a

genome-wide methylation analysis study of OB, the methylation

level of the LY86 gene was shown to be higher in obese cases

compared to healthy controls (71). The product of the P2RY13 gene

belongs to the G protein-coupled receptor family, a 354 amino acid-

encoded gastrointestinal protein-coupled receptor that is involved

in the pathogenesis of purine energy transfer pathways, cholesterol

metabolism, inflammation and immune dysfunction mechanisms,

mediating a variety of pathophysiological processes, such as

apoptosis, autophagy, proliferation and metabolism (72, 73).

Many studies have shown that P2RY13 promotes apoptosis and

increases the release of pro-inflammatory factors (74, 75). In

addition, P2RY13 is highly expressed in the inflamed intestinal

tissue of ulcerative colitis patients (74, 76). The above series of
A

B

FIGURE 8

Merged enrichment plot of FGR, FYB1, LY86, LCK and P2RY13 from gene set enrichment analysis of GSE152991 (A) and GSE16134 (B) datasets. The
threshold value of GSEA results was set as |NES| > 1.0, p-value < 0.05 & FDR p-value < 0.25. GSEA, gene set enrichment analysis; NES, normalized
enrichment score; FDR, false positive rate.
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A

B

FIGURE 9

Functional enrichment analysis of the miRNAs and construction of TF-miRNA-mRNA network. (A) Significantly enriched biological pathways of the
common miRNAs in OB and PD using the mirPath database. (B) The common TF-miRNA-mRNA regulatory network in OB and PD, where circles
represent hub genes, inverted triangles represent miRNAs and diamonds represent transcription factors.
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studies have shown that FGR, LCK, FYB1, LY86, and P2RY13 may

play an important role in the dysfunction of immune cells such as

macrophages, T lymphocytes, and B lymphocytes during the

pathology of OB or PD. Therefore, we speculate that macrophage

infiltration and recruitment of other immune cells may be common

mechanisms in OB and PD. A possible molecular mechanism is that

in OB and PD, upregulation of LY86 gene expression affects B-cell

function, and the increase in B-cell number promotes T-cell

activation. Meanwhile, FYB1 is involved in T-cell activation and

LCK phosphorylates the T-cell antigen receptor (TCR), but

increased T cell activation may in turn promote M1-like

macrophage polarization and inflammation. Among other things,

FGR transduces signals from cell surface receptors lacking kinase

activity and is involved in immunoregulatory responses such as

macrophage function. Finally, P2RY13 promotes the release of

inflammatory factors.

To further explore the potential molecular regulatory mechanisms

between these immune-related hub genes and immune cells, especially

macrophages, we constructed a TF-miRNA-mRNA regulatory

network for OB and PD. The results showed that among the five

hub genes, FGR was regulated by hsa-miR-155-5p and FYB1 was

regulated by hsa-miR-146a-5p. In addition, TFs such as AKT1,

BRCA1, and TP63 inhibited the regulatory effect of hsa-miR-155-5p,

and TFs such as FOXP3, JUNB, NFKB1, and SMAD4 activated the

regulation of hsa-miR-155-5p. On the other hand, the regulatory role

of hsa-miR-146a-5p was inhibited by TFs such as HDAC1, TP53, and

HDAC1, and could also be activated by TFs such as FOXP3, IL1B, and

RELA. Notably, previous findings have shown that hsa-miR-155-5p

expression is up-regulated under various inflammatory conditions

(77). Langi G et al. (78) showed that the expression of hsa-miR-155-5p

is down-regulated in OB patients undergoing bariatric surgery (78). In

addition, miR-146a-5p expression was up-regulated in humans and

mice obese adipose tissue and suppressed the inflammatory response

in human adipocytes (79). Meanwhile, animal experiments revealed

that deletion of the transcription factor AKT1 increased energy

expenditure and prevented diet-induced obesity in mice (80), and

AKT1 regulated macrophage polarization and alters periodontal

inflammatory status (81). These findings are consistent with our

study, where 14 hub genes were found to be up-regulated in both

the OB and PD groups and may have a strong association with

immune cells, especially macrophages. Therefore, we can reasonably

speculate that the upregulation of FGR and FYB1 expression in OB

and PD may be regulated by hsa-miR-155-5p and hsa-miR-146a-5p

and TFs such as AKT1, FOXP3, TP53, and IL1B are involved in the

regulatory process of hsa-miR-155-5p and hsa-miR-146a-5p.

In this study, we used transcriptome data to elucidate the common

mechanisms of OB and PD. Our study is novel in that we analyzed the

infiltration of 28 immune cell species in adipose tissue of OB patients

and periodontal tissue of PD patients using the ssGSEA algorithm. It is

comprehensive in that we elucidated the key genes, biological

pathways, immune infiltration levels, and TF-miRNA-mRNA

networks of OB and PD, which will be helpful in understanding the

pathophysiological mechanisms shared between the two diseases and

the treatment of PD patients with OB. However, there are still

limitations to our study. First of all, there is limited clinical
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large sample sizes, which may lead to bias in the results. In addition,

this study was mainly based on bioinformatics analysis. Although for

hub genes with high diagnostic value, we used different datasets to

validate this diagnostic value, and many previous studies were able to

confirm our findings to some extent, further experimental validation of

our findings is still needed.
Conclusion

Our study provides key co-diagnostic effector genes for OB and PD

patients and reveals that the common key genes of both diseases are

closely associated with immune cell infiltration. The possible molecular

mechanism of accelerated PD progression in OB is that the secretion of

pro-inflammatory cytokines increases with immune cell infiltration

and inflammatory response in OB, causing inflammation in other

tissues by endocrine means, thus accelerating PD progression. Five hub

genes (FGR, LCK, FYB1, LY86, P2RY13) are promising biomarkers for

OB and PD and may play an important role in the pathogenesis of OB

and PD by influencing the activity of macrophages involved in immune

regulation and inflammatory responses.
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