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Systems characterization of immune landscapes in health, disease and clinical

intervention cases is a priority in modern medicine. High-throughput

transcriptomes accumulated from gene-knockout (KO) experiments are crucial

for deciphering target KO signaling pathways that are impaired by KO genes at

the systems-level. There is a demand for integrative platforms. This article

describes the PathwayKO platform, which has integrated state-of-the-art

methods of pathway enrichment analysis, statistics analysis, and visualizing

analysis to conduct cutting-edge integrative pathway analysis in a pipeline

fashion and decipher target KO signaling pathways at the systems-level. We

focus on describing the methodology, principles and application features of

PathwayKO. First, we demonstrate that the PathwayKO platform can be utilized

to comprehensively analyze real-world mouse KO transcriptomes (GSE22873

and GSE24327), which reveal systemic mechanisms underlying the innate

immune responses triggered by non-infectious extensive hepatectomy (2

hours after 85% liver resection surgery) and infectious CASP-model sepsis (12

hours after CASP-model surgery). Strikingly, our results indicate that both cases

hit the same core set of 21 KO MyD88-associated signaling pathways, including

the Toll-like receptor signaling pathway, the NFkB signaling pathway, the MAPK

signaling pathway, and the PD-L1 expression and PD-1 checkpoint pathway in

cancer, alongside the pathways of bacterial, viral and parasitic infections. These

findings suggest common fundamental mechanisms between these immune

responses and offer informative cues that warrant future experimental validation.

Such mechanisms in mice may serve as models for humans and ultimately guide

formulating the research paradigms and composite strategies to reduce the high

mortality rates of patients in intensive care units who have undergone successful

traumatic surgical treatments. Second, we demonstrate that the PathwayKO

platform model-based assessments can effectively evaluate the performance

difference of pathway analysis methods when benchmarked with a collection of

proper transcriptomes. Together, such advances in methods for deciphering

biological insights at the systems-level may benefit the fields of bioinformatics,

systems immunology and beyond.
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1 Introduction

Systems characterization of immune landscapes in health,

disease, and clinical intervention cases has become a priority in

modern medicine. For instance, to reduce the high mortality rates of

patients in the intensive care unit (ICU), insights into the complex

mechanisms underlying systems immunology triggered by

infectious or non-infectious traumatic surgical treatments must be

further investigated through both bench-experimental and

computational analyses (1–4). High-throughput transcriptomes

accumulated in gene-knockout (KO) experiments are crucial for

deciphering target KO signaling pathways that are impaired by KO

genes at the systems-level (1, 5). KEGG pathways, as dominant

examples, are curated manually with literature and experimental

evidence, thus intuitively visualizing the signaling pathways that are

supported by the literature and/or experimental evidence (6).

However, existing methods of pathway enrichment analysis may

not produce consistent results, or identify true target signaling

pathways owing to intrinsic defects, as discussed in the literature (5,

7, 8).

Pathway enrichment analysis methods have evolved over

decades from non-topology-based to topology-based approaches;

the latter category generally performs better than the former

category (5). The eminent non-topology-based methods include

SAFE (9), GSEA (10), GSA (11) and PADOG (12). These methods

employ entire gene sets. Unlike over-representation methods (e.g.,

the hypergeometric test) where a hypergeometric or binomial

distribution is normally assumed (13, 14), advanced methods

(e.g., SAFE and GSEA) are built on empirical distribution

functions (9, 10). These statistical methods may not fit real data,

thus preventing accurate predictions, as discussed in the literature

(5, 14). The pioneering topology-based methods include

ROntoTools_PE (15), SPIA (16) and ROntoTools_pDIS (5).

These methods deploy differentially expressed genes (DEGs) with

topology information on gene-gene interactions (5). Nonetheless,

the criteria for selecting DEGs remain debatable (5). For instance,

by a traditional approach, an arbitrary number of genes (e.g., top 5%

or 10% of total genes present in the available KEGG pathways) are

selected by using an arbitrary cutoff p-value (e.g., p<0.05) or fold-

change (e.g., absolute log2FC>1.5) or their conjunction (5, 7, 8).
Abbreviations: GEO, gene expression omnibus; KEGG, Kyoto encyclopedia of

genes and genome; DEGs, differentially expressed genes; FC, fold-change; RMA,

robust multi-array average; FDR, false discovery rate; FPR, false positive rate;

FNR, false negative rate; TNR, true negative rate; TPR, true positive rate; ROC,

receiver operating characteristic; AUC, area under the ROC curve; pAUC_SP,

partial AUC focusing on the specificity; pAUC_SE, partial AUC focusing on the

sensitivity; HES, high-edge-scores; WT, wild-type; KO, knockout; MyD88,

myeloid differentiating factor 88 (encoded by Myd88); TLR, toll-like receptor;

AGEs, advanced glycation endproducts; RAGE, the receptor for advanced

glycation end-products (encoded by Ager); DAMPs, damage-associated

molecular patterns. PAMPs, pathogen-associated molecular patterns; NFkB,

activation of nuclear factor kappa B; NFATc1, nuclear factor of activated T

cells, cytoplasmic, calcineurin dependent 1; EGR1, early growth response 1;

PIM1, proviral integration site 1; AP1 (FOS, JUN), FOS, FBJ osteosarcoma

oncogene; JUN, jun proto-oncogene.
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These arbitrary cutoffs to select DEGs hinder a fair and reasonable

comparisons under the same context, as discussed in the literature

(5, 7). Meanwhile, approaches to evaluating performance

differences among pathway analysis methods have recently

evolved from traditional disease-target-pathways (7) toward

known-KO pathways (5, 17). High-throughput transcriptomes

accumulated in gene-KO experiments have offered unique

opportunities to decipher target KO signaling pathways that are

truly impaired by KO genes at the systems-level (1, 5). Thus,

developing integrative platforms to conduct cutting-edge

integrative pathway analysis and to evaluate the performance

difference of methods has become an imminent frontier of

research in the field.

We recently developed an in-house PathwayKO package and

used it to analyze a transcriptome (GSE24327) that was recovered

from mouse spleens 12 hours after a colon ascendens stent

peritonitis (CASP)-model surgery coupled with Myd88 gene-KO

experiments (1, 2). The original bench-experiments suggested that

the MyD88-deficient phenotype attenuated proinflammatory

responses and thus reduced the mortality rate after CASP-model

surgery (2). To elucidate the mechanisms underlying the observed

phenomena, we designed the following three subtypes of GSE24327

data according to the original bench-experiments (2): GSE24327_A

(septic KO MyD88 vs. septic WT) for comparing septic null

(Myd88–/–) with septic wild-type mice, GSE24327_B (septic KO

MyD88 vs. untreated WT) for comparing septic null (Myd88–/–)

with untreated wild-type mice, and GSE24327_C (septic WT vs.

untreated WT) for comparing septic wild-type with untreated wild-

type mice (1). With the PathwayKO package, we successfully

identified 21 KO MyD88-associated signaling pathways from each

subtype and illustrated numerous key regulators (including ligands,

receptors, adapters, transducers, transcription factors and

cytokines) that were coordinately, significantly and differentially

expressed at the systems-level, and were precisely marked on those

target KO signaling pathways (1). Our results revealed the

mechanisms underlying systems immunology triggered by the

infectious CASP-model sepsis from the bioinformatics analysis

perspective (1). We discussed the observed phenomena, including

the “systemic syndrome”, “cytokine storm”, and “KO MyD88

attenuation”, as well as the proposed hypothesis of “spleen-

mediated immune-cell infiltration” (1). We thereby anticipated

that these mechanisms may serve as models for humans, and

ultimately facilitate formulating research paradigms and

composite strategies for the early diagnosis and prevention of

sepsis (1). This case study appeals that the PathwayKO package

has the potential to be constantly updated and widely used by

the community.

The present article aims to describe the PathwayKO platform,

focusing on its methodology, principles and application features.

We applied the platform to analyze a real-world transcriptome

(GSE22873) as a case study to elucidate the mechanisms underlying

systems immunology triggered by non-infectious extensive

hepatectomy in single- and double-null mice (3). We illustrate

that the platform incorporates state-of-the-art methods of pathway

enrichment analysis, statistics analysis, and visualizing analysis to

conduct the cutting-edge integrative pathway enrichment analysis,
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which allows excavating target KO signaling pathways at the

systems-level. We highlight that this integrated platform possesses

but is not limited to the following advantageous features:
Fron
• The differentially expressed genes (DEGs) are statistically

determined from data and are ready for pathway analysis

under the same context;

• The ROC curves and key metrics are simultaneously

calculated, both across methods and across data, in a

pipeline fashion;

• The target KO signaling pathways are significantly

identified and differentially marked by key regulators,

which are coordinately, significantly and differentially

expressed at the systems-level;

• The ROC curve-based statistics analysis is conducted under

the same conditions to evaluate the performance difference

of methods;

• Both interactive and pipeline modes can be chosen for

desired computations.
Moreover, we demonstrate the application of the PathwayKO

platform model-based assessments, and the results suggest that the

PathwayKO platform can effectively evaluate the performance

difference of pathway analysis methods when benchmarked on a

collection of proper transcriptomes.
2 Framework overview of the
PathwayKO platform

The PathwayKO platform (Figure 1) currently incorporates and

drives a set of internal and external packages (Figure 1A) coupled

with diverse dependencies (Figure 1B) to pursue the integrative (I)

preprocessing, (II) ROC-AUC calculating, (III) statistics analyzing,

and (IV) visualizing processes. All external packages are adapted

from the literature (9–20). The PathwayKO platform as systems

software has integrated state-of-the-art methods of pathway

enrichment analysis, statistics analysis, and visualizing analysis

(Figures 1A, B), which work in a pipeline fashion (Figures 1C, D).

The pathway enrichment analysis methods (Figure 1A) include the

packages of non-topology- and topology-based methods, such as

SAFE (9), GSEA (10), GSA (11), PADOG (12), ROntoTools_PE

(15), ROntoTools_pDIS (5) and SPIA (16), which are widely used

by the community. The statistics analysis methods (Figure 1B)

include the packages of changepoint (18) and pROC (19). The

visualizing analysis methods (Figure 1B) include the packages of

pROC (19) and Pathview (20).
3 Methodology, principles
and application features of the
PathwayKO platform

This article aims to describe the PathwayKO platform from the

perspectives of methodology, principles and application features
tiers in Immunology 03
with results from some of its modules (Supplemental Figures S1-

S4), as exemplified by real-world case studies of GSE24327 (1, 2)

and GSE22873 (3); these data were downloaded (as of March 19,

2021) from https://ncbi.nlm.nih.gov/geo/. The 333 mouse KEGG

signaling pathways were downloaded (as of March 19, 2021) from

https://www.kegg.jp/. Users should install the PathwayKO platform

and utilize this platform to complete tasks following the tutorials

step-by-step, provided as online supplemental materials

(Supplemental Figures S1-S4). Users may also follow instructions

in the user’s manual offered at https://github.com/allenaigit/

pathwayko/tree/main/inst/docs/Users_manual.pdf.
3.1 Preprocessing process

3.1.1 Feature 1: Automatic generation of
intermediate data from one data

The preprocess module can preprocess the given GEO data

(GSEXXX_RAW.tar and GSEXXX_series_matrix.txt.gz) stored in

the assigned working directory (e.g., PathwayKO_platform) by

utilizing the oligo (21) and limma (22, 23) packages for RMA

normalization, which will generate intermediate data (pData.csv

and PREP.RData). The preprocess module can handle most types of

GEO data produced by the major types of machines thus far.

Meanwhile, the makeSPIAdata module adapted from the SPIA

package (16) can parse KEGG pathways to generate intermediate

data (mmuSPIA.RData) ready for pathway enrichment analysis by

topology-based methods (SPIA, ROntoTools_PE, and

ROntoTools_pDIS). Only topology-based methods can utilize the

topology information of gene-gene interactions (5, 16). All resulting

output files are stored in the new directories automatically created

and named after the given data (Supplemental Figure S2).
3.2 ROC-AUC calculating process

3.2.1 Feature 2: Automatic selection of DEGs
from one data

The main module pathwayko can automatically select DEGs

through enabling the HES (high-edge-score) approach (17), in

addition to classical approaches (5, 7, 8). The main module

pathwayko drives the external changepoint package (18), by

which the change-point analysis method (see Figure 1) makes a

statistical decision on choosing the differentially expressed genes

(DEGs) based on the distribution of edge scores (Figure 2) that are

constructed from data (17). The resulting output directory will be

automatically created and named after the given data; the directory

contains a set of output files including the list of DEGs, the list of

knockout (KO) KEGG pathways , and the KO gene-

associated subnetwork.

The principles behind the high-edge-score (HES) approach and

the change-point analysis method for statistically selecting

differentially expressed genes (DEGs) were modified from the

literature (6, 17, 18, 23, 24), as briefly depicted below (Figure 2).

First, a global graph is constructed (Figure 2A) by the external

KEGGgraph package (24) based on available KEGG pathways (6);
frontiersin.org
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this graph comprises all known interactions among the entire gene

sets present in the KEGG pathways. Second, the edge scores for all

edges in the global graph are calculated (Figure 2B). Given two

genes (X and Y) connected by an edge in the global graph, suppose

FCX and FCY are the values of the expression fold-change (FC) of X

and Y, respectively, while pX and pY are the probability of observing

FCX and FCY just by chance, then the edge score between X and Y is

calculated by the following formula (1):

EdgeScoreXY = FCXj j · (1 − pX) + FCYj j · (1 − pY) (1)

where the FC value for gene X (or Y), FCX (or FCY), is calculated by

comparing the expression values of KO samples versus normal samples

in each data. The p-value for gene X (or Y), pX (or pY), is calculated
Frontiers in Immunology 04
between the same groups (i.e., KO samples vs. normal samples) by

using a moderated t-test (17). The FC values and p-values for all of

these genes are calculated by using the functions eBayes and topTable

from the external limma package (23). Third, a change-point is

statistically determined (Figure 2C) by using the change-point

analysis method from the external changepoint package (18), where

a change-point is defined to be an inflection point after which the

distribution curve becomes flat (18). Fourth, important edges are

statistically determined (Figure 2D). They are connected by DEGs

that are determined by a chosen HES threshold once initialized. Such

DEGs connecting important edges are statistically selected, and ready

for subsequent pathway enrichment analysis. Fifth, the distribution of

edge scores is generated with three optional HES thresholds defined
FIGURE 1

Framework overview of the PathwayKO platform. (A) Framework of the PathwayKO platform as systems software. (B) Processes, modules, methods
and dependencies integrated in the PathwayKO platform. (C) Pipeline analysis with a collection of data, both across methods and across data. (D)
Parallel computation.
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(Figure 2E). HES1 is the least HES (the lower boundary of the change

point), the beginning of the flat area of a curve, recommended as

default; HES2 is the extra 25% HES (25% safety margin of the change

point), top 75% of the remaining scores to avoid selecting an

overwhelming number of DEGs that may introduce false positives;

and HES3 is the maximal HES (the upper boundary of the change

point), the last edge connected by last two genes with the highest score.

Finally, the differentially expressed genes (DEGs) are statistically

selected by HES1, HES2 or HES3.

3.2.2 Feature 3: Building ROC curves
and calculating key metrics in a pipeline
fashion from one data

The main module pathwayko can conduct the desired

computations in a pipeline fashion, i.e., across methods over one

data (see Figure 1). These computations include (i) building an

ROC curve, (ii) computing the key metrics (Table 1), (iii)

computing the AUC (with 95% CI, confidence interval) for the

full area under the entire ROC curve, (iv) computing the partial

AUCs (pAUC_SP and pAUC_SE) for the specific regions focusing

on 90–100% specificity and sensitivity in both original and

corrected formats (25), and (v) computing the 95% CIs for

specificity and sensitivity. The entire set of key metrics (Table 1)

for one data are then formatted as a summary output file

(SUM.RData). The resulting output files are stored in a new

directory automatically generated and named after the data. Such
Frontiers in Immunology 05
batch-computations intensively consume computing resources

(CPUs, memory and storage). This is a time-limiting step.

The principles behind the main module pathwayko (see

Figure 1) are modified from the literature (5, 19, 26), as briefly

depicted below. (i) By our definition, a true positive KO (TPKO)

signaling pathway is a pathway that contains the knockout (KO)

gene and was correctly identified to be a significantly impacted by

that KO gene (e.g., at the pathway-level p-value < 0.001). (ii) A false

positive KO (FPKO) signaling pathway is a pathway that does not

contain the KO gene, and was not significantly impacted by that KO

gene, but was still identified to be significantly impacted. A true

negative KO (TNKO) signaling pathway is a pathway that does not

contain the KO gene and was not significantly impacted by that KO

gene; thus, it was not reported to be significantly impacted. A false

negative KO (FNKO) signaling pathway is a pathway that contains

the KO gene and was significantly impacted by that KO gene, but

was not reported to be significantly impacted. (iii) For such a true-

false case, the response versus prediction with a probability allows

us to employ the external pROC package (19) to compute a set of

key metrics defined by the above terms (Table 1). (iv) An ROC

curve represents the tradeoff between specificity and sensitivity for

every possible p-value (19). The Youden’s best p-value threshold

(denoted as p-Threshold) is a p-value that defines an optimal point

(specificity, sensitivity) on an ROC curve (26), where the sum of

specificity and sensitivity is maximal (19, 25). Each point on an

ROC curve represents a true KO (both true positive and false
A B

D E

C

FIGURE 2

Schema of the high-edge-score (HES) approach with the change-point analysis method for statistically selecting differentially expressed genes.
Explanations are presented in the main text. (A) A global graph is constructed. (B) An edge score for two genes (X, Y) in the global graph is
calculated. (C) A change-point is statistically determined. (D) High score edges are statistically determined. (E) The distribution of edge scores is
generated with each of three optional HES thresholds (HES1, HES2 and HES3).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1103392
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ai et al. 10.3389/fimmu.2023.1103392
negative) signaling pathway in our cases. (v) Some key metrics with

local properties (FDR, FPR, FNR, specificity, sensitivity, accuracy,

precision and recall) collected at the p-threshold (Table 1) can be

used to conduct a local comparison; others with global properties

(AUC, pAUC_SP and pAUC_SE) can be applied to perform a

global comparison. And these key metrics are appropriate for

evaluating the performance difference of pathway analysis

methods and for assessing the quality of data, both in terms of

the ROC curve-based statistics analysis.
3.3 Statistics analyzing process

3.3.1 Feature 4: The two-dimensional
probability evidence plots

The internal evidenceplot module adapted from the SPIA

package (16) can construct the two-dimensional probability

evidence plots. The Adj.p-value is used to control the false

discovery rate (FDR) for multiple testing (27, 28). Pathways

above the oblique blue (or red) line are significant at 5% after

BH-FDR (or Bonferroni) correction of the global p-values (pG), i.e.,

an adjusted Fisher’s product of pPERT and pNDE (16). Such plots

can differentiate each data under comparison after having been

analyzed by the SPIA method in view of the resolution along the X-

and Y-axes (16). The highest resolution along the Y-axis, as

indicated by the fine distribution, suggests that the most likely

target pathways are identified, thus coinciding with its superiority

among top-ranked TPKO signaling pathways (e.g., a list of top-

30 ranked).
Frontiers in Immunology 06
3.3.2 Feature 5: The ROC curve-based statistical
hypothesis testing

The internal roctest module adapted from the pROC package

(19) can conduct the ROC curve-based statistical hypothesis testing

both on the two ROC curves themselves (via the venkatraman

method) and on the values of AUC, pAUC_SP and pAUC_SE (via

the bootstrap method). The output files are stored in a new

directory (roctest) automatically generated and named after

the module.

3.3.3 Feature 6: The ROC curve-based
statistics analysis

The internal combineresult module can combine individual

results of each data across methods, and format them to be a

summary output file (STATS.RData). Thereby, the internal

violinplot module and the internal wilcoxtest module can conduct

the ROC curve-based statistics analysis, comparing the individual

key metrics (Table 1) among the methods under comparison. All

resulting output files are stored in the respective directories

(combineresult , violinplot, and wilcoxtest), which are

automatically created and named after the modules.
3.4 Visualizing process

3.4.1 Feature 7: Highlighting target signaling
pathways with key regulators

The internal filtertrue module can extract the signaling

pathways, and the internal pathwayview module adapted from the

Pathview package (20) can render them. The resulting output files
Table 1 Key metrics used for the ROC curve-based statistics analysis.

Metrics Definition

False discovery rate (FDR) FDR =
FPKO

FPKO + TPKO
(2)

False positive rate (FPR) FPR =
FPKO

FPKO + TNKO
(3)

False negative rate (FNR) FNR =
FNKO

FNKO + TPKO
(4)

True positive rate (TPR) TPR(Sensitivity) =
TPKO

TPKO + FNKO
(5)

True negative rate (TNR) TNR(Specificity) =
TNKO

TNKO + FPKO
(6)

Accuracy Accuracy =
TPKO + TNKO

TPKO + FPKO + TNKO + FNKO
(7)

Precision Precision =
TPKO

TPKO + FPKO
(8)

Recall Recall =
TPKO

TPKO + FNKO
(9)

p-Threshold Youden’s_Threshold = max(Specificity+Sensitivity) (10)

AUC Full area under the entire ROC curve (11)

pAUC_SP Partial area for a region of 90–100% specificity (12)

pAUC_SE Partial area for a region of 90–100% sensitivity (13)
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are stored in the two directories automatically generated and named

after the two modules (filtertrue and pathwayview). Key regulators,

which are impacted by the same KO gene and are coordinately,

significantly up- or down-regulated, can be differentially marked on

the target signaling pathways. These rendered signaling pathways

illuminate putative mechanisms underlying the KO phenotype at

the systems-level.
4 Advanced batch-execution features
of the PathwayKO platform

4.1 The work-flow logic of utilizing
individual modules

4.1.1 Feature 8: Optional modes for desired tasks
The work-flow logic of utilizing individual modules of the

PathwayKO platform is indicated below (Figure 3). The modules can

be executed in interactive mode or in pipelined batch-execution mode.
4.2 Analyzing a collection of data in a
pipeline fashion

4.2.1 Feature 9: All-in-all computations in batch-
execution mode

After a number of data having been preprocessed in a step-by-

step manner and stored in the user’s working directory

(Supplemental Figure S2), the user may conduct a batch-

execution by typing the pathwayko_batch () command within the

continued R session (Supplemental Figure S3). This command will

start sequential operations: (i) to scan and identify data generated

previously by the preprocess module; and (ii) to apply the main

pathwayko module to conduct a batch-execution, performing the

integrative KO pathway enrichment analysis in a pipeline fashion,

both across methods and across data (Supplemental Figure S3).
4.3 Evaluating the performance of
methods with a benchmark

4.3.1 Feature 10: Evaluating the performance of
methods under the same conditions

Once a collection of benchmark data have been previously

preprocessed and stored in a user’s working directory (Supplemental

Figure S2), the user should start a new R session to complete the desired

batch-computations by following the offered tutorials, where some key

parameters can be initialized in a step-by-step manner (Supplemental

Figure S3). All resulting output files should be finally stored in the new

directories that are automatically created and named after the modules

(Supplemental Figure S4).
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5 Results

5.1 Case study 1: Elucidating the
mechanisms underlying systems
immunology triggered by sterile extensive
hepatectomy

5.1.1 Assignment of transcriptomes reflecting the
original bench-experiments

The original bench-experiments suggested that (i) wild-type

(WT) mice had a high mortality rate after sterile 85% liver resection;

(ii) single nullMyd88 (Myd88–/–) mice had greatly reduced survival

rates; (iii) double null Myd88_ Ager (Myd88–/–/Ager–/–) mice had

even more greatly reduced survival rates; but (iv) single null Ager

(Ager–/–) mice had drastically increased survival rates, which

suggested opposing roles between MyD88 (encoded by Myd88)

KO and RAGE (encoded by Ager) KO (3). The GSE22873 GEO data

were created from tissues recovered from the remnants of mouse

livers 2 hours after the sterile 85% liver resection in the indicated

deficient and wild-type mice (3). These data were not subjected to

bioinformatics analysis, similar to our perspectives, although some

DEGs and pathways were suggested by primary analyses (3) with

Pathway Express (16). To investigate the mechanisms underlying

such phenomena raised by the original bench-experiments (3) from

the perspective of systems immunology, we applied the PathwayKO

platform to analyze the following six subtypes of data we assigned:

GSE22873_M (KO Myd88 vs. WT), GSE22873_MA (KO

Myd88_Ager vs . WT), GSE22873_A (KO Ager vs. WT),

GSE22873_MAvM (KO Myd88_Ager vs . KO Myd88) ,

GSE22873_MAvA (KO Myd88_Ager vs . KO Ager) and

GSE22873_MvA (KO Myd88 vs. KO Ager). The results are

presented as follows.

5.1.2 The distribution of edge scores
automatically estimated from a global graph

The distribution of edge scores varied drastically among data

(Figure 4). Each showed a distinction, as marked by an HES

threshold (HES1, HES2 and HES3, respectively), and reflected the

different effects of experimental treatments.
Interactive Mode  preprocess()   makeSPIAdata() 
  

Pipeline Mode   pathwayko()  OR  pathwayko_batch()  

  

Interactive Mode  pathwayview()  combineresult()  filtertrue() 
 

 violinplot() 
 roctest() 

 evidenceplot() 
 wilcoxtest() 

FIGURE 3

The modes of running individual modules of the PathwayKO
platform.
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5.1.3 The differentially expressed genes
statistically selected by an HES threshold

DEGs were statistically selected by using an HES threshold, as

described in Methods (see Figures 2, 4). By the HES1, HES2 and

HES3 thresholds, respectively, GSE22873_M separately had 122

DEGs, 38 DEGs and 2 DEGs (Supplemental Table S1) with the top

10-ranked genes (Myd88, Cxcl1, Fos, Nfatc3, Ccr1l1, Cxcr2, Ccr4,

Rela, Jun and Xcr1); GSE22873_MA had 130 DEGs, 57 DEGs and 2

DEGs (Supplemental Table S2) with the top 10-ranked genes

(Myd88, Cxcl1, H2-Bl, Ccr1l1, Ccr10, Cxcr2, Rela, Xcr1, Ccr1 and

Cxcr5); and GSE22873_A had 135 DEGs, 27 DEGs and 2 DEGs

(Supplemental Table S3) with the top 10-ranked genes (H2-Bl, H2-

T24, H2-M3, H2-Q6, Cdkn1a, Tapbp, AP1g1, Ap1b1, Ap1m1 and

H2-M10.1). Similarly, by the HES1 threshold, there were 55 DEGs

(with top-ranked H2-Bl and H2-T24) in GSE22873_MAvM

(Supplemental Table S4); 67 DEGs (with top-ranked Myd88 and

Cxcl1) in GSE22873_MAvA (Supplemental Table S5); and 347

GEGs (with top-ranked H2-Bl, H2-M10.1, Myd88 and Cxcl1) in

GSE22873_MvA (Supplemental Table S6). Of note, rather than

Ager itself, the MHC/antigen-related genes were ranked in the top

10 in GSE22873_A, which compared RAGE-null with wild-type

mice. None of the above lists contained Ager, suggesting that (i)

Ager itself was not yet significantly differentially expressed as early

as 2 hours post-surgery when comparing RAGE-null against wild-

type mice in GSE22873_A (KO Ager vs. WT), born by the

transcriptome, in our current analysis; and (ii) RAGE (Ager)-

mediated MHC/antigen-related genes play the most important

roles, implying epigenetic effects.
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5.1.4 The KO gene-associated subnetwork
automatically constructed from DEGs

The KO gene-associated subnetwork was comprised of the

statistically selected DEGs (Figure 5). The landscapes of these

subnetworks explicitly revealed the global effects of experimental

treatments at the systems-level. For instance, the top-ranked two

genes (Myd88 and Cxcl1) connected the last edge, as highlighted by

the HES3 threshold (see Figure 4); this result suggests that the KO

Myd88-signaling stimulated the highest responsive expression of

Cxcl1 in both GSE22873_M (Supplemental Table S1) and

GSE22873_MA (Supplemental Table S2). Similarly, the top-

ranked two genes (H2-Bl and H2-T24) connected the last edge

(see Figure 4), suggesting that the KO Ager-signaling stimulated the

highest responsive expression ofH2-Bl andH2-T24 in GSE22873_A

(Supplemental Table S3). In addition, the remaining pairs displayed

drastic variations, reflecting subtractive responses between the

indicated pairs (Figure 5).

5.1.5 The ROC curves with statistical features
automatically built in a pipeline fashion

The ROC curves with statistical features (Figure 6) were generated

in a pipeline fashion, both across methods and across data. These results

indicate the diverse landscapes of experimental treatments (data), which

can discriminate the performance difference of pathway analysis

methods under comparison. (i) An AUC with 95% CI and Youden’s

best p-value threshold (noted shortly as p-Threshold) were marked on

each ROC curve, indicating an optimal point (specificity, sensitivity) for

a method. (ii) The 95% CIs of both specificity and sensitivity were
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marked on each ROC curve, indicating the deviation for a method on

one data point. For instance, the drastic variation in 95% CIs shown in

GSE22873_A (KO Ager vs. WT) data suggested weak signals over noise,

which might impact the statistical hypothesis testing (19). (iii) The

partial AUCs (pAUC_SP and pAUC_SE) of 90–100% specificity and

sensitivity were marked on each ROC curve, implying a bias toward a

higher specificity and sensitivity, respectively. (iv) The multiple ROC

curves with AUCs intuitively displayed the superiority of methods when

benchmarked on the same data (Figure 6).

5.1.6 The ROC curve-based statistical hypothesis
testing based on key metrics

The ROC curve-based statistical hypothesis testing was

conducted to indicate the significance level of the difference

between the two methods (Figure 7). For instance, two methods

(SPIA vs. GSEA) had a significant difference (e.g., p-value < 0.05)
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when benchmarked on GSE22873_M and GSE22873_MA,

respectively, in view of both ROC curves themselves (via the

venkatraman method) and the values of AUC, pAUC_SP and

pAUC_SE (via the bootstrap method). SPIA was better than

GSEA in these two cases (Figures 7A, B). However, the same two

methods (SPIA vs. GSEA) showed no significant difference (e.g., p-

value > 0.1) when benchmarked on GSE22873_A (Figure 7C). The

reason is likely attributed to the drastic variations in the 95% CIs of

specificity and sensitivity in GSE22873_A (see Figure 6C), which

impact the resampling-based bootstrap assessments used for the

ROC curves-based statistical hypothesis testing (19).

5.1.7 The two-dimensional probability
evidence plots

The two-dimensional probability evidence plots were created

for six data (Figure 8), which discriminate these data in view of the
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FIGURE 5

The KO gene-associated subnetworks comprised of DEGs statistically determined by HES1 and HES2. Landscapes are displayed since many node
labels are unreadable by humans. Representative key nodes (e.g., Myd88, Cxcl1 and H2-Bl) are enlarged for clarity. (A) GSE22873_M, (B)
GSE22873_MA, and (C) GSE22873_A at HES1; (D) GSE22873_M, (E) GSE22873_MA, and (F) GSE22873_A at HES2; (G) GSE22873_MAvM, (H)
GSE22873_MAvA, and (I) GSE22873_MvA at HES1.
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resolution along the X- and Y-axes. The highest resolution along the

Y-axis suggests that the most likely target pathways were identified

by SPIA, as indicated by the fine distribution.

5.1.8 The true positive knockout signaling
pathways statistically identified

We identified diverse true KO signaling pathways, which

contained target KO gene(s), including 21 from GSE22873_M

(KO Myd88 vs. WT), 23 from GSE22873_MA (KO Myd88_ Ager

vs. WT), 3 from GSE22873_A (KO Ager vs. WT) and 24 from

GSE22873_MvA (KOMyd88 vs. KO Ager) (Table 2; Supplementary
Frontiers in Immunology 10
Table S7). The majority of them were identified to be TPKO

signaling pathways at a statistical significance level (e.g., pGFdr

< 0.001 or 0.005) by our definitions described in Methods. (i) All 21

pathways from GSE22873_M were TPKO signaling pathways. (ii)

Twenty-two out of 23 pathways were TPKO signaling pathways,

whereas only 1 (mmu05010: Alzheimer disease) out of 23 pathways

from GSE22873_MA was a false negative knockout (FNKO)

signaling pathway; i.e., this pathway contained a target KO gene

and should have been significantly impacted, but was not identified

to be positive at a significance level (pGFdr > 0.005). (iii) Only 1

(mmu04933: AGE-RAGE signaling pathway in diabetic
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ROC curves with statistical features. GSE22873_A (KO Ager vs. WT) displays a weak signal to noise ratio, implying a lower degree of response to the
stimulus. (A) GSE22873_M; (B) GSE22873_MA; (C) GSE22873_A.
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complications) out of 3 pathways from GSE22873_A was a TPKO

signaling pathway, whereas the remaining two pathways were

FNKO signaling pathways (pGFdr > 0.005). (iv) Twenty-three out

of 24 pathways from GSE22873_MvA were TPKO signaling

pathways, whereas only 1 (mmu05150: Staphylococcus aureus

infection) out of 24 pathways was an FNKO signaling pathway

(pGFdr > 0.005) (Supplementary Table S7).

We categorized target TPKO signaling pathways into the

following two groups (1): the basal signaling pathway that is
Frontiers in Immunology 11
solely responsible for the KO-gene phenotype; and the composite

signaling pathway that embeds the named basal signaling pathway.

Here, the basal signaling pathway for KO Myd88 was the Toll-like

receptor signaling pathway (mmu04620), while the composite

signaling pathways were the remaining Myd88-containing

signaling pathways (Table 2; Supplementary Table S7). Similarly,

the basal signaling pathway for KO Ager was the AGE-RAGE

signaling pathway in diabetic complications (mmu04933), while

the composite signaling pathways were the remaining Ager-
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FIGURE 7

ROC curves-based statistical hypothesis testing of key metrics. The top-panel is testing the two ROC curves themselves (via the venkatraman
method). The remaining panels are testing the AUC, pAUC_SP and pAUC_SE values (via the bootstrap method). (A) GSE22873_M; (B) GSE22873_MA;
(C) GSE22873_A.
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containing pathways (Table 2; Supplementary Table S7). Diverse

target TPKO signaling pathways were mainly linked to innate

inflammatory responses.

5.1.9 The target TPKO signaling pathways
highlighted at the systems-level

The target TPKO signaling pathways identified by the SPIA

method (see Table 2; Supplementary Table S7) were rendered with

key regulatory proteins (encoded by genes). Key regulators included

ligands, receptors, adapters, transducers, transcription factors and

cytokines, which were coordinately, significantly and differentially

expressed at the systems-level. Such key regulators may constitute a

signaling-axis, as marked on a target TPKO signaling pathway.

Some top-ranked target TPKO signaling pathways are highlighted

below as examples (Figures 9–11).
5.1.9.1 Scenario 1

The Toll-like receptor signaling pathway (mmu04620) was the

target basal signaling pathway that was solely responsible for the

Myd88-null phenotype in both single Myd88-null and double

Myd88_Ager-null mutants (Figure 9). This pathway was

significantly inhibited in deficient mice compared to wild-type

mice (see Table 2; Figure 9). More than 40% of its 87 critical

genes were DEGs that were coordinately, significantly and
Frontiers in Immunology 12
differentially up- or down-regulated as early as 2 hours post-

surgery (see Table 2). The opposing roles of single Myd88-null

and doubleMyd88_Ager-null mutants highlighted the global effects

of key regulators (MyD88, NFkB, AP1 (FOS, JUN) and cytokines)

on orchestrating innate inflammatory responses at the systems-

level. (i) Key regulators in GSE22873_M (Figure 9A) included

significantly down-regulated TLR2, MyD88 and p38 as well as

significantly up-regulated TAB2, IRF7 and AP1 (FOS, JUN).

These regulators were part of the TLR2-MyD88-TABs-AP1-ILs/

CCL axis, which orchestrated the significant down-regulation of

downstream inflammatory cytokines (TNFa, IL6, IL12, RANTES
(CCL5), IFNb and IP10 (CXCL10)), and reduced the

proinflammatory, anti-viral and chemotactic effects at the

systems-level. (ii) Key regulators in GSE22873_MA (Figure 9B)

included significantly down-regulated MyD88, PI3K and IP10

(CXCL10) as well as significantly up-regulated FADD, AKT,

NFkB and IRF7. Such regulators constituted the TLRs-MyD88-

IRAKs-TABs-NFkB axis, the TLRs-PI3K-AKT-NFkB axis, the

TLRs-MyD88-IRAKs-IRF7 axis, and the TLRs-MyD88-FADD-

CASP8 axis. Most of these axes regulated the expression of

inflammatory cytokines and induced proinflammatory and

chemotactic effects. In addition, the TLRs-MyD88-FADD-CASP8

axis promoted apoptosis. (iii) The subtractive difference between

the single Myd88-null and double Myd88_Ager-null mutants

(Figures 9A, B) is displayed in Figure 9C. Ager-null mice,
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FIGURE 8

Two-dimensional probability evidence plots. A randomly assigned signaling pathway (green dot) located above or below the lines of significance
level suggests the intuitive difference in fine distributions among data. (A) GSE22873_M; (B) GSE22873_MA; (C) GSE22873_A; (D) GSE22873_MAvM;
(E) GSE22873_MAvA; (F) GSE22873_MvA.
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Table 2 True KO signaling pathways identified by SPIA from GSE22873.

Order Pathway ID Pathway Name Status pSize DEGs (%) pGFdr

Pathways identified from GSE22873_M (KO Myd88 vs. WT)

1 mmu04620 Toll-like receptor signaling pathway Inhibited 87 36 (41.38) 1.03E-33

2 mmu05161 Hepatitis B Inhibited 149 36 (24.16) 1.20E-24

3 mmu05140 Leishmaniasis Inhibited 66 23 (34.85) 9.51E-20

4 mmu05152 Tuberculosis Inhibited 158 32 (20.25) 2.20E-19

5 mmu04621 NOD-like receptor signaling pathway Inhibited 148 30 (20.27) 6.91E-18

6 mmu05162 Measles Inhibited 131 28 (21.37) 6.91E-18

7 mmu05142 Chagas disease (American trypanosomiasis) Inhibited 99 23 (23.23) 4.43E-15

8 mmu05169 Epstein-Barr virus infection Inhibited 185 29 (15.68) 1.16E-14

9 mmu05164 Influenza A Inhibited 143 26 (18.18) 1.40E-14

10 mmu05145 Toxoplasmosis Inhibited 105 22 (20.95) 2.62E-14

11 mmu05170 Human immunodeficiency virus 1 infection Inhibited 194 28 (14.43) 2.16E-13

12 mmu05135 Yersinia infection Inhibited 116 22 (18.97) 7.84E-13

13 mmu05133 Pertussis Inhibited 67 17 (25.37) 2.36E-12

14 mmu04064 NF-kappa B signaling pathway Inhibited 92 18 (19.57) 1.94E-10

15 mmu05168 Herpes simplex virus 1 infection Inhibited 340 31 (9.12) 3.64E-10

16 mmu05132 Salmonella infection Inhibited 193 24 (12.44) 5.73E-10

17 mmu05134 Legionellosis Inhibited 51 13 (25.49) 2.56E-09

18 mmu05235 PD-L1/PD-1 checkpoint pathway in cancer Inhibited 84 15 (17.86) 1.38E-08

19 mmu04010 MAPK signaling pathway Inhibited 281 25 (8.90) 3.65E-07

20 mmu05144 Malaria Inhibited 48 9 (18.75) 1.23E-05

21 mmu05143 African trypanosomiasis Inhibited 31 7 (22.58) 0.000126

Pathways identified from GSE22873_MA (KO Myd88_Ager vs. WT)

1 mmu05170 Human immunodeficiency virus 1 infection Inhibited 194 61 (31.44) 2.18E-50

2 mmu04620 Toll-like receptor signaling pathway Inhibited 87 44 (50.57) 1.24E-45

3 mmu05169 Epstein-Barr virus infection Activated 185 53 (28.65) 8.65E-41

4 mmu05142 Chagas disease (American trypanosomiasis) Inhibited 99 35 (35.35) 2.30E-29

5 mmu05162 Measles Inhibited 131 38 (29.01) 1.42E-28

6 mmu05161 Hepatitis B Inhibited 149 40 (26.85) 1.63E-28

7 mmu05135 Yersinia infection Inhibited 116 35 (30.17) 1.61E-26

8 mmu05235 PD-L1/PD-1 checkpoint pathway in cancer Inhibited 84 31 (36.91) 1.94E-26

9 mmu05168 Herpes simplex virus 1 infection Inhibited 340 50 (14.71) 6.55E-24

10 mmu04621 NOD-like receptor signaling pathway Activated 148 33 (22.30) 1.24E-20

11 mmu05140 Leishmaniasis Inhibited 66 23 (34.85) 3.92E-19

12 mmu05164 Influenza A Inhibited 143 31 (21.68) 7.33E-19

13 mmu05152 Tuberculosis Inhibited 158 31 (19.62) 1.74E-17

14 mmu05133 Pertussis Inhibited 67 21 (31.34) 2.00E-16

15 mmu05145 Toxoplasmosis Inhibited 105 23 (21.91) 1.60E-14

16 mmu04064 NF-kappa B signaling pathway Inhibited 92 22 (23.91) 5.09E-14

(Continued)
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backgrounded in Myd88-null, induced down-regulation of PI3K

and AP1 (FOS, JUN), but up-regulation of IRF5, IL6 and MIP-1a
(CCL3); these factors further regulated the proinflammatory and

chemotactic effects.

5.1.9.2 Scenario 2

The AGE-RAGE signaling pathway in diabetic complications

(mmu04933) was the target basal signaling pathway that was solely

responsible for the Ager-null phenotype in both single Ager-null

and double Myd88_Ager-null mutants (Figure 10). This pathway

was significantly activated in the indicated deficient mice compared

to wild-type mice (see Table 2; Figure 10). Less than 20% of its 98

critical genes were DEGs that were coordinately, significantly and

differentially up- or down-regulated as early as 2 hours post-

hepatectomy in the two treatments (see Table 2). The opposing

roles of the single Ager-null and double Myd88_ Ager-null mutants

highlighted the global effects of key regulators (NFkB, PIM1 and

MCP1 (CCL2 and CCL12)) on orchestrating innate inflammatory

responses at the systems-level. (i) Key regulators in GSE22873_MA

(Figure 10A) included significantly down-regulated PI3K as well as

significantly up-regulated AKT and NFkB, which were part of the

AGEs-RAGE-PI3K-AKT-NFkB-MCP1 axis of the embedded PI3K-

AKT signaling pathway (mmu04151). Activation of this axis

determined the significant down-regulation of downstream

inflammatory cytokine MCP1 (CCL2 and CCL12), thereby

reduced the inflammation, atherosclerosis and thrombogenesis

effects at the systems-level. (ii) Key regulators in GSE22873_A

(Figure 10B) constituted multiple axes involved in regulating the

single Ager-null phenotype. Firstly, key regulators included

significantly down-regulated PLC and significantly up-regulated

NFkB, and were part of the AGEs-RAGE-PLC-PKC-NFkB axis.

Activation of this axis, coupled with the embedded MAPK signaling

pathway (mmu04010) and the calcium signaling pathway

(mmu04020), induced inflammation, atherosclerosis and

thrombogenesis, in addition to RAGE-mediated positive feedback.
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Secondly, key regulators including significantly up-regulated

STAT5 and PIM1 were part of the AGEs-RAGE-JAK2-STAT3-

PIM1 axis. This axis, coupled with the embedded JAK-STAT

signaling pathway (mmu04630), regulated vascular remodeling.

Alternatively, the AGEs-RAGE-JAK2-STAT5-CycD1/CDK4 axis,

coupled with the cell cycle signaling pathway, regulated cellular

proliferation, leading to renal hypertrophy. Finally, the key

regulator AT1R was significantly up-regulated and part of the

AGT-AT1R-TGFb-TGFbR-SMADs-p27/ECM axis. This axis,

coupled with the embedded TGFb signaling pathway

(mmu04350), regulated cell hypertrophy and mesangial matrix

expansion. Strikingly, RAGE (encoded by Ager) itself was not

significantly up- or down-regulated in both cases when

comparing the indicated null mutants against wild-type mice as

early as 2 hours post-surgery in our current analysis, which implies

that RAGE likely has an indirect effect of unclear epigenetics on

regulating the single Ager-null (KO RAGE) phenotype at the

systems-level. In addition, the subtractive difference between the

two cases (Figures 10A, B) is displayed in Figure 10C. Myd88-null

mice, backgrounded in Ager-null, induced down-regulation of

PI3K, AP1 (FOS, JUN) and NFkB, but up-regulation of p21RAS,

which further up-regulated the production of IL6, which is

responsible for inflammation.

5.1.9.3 Scenario 3

The treatment GSE22873_MvA (KO Myd88 vs. KO Ager) for a

contrast between the Myd88-null and Ager-null mutants was

interesting and plausible to elaborate the subtractive effects of KO

Myd88 against KO Ager. We identified 22 out of 23 significant

TPKO signaling pathways (pGFdr < 0.001 or 0.005) from it

(Supplemental Table S7). Firstly, two basal TPKO signaling

pathways were significantly altered (Supplemental Table S7;

Figure S5). (i) The Toll-like receptor signaling pathway

(mmu04620) (Supplemental Table S7; Figure S5A) was ranked

2nd (with 55.17% DEGs out of the 87 critical genes) and was
Continued

Order Pathway ID Pathway Name Status pSize DEGs (%) pGFdr

17 mmu05132 Salmonella infection Inhibited 193 26 (13.47) 5.18E-11

18 mmu04933 AGE-RAGE signaling pathway in diabetics Activated 98 18 (18.37) 1.58E-09

19 mmu05134 Legionellosis Inhibited 51 13 (25.49) 7.03E-09

20 mmu04010 MAPK signaling pathway Inhibited 281 22 (7.83) 6.66E-06

21 mmu05144 Malaria Inhibited 48 9 (18.75) 2.00E-05

22 mmu05143 African trypanosomiasis Inhibited 31 7 (22.58) 0.000149

23 mmu05010 Alzheimer disease Activated 311 13 (4.18) 0.158326

Pathways identified from GSE22873_A (KO Ager vs. WT)

1 mmu04933 AGE-RAGE signaling pathway in diabetics Activated 98 10 (10.20) 0.002314

2 mmu05150 Staphylococcus aureus infection Activated 76 3 (3.95) 0.476408

3 mmu05010 Alzheimer disease Activated 311 8 (2.57) 0.638874
True positive knockout (TPKO) signaling pathway (pGFdr < 0.001 or 0.005) and false negative knockout (FNKO) signaling pathway (pGFdr > 0.005) are distinguishable. Bold pathways are
discussed in the main text.
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KO Myd88 vs. WT

KO Myd88_ Ager vs. WT

A

B

KO Myd88_ Ager vs. KO Myd88C

FIGURE 9

Comparison of the rendered Toll-like receptor signaling pathway (mmu04620) identified by the SPIA method. This target basal TPKO signaling
pathway is solely responsible for the Myd88-null phenotype and is significantly inhibited in deficient mice compared to wild-type mice. The
opposing roles of the (A) single Myd88-null and (B) double Myd88_Ager-null mutants highlight the global effects of key regulators (e.g., MyD88,
NFkB, AP1 and cytokines) on orchestrating innate inflammatory responses at the systems-level. Treatment (C) reflects the subtractive difference
between treatments (A, B). (A) GSE22873_M; (B) GSE22873_MA; (C) GSE22873_MAvM.
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FIGURE 10 (Continued)
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FIGURE 10 (Continued)

Comparison of the rendered AGE-RAGE signaling pathway in diabetic complications (mmu04933) identified by the SPIA method. This target basal
TPKO signaling pathway is solely responsible for the Ager-null (KO RAGE) phenotype, and is significantly activated in deficient mice compared to
wild-type mice as early as 2 hours post-surgery. The opposing roles of the (A) double Myd88_ Ager-null and (B) single Ager-null mutants highlight
the global effects of key regulators (e.g., NFkB, MCP1 and PIM1) on orchestrating innate inflammatory responses at the systems-level. Treatment (C)
reflects the subtractive difference between treatments (A, B). (A) GSE22873_MA; (B) GSE22873_A; (C) GSE22873_MAvA.
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significantly inhibited. Key regulators (TLR2, TLR7/8, MyD88,

CTSK, TAB1, p105, p38 and NFkB) were significantly down-

regulated, whereas key regulators (MD2, PI3K, IRAK1, IRF7 and

AP1 (FOS, JUN)) were significantly up-regulated. Such regulators

constituted the TLR2-MyD88-IRAK1-TAB1-NFkB axis, the TLR2-

PI3K-AKT-NFkB axis, the TLR7/8-MyD88-IRAK1-IRF7 axis, and

the TLR2-MyD88-FADD-CASP8 axis. Activation of these axes

resulted in up-regulation of inflammatory cytokines (IL1b and

IL6) and down-regulation of inflammatory cytokines (IL12

and RANTES (CCL5)), which provoked proinflammatory effects

and chemotactic (neutrophils and immature dendritic cells) effects

at the systems-level. (ii) The AGE-RAGE signaling pathway in

diabetic complications (mmu04933) (Supplemental Table S7;

Figure S5B) was ranked 7th (with 36.73% DEGs out of the 98

critical genes) and was significantly activated. Key regulators (PLC,

p38 and NFkB) were significantly down-regulated, whereas key

regulators (PKC, PI3K, STAT3, STAT1/3, p21RAS, AP1 (FOS,

JUN) and EGR1) were significantly up-regulated. Most

importantly, activation of (i) the AGE-RAGE-PI3K-AKT-NFkB
axis, coupled with the embedded PI3K-AKT signaling pathway,

up-regulated IL1 and IL6, which are responsible for inflammation,

as well as up-regulated VEGF, which is responsible for angiogenesis;

(ii) alternatively, activation of the AGE-RAGE-PLC-PI3K-p38-AP1

axis or the AGE-RAGE-PI3K-ROS-p21RAS-p38-AP1 axis, coupled

with the embedded MAPK signaling pathway and the calcium

signaling pathway, up-regulated the expression of IL1, IL6 and

VEGF; (iii) activation of the AGE-RAGE-JAK2-STAT3-axis,

coupled with the embedded JAK-STAT signaling pathway, down-

regulated the expression of PIM1, which is responsible for vascular

remodeling; and (iv) activation of the AGE-RAGE-PKCbII-JNK-
EGR1-axis increased the expression of EGR1-dependent genes

leading to vascular dysfunction.

Secondly, multiple composite TPKO signaling pathways were

also targeted, as described below (Figure 11; Supplemental Table

S7). (i) The MAPK signaling pathway (mmu04010) (Figure 11A)

was ranked 12th and was significantly activated (with 20.64% DEGs

of the 281 critical genes) (Supplemental Table S7). On the classical

MAPK pathway, several key regulators (CACN, RTK, cPLA2 and

NFkB) were significantly down-regulated, whereas other key

regulators (GF, G12, GRB2, SOS, Ras, PKA, RSK2 and cFOS)

were significantly up-regulated, which induced proliferation and

differentiation. On the JNK/p38 MAPK pathway, several key

regulators (MyD88, TAB1 and p38) were significantly down-

regulated, whereas other key regulators (IL1, IRAK1/4, NFAT4

and AP1 (FOS, JUN)) were significantly up-regulated, which

stimulated proliferation, differentiation and inflammation. (ii)

The NFkB signaling pathway (mmu04064) (Figure 11B) was

ranked 21st and was significantly inhibited (with 21.74% DEGs
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out of the 92 critical genes) (Supplemental Table S7). Several key

regulators (MyD88, NFkB (p50) and MIP2) were significantly

down-regulated, whereas other key regulators (IL1b, MD2 and

IRAK1/4) were significantly up-regulated, which resulted in

increased IL1b leading to positive feedback and decreased MIP2

(CXCL1~CXCL3) leading to reduced inflammation. (iii) The PD-

L1 expression and PD-1 checkpoint pathway in cancer

(mmu05235) (Figure 11C) was ranked 15th and was significantly

inhibited (with 33.33% DEGs of the 84 critical genes). Several key

regulators (EGFR, TLR, MyD88, NFkB and p38) were significantly

down-regulated, whereas other key regulators (PI3K, Ras, STAT,

JUN, NFAT and AP1 (FOS, JUN)) were significantly up-regulated.

Activation of the EGF-EGFR-Ras-Erk-AP1 axis coupled with the

MAPK signaling pathway, the EGF-EGFR-PI3K-NFkB axis coupled

with the PI3K-AKT signaling pathway, or the PAMPs-TLR-

MyD88-NFAT/NFkB axis coupled with the Toll-like receptor

signaling pathway stimulated the production of PD-L1 (CD274).

The PD-L1/PD-1 complex led to further downstream effects, such

as increased apoptosis as well as decreased IL-2 production, T-cell

activation, effector T-cell development, and cell cycle progression.

Auxiliary signaling pathways including the Toll-like receptor

signaling pathway, the MAPK signaling pathway, the PI3K/AKT

signaling pathway, the calcium signaling pathway, and the T-cell

receptor signaling pathway were also embedded in the indicated

target composite signaling pathways.
5.2 Case study 2: Evaluating the
performance difference of pathway
analysis methods

5.2.1 Assignment of a benchmark
Based on the above comprehensive characterizations of

individual data in this study and in our previous publication (1),

we conclude that GSE22873_M, GSE22873_MA, GSE24327_A,

GSE24327_B and GSE24327_C have strong signal to noise ratios

when generated from the original bench-experiments (2, 3). These

datasets are qualified to be included in a collection of qualified data

that serves as a proper benchmark used to exemplify the different

tasks in the present study (Supplemental Figure S2).

5.2.2 All-in-all computations through
batch-execution in a pipeline fashion

The operational scripts depict batch-executions, exemplifying how

target KO signaling pathways are automatically deciphered at the

systems-level in a pipeline fashion, both across methods and across

data (Supplemental Figure S3). It takes approximately 25 minutes to

complete the batch-computations across seven methods over one data
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KO Myd88 vs. KO Ager

KO Myd88 vs. KO AgerA

B

C KO Myd88 vs. KO Ager

FIGURE 11

Comparison of the rendered target TPKO signaling pathways identified by the SPIA method from GSE22873_MvA (KO Myd88 vs. KO Ager).
Explanations are presented in the main text. (A) The MAPK signaling pathway (mmu04010). (B) The NF-kappa B signaling pathway (mmu04064). (C)
The PD-L1 expression and PD-1 checkpoint pathway in cancer (mmu05235).
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on our high-performance workstation with the assigned configuration

(see Figure 1; Supplemental Figure S1). This is a time-limiting step.

5.2.3 Evaluating the performance difference of
methods under the same conditions

The ROC curve-based statistical analyses (e.g., violin plot and

Wilcox test) are suitable for assessing the performance difference of the

pathway analysis methods under comparison (Supplemental Figure

S4). The violin plot graph suggested that the topology-based methods

(SPIA, ROntoTools_PE and ROntoTools_pDIS) generally performed

better than the non-topology-based methods (GSEA, GSA, SAFF and

PADOG); and that SPIA was overall better than ROntoTools_PE and
Frontiers in Immunology 19
ROntoTools_pDIS (Figure 12). These results coincide well with the

findings of each individual data (see Figures 6, 7, plus Figure 2 therein

Ref (1). However, the results of theWilcox test (data not shown) on the

global metrics (AUC, pAUC_SP and pAUC_SE) suggested that no

significant difference was observed among methods when

benchmarked on this collection of data.

5.2.4 Key metrics suitable for a local comparison
among methods

Collected at the optimal p-Threshold, the key metrics (FDR, FPR,

FNR, specificity, sensitivity, accuracy, precision and recall) reflect the

local properties of the ROC curves and are suitable for a local
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FIGURE 12

Violin plot of key metrics indicates the performance difference of seven methods when benchmarked on a collection of five data. The topology-
based methods (SPIA, ROntoTools_PE and ROntoTools_pDIS) generally perform better than the non-topology-based methods (GSEA, GSA, SAFF
and PADOG). SPIA is overall better than ROntoTools_PE and ROntoTools_pDIS.
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comparison among methods (see Table 1). With the chosen

benchmark, the topology-based methods (SPIA, ROntoTools_PE and

ROntoTools_pDIS) performed better than the non-topology-based

methods (GSEA, GSA, SAFF and PADOG) in terms of p-Threshold

and FDR; and GSEA displayed the poorest performance among the

seven tested methods in terms of specificity, sensitivity, accuracy and

precision (Figure 12).

5.2.5 Key metrics suitable for a global
comparison among methods

The key metrics including AUC, pAUC_SP and pAUC_SE

reflect the overall properties of the ROC curves and are

appropriate for a global comparison among methods (see

Table 1). The partial AUCs (pAUC_SP and pAUC_SE) of the 90–

100% specificity and sensitivity may display drastic variations on a

case-by-case basis, thus measuring possible bias toward a higher

specificity (true negative rate) or higher sensitivity (true positive

rate). With the chosen benchmark, ROntoTools_PE performed

better than ROntoTools_pDIS in terms of AUC, pAUC_SP and

pAUC_SE; and SPIA had a higher specificity (pAUC_SP) but a

lower sensitivity (pAUC_SE) than GSEA (Figure 12).
6 Discussion

6.1 Mechanisms underlying systems
immunology triggered by sterile
extensive hepatectomy

Our results endorse the main findings of the original bench-

experiments in view of the signaling effects on innate immune

responses after extensive hepatectomy (3), as summarized below. (i)

MyD88 and RAGE distinctly modulated inflammation,

proliferation and apoptosis. (ii) Deletion of MyD88 gene (Myd88

null) significantly decreased the survival rate. (iii) Deletion of RAGE

gene (Ager null) significantly increased the survival rate. (iv)

Deletion of RAGE gene modulated NFkB activation, up-regulated

PIM1 expression and increased phospho-STAT3. These results

suggest that blockade of RAGE might rescue liver remnants from

the multiple signals that preclude adaptive proliferation triggered

primarily by MyD88 signaling pathways. We hypothesize

mechanisms underlying systems immunology triggered by the

sterile 85% liver resection as early as 2 hours post-hepatectomy in

the liver remnants of wild-type mice (Figure 13). We exemplify five

TPKO signaling pathways, including the Toll-like receptor signaling

pathway, the AGE-RAGE signaling pathway in diabetic

complications, the MAPK signaling pathway, the NFkB signaling

pathway, and the PD-L1 expression and PD-1 checkpoint pathway

in cancer (Figure 13). Nonetheless, it does not necessarily mean that

other target TPKO signaling pathways (see Table 2; Supplemental

Table S7) should be excluded, nor should these target pathways be

altered at the same time or in a single event; rather, these pathways

are targeted because of massive signaling-crosstalk at the systems-

level (see Figures 9–11; Supplemental Figure S5), which are similar

to those scenarios identified from the CASP-model sepsis
Frontiers in Immunology 20
previously discussed in detail (1). Hence, our results suggest

diverse postinjury dysfunctions of the liver at the systems-level.

This increases the difficulty of early diagnosis and prevention of

liver failure after extensive hepatectomy because it is unlikely that

systemic failures can be precisely attributed to a specific type of

TPKO signaling pathway. Altogether, the hypothetical mechanisms

we proposed from bioinformatics analysis and systems

immunology provide novel informative cues that warrant bench-

experimental validation at the systems-level in the future. We

anticipate that such systems immunology in mice may serve as

models for humans and ultimately guide formulating the research

paradigms and composite strategies for the early diagnosis and

prevention of diverse dysfunctions of livers post-hepatectomy in

ICU patients who have undergone successful 85% hepatectomy for

removing sick tissue and transplanting healthy tissue (3).

Our results offer a better understanding of the mechanisms

underlying the innate inflammatory responses triggered by sterile

85% liver resection (3) from the perspectives of bioinformatics

analysis and systems immunology (Figure 13). The in vitro original

bench-experiments suggested that some key regulators (RAGE,

TRL4, NFkB and PIM1) were significantly increased at 6 hours

when comparing hepatectomy wild-type mice to sham-surgery

wild-type mice (3). Unfortunately, the microarray profiling data

from sham-surgery wild-type mice were absent from the

transcriptome of GSE22873 (https://ncbi.nlm.nih.gov/geo/query/

acc.cgi/GSE22873) produced from tissues sampled at 2 hours

post-hepatectomy (3), which hindered us from comparing

hepatectomy against sham surgery in wild-type mice. However, in

the present study, we can infer a virtual treatment, GSE22873_MvA

(KOMyd88 vs. KO Ager), that reflects a virtual comparison between

resected wild-type mice and untreated wild-type mice (see

Figure 11; Supplementary Figure S5). By which, we can elaborate

the subtractive effects of KO Myd88 over KO Ager by summarizing

the up- and down-regulation of key regulators, as highlighted on the

indicated signaling axis with target TPKO signaling pathways (see

Figure 11; Supplementary Figure S5). Thereby, we can further

depict innate inflammatory responses at the systems-level to

stimulus from the sterile 85% liver resection in wild-type mice,

where the influences of attenuation or enhancement by the deletion

of MyD88 and RAGE are inversely adapted (Figure 13). The critical

regulators are differentially marked on target TPKO signaling

pathways, such as TLR2/4, MyD88, RAGE, NFkB, PI3K, STAT3,
NFAT, PIM1, IL1, IL1b, IL6, IL12 and RANTES (CCL5) (see

Figure 11; Supplementary Figure S5). These results are consistent

with in vitro bench-experiment evidence (3, 29–34) and in line with

recent reviews (4, 35–37). Intriguingly, the AP1 (FOS, JUN)

complex emerges as a hub for the first time in this setting, and

this complex plays a critical role in the signal transduction of

DAMPs, PAMPs and AGEs that are triggered by extensive liver

resection (Figure 13). DAMPs are released by damaged and dying

cells (such as tumor cells) as endogenous host-derived molecules to

promote sterile inflammation (4). DAMPs can also lead to the

development of numerous inflammatory diseases, including

autoimmune diseases, metabolic disorders, neurodegenerative

diseases, and cancer (3, 4). The recognition of DAMPs is essential
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for tissue repair and regeneration (3, 4). The NFAT/AP1

transcriptional complex should be further explored, as a hub

involved in regulating AP1-targeted genes at the systems-level

(Figure 13). In addition to hepatocytes responding to stimulus

from 85% hepatectomy (Figures 13A, B), the hepatocyte

microenvironment is crucial to maintain proliferation,

differentiation, apoptosis and inflammation (Figures 13B, C). Our

findings are in line with recent advances in literature (38, 39). The

NFAT/AP1 transcriptional complex was recently modulated by

compounds that disrupt the NFAT : AP1:DNA complex,
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impairing transcription of cytokine genes (including IL2)

important for the effector immune response (38). The

transcription factor nuclear factor of activated T cells (NFAT) has

a key role in both T-cell activation and tolerance and has emerged as

an important target of immune modulation (38). NFAT directs the

effector arm of the immune response in the presence of activator

protein-1 (AP1), and T-cell anergy/exhaustion in the absence of

AP1 (38). The PIM1/NFATc1 signaling pathway was recently

suggested to be associated with impaired fibrosis resolution in

aged mice after bleomycin injury (39).
FIGURE 13

Hypothetical mechanisms underlying systems immunology triggered by extensive hepatectomy 2 hours post-resection in liver remnants. Key
regulators are up (red)- and down (green)-regulated and marked on the indicated signaling axis coupled with target TPKO signaling pathways. These
regulators coordinate MyD88 (Myd88) vs. RAGE (Ager) signaling transduction, thus orchestrating the regulation of innate inflammatory responses at
the systems-level. The MyD88 signaling pathway responsible for proinflammatory responses is essential for survival consequent to 85% resection of
the liver. MyD88 action stimulates the activation of NFkB and the subsequent up-regulation of key genes (including IL6) involved in liver
regeneration responses. In contrast, RAGE opposes the actions of MyD88 signaling by suppressing NFkB, thereby reducing the activation of NFkB
and the consequent production of cytokines (including IL1, IL1b, IL6, IL12 and CCL5), and by suppressing IL6-mediated phosphorylation of STAT3,
which down-regulates PIM1 and reduces hyperplastic responses. The AP1 complex (FOS and JUN) acts as a hub in the present study. (A) Hepatocyte
cytoplasm; (B) Hepatocyte nucleus; (C) Hepatocytes microenvironment (Tumor cells and T cells).
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Nevertheless, we did not recapture the original bench-

experiment observation that the RAGE-dependent suppression of

Glo1 (i.e., a detoxification pathway for pre-AGEs) enhanced the

levels of AGEs and fueled a mechanism suppressing IL6 action (3).

The RAGE-mediated down-regulation of Glo1 increased the

production of AGEs (i.e., RAGE ligand) in the remnant, and

AGEs via RAGE antagonized IL6, which in turn reduced the

phosphorylation of STAT3 and thus blocked the up-regulation of

PIM1 in wild-type mice compared to RAGE-null mice (3). In fact,

in vitro bench-experiments (Affymetrix gene arrays, quantitative

real-time PCR/ChIP assays, immunoblotting assays, etc.) assessing

target chemicals (AGE, IL6, phospho-STAT3 and PIM1) in

hepatocyte remnants 2 hours post-injury affirmed the observation

that AGE-RAGE suppressed the IL6-induced phosphorylation of

STAT3 and the up-regulation of PIM1 expression (3). These results

were consistent with data from ex vivo bench-experiments in which

hepatocytes isolated from both WT and RAGE-null mice 2 hours

after 85% liver resection were incubated under the indicated

conditions (3). Remarkably, AGE molecules can mediate

extracellular signals (e.g., inflammation, aging, oxidative stress,

ischemia-reperfusion and high glucose) to the RAGE receptor,

but RAGE (encoded by Ager) itself was not significantly up- or

down-regulated in our current analysis when comparing deficient

mice to wild-type mice (KO Ager vs. WT) (see Figure 10;

Supplemental Figure S5). Our findings tentatively suggest that

RAGE may indirectly (via unclear epigenetics) regulate the KO

RAGE (null Ager) phenotype and that more differentially expressed

genes (DEGs) may be targeted and involved (see Figures 9–11;

Supplemental Figure S5; Tables S1-S6); further study is advised. We

speculate that the expression of RAGE itself and the RAGE-

dependent suppression of Glo1 impairing IL-6 activity were not

dominant enough to be significantly detected as early as 2 hours

post-surgery, born by the transcriptome, when comparing deficient

mice to wild-type mice (see Figure 10; Supplemental Table S3). The

attractive role of RAGE-mediated epigenetics remains elusive.
6.2 Lessons from both non-infectious
extensive hepatectomy and infectious
CASP-model surgery

Strikingly, our data indicate that sterile extensive hepatectomy

(3) and septic CASP-model surgery (1, 2) share 21 KO MyD88-

associated target TPKO signaling pathways, including the Toll-like

receptor signaling pathway, the NFkB signaling pathway, the

MAPK signaling pathway, and the PD-L1 expression and PD-1

checkpoint pathway in cancer, alongside the pathways of bacterial,

viral and parasitic infections (see Table 2; Supplementary Table S7).

These findings suggest that the two cases share common

fundamental mechanisms underlying the innate inflammatory

responses as early as 2 hours and 12 hours post-surgery,

respectively (2, 3). We infer that the down-regulation of MyD88-

signaling, as marked on target TPKO signaling pathways (see

Figure 9), should significantly diminish proinflammatory

responses by eliminating the downstream “cytokine storm”,
Frontiers in Immunology 22
similar to the scenario we previously discussed in infectious

CASP-model sepsis (1). We speculate that such target TPKO

signaling pathways could orchestrate the innate immune

responses at the early stage of post-surgery before diverse

dysfunctions of post-injured organs occur (2, 3). Our results offer

valuable informative cues of systems immunology that warrant

bench-experiment validation at the systems-level in the future. We

anticipate that common fundamental mechanisms for both

surgeries in mice may serve as models for humans and ultimately

guide formulating research paradigms and prevention strategies for

the early diagnosis and prevention of dysfunctions of multiple

organs at the early stage of post-surgery, which in turn should

reduce the high mortality rates of ICU patients who have undergone

successful traumatic surgical treatments.

Furthermore, our results favor recent proposals that TLRs,

MyD88, RAGE and AGEs should have complex interactions to

coordinate diverse mechanisms underlying innate immune

responses at the systems-level (4, 40–42). Systems immunology

triggered by MyD88- and TLRs-signaling in a wide range of

immune-associated diseases, including mechanisms involved in

diabetic complications (43), cardiovascular disease (44), metabolic

disease (44) and other diseases associated with innate inflammatory

signaling pathways (4, 45), deserves to be elusive in the context of

gene-KO experiments through both experimental and

computational analysis. Therefore, systems characterization of the

immune landscapes of innate immune responses may dominate

such research topics. We expect that the PathwayKO platform offers

powerful tools for exploring such important topics and beyond.
6.3 The fundamental advantages of the
PathwayKO platform

The PathwayKO platform has currently incorporated several

eminent methods that have been widely used by the community

(see Figure 1). It was not our intention to choose the most

prestigious method(s) to integrate into the PathwayKO

platform; rather, we intended to create an integrated platform,

flexible enough to incorporate promising methods and to evaluate

them under the same context. Multiple aspects were considered as

follows. (i) The choice of method is data-dependent since each

method may have individual bias toward specific data (5, 7). It is

difficult to predict in advance which method should be chosen (5,

7, 8). (ii) Readers should be free to make their own judgments on

proper method(s) toward data with complete resulting outputs in

hand (see Supplemental Figures S2-S4); customers should also

choose their favorite method(s) for routine analysis. (iii) It is

possible for readers to remove methods that are performing

consistently worse from the integrated PathwayKO platform by

simply opting out of them when initializing parameters for a

batch-execution (see Supplemental Figures S1, S2). (iv) The

PathwayKO platform remains open to be constantly updated by

incorporating new promising methods. Accordingly, we have

established three fundamental advantages for the integrated

PathwayKO platform, as highlighted below.
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Firstly, a ground truth is chosen for the PathwayKO platform

based on whether or not the knockout gene itself is included in the

predicted pathway to evaluate method performance, modified from

the literature (5). We defined the TPKO (true positive knockout)

signaling pathway as the pathway that comprises of, and is

significantly impacted by, the KO gene, and is correctly identified

as a significantly positive pathway (e.g., at the pathway-level p-value

< 0.0001). We further defined a set of terms modified from the

literature (5), including FPKO, TNKO and FNKO signaling

pathways, as described in the Methods section. Thereby, we

defined a set of derivative metrics modified from the literature

(19), including FDR, FPR, FNR, specificity, sensitivity, accuracy,

precision, recall, AUC, pAUC_SP and pAUC_SE (see Table 1).

Such that the universal rules in computer science for direct

measurements on a prediction accuracy can be fitted to pathway

enrichment analysis, which differs from indirect measurements

used by the community (5, 7, 8, 46).

Secondly, for such a true-false case of prediction, the response

versus prediction with a probability allows us employing the

external pROC package (19) to build ROC curves and compute

the set of key metrics (see Table 1). The performance difference of

pathway enrichment analysis methods can be evaluated in terms of

the ROC curve-based statistics analysis for the first time in this

setting (see Figures 6–8, 12). Moreover, each point on an ROC curve

represents a true KO (both TPKO and FNKO) signaling pathway in

our cases; and an ROC curve represents the tradeoff between

specificity and sensitivity for every possible p-value (19). The

Youden’s best p-value threshold (denoted as p-Threshold) is a

p-value that defines an optimal point (specificity, sensitivity) on

an ROC curve (19, 26), where the sum of specificity and sensitivity

is maximal (19, 25). Hence, collected at the optimal p-Threshold,

some key metrics (FDR, FPR, FNR, specificity, sensitivity, accuracy,

precision and recall) with local properties can be used to conduct a

local comparison, while others (AUC, pAUC_SP and pAUC_SE)

with global properties can be employed to perform a global

comparison (see Table 1). And such metrics are appropriate for

evaluating the performance difference of methods (see Figure 12)

and for assessing the quality of data (see Figures 6–8), both in terms

of the ROC curve-based statistics analysis.

Finally, the HES (high-edge-scores) approach and the change-

point analysis method (17, 26) are employed to statistically select

DEGs (see Figures 2, 4, 5) in a pipeline fashion. This approach

exerts two advantages: (i) a fair comparison can be made among the

methods integrated in the PathwayKO platform in a pipeline

fashion, rather than conducted one by one in a manually-

interfering manner. This also saves hundreds of hours from non-

stop computations under the same conditions when a large-scale

collection of (benchmark) data should be analyzed through a large-

scale batch-computation (see Supplemental Figures S2, S3); and (ii)

the resulting output files are automatically created and named after

each data (see Supplemental Figures S3, S4). Thereby, a fair

comparison can be pursued under the same conditions, and thus

a fair choice of method (or data) can be made in the same context.

These features allow readers to obtain complete and broad insights

into customer data in a timely manner at the systems-level (1).
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6.4 The prospects of the
PathwayKO platform

We note some limitations in the current status of the PathwayKO

platform. Firstly, the complete resulting output files may be further

integrated for more displaying ways, e.g., integrating the results into

one output after applying a voting or merging mechanism (7, 8).

Secondly, the PathwayKO platform deserves to explore other kinds of

signaling pathways (47) (e.g., beyond the KO gene-associated

signaling pathways defined by the choice of ground truth). For

example, it might be possible that (i) a gene set containing a KO

gene does not represent an actual regulated pathway (in the respective

tissue and under respective condition, e.g., owing to epigenetic effects

or missing co-factors); and (ii) the gene set of a truly affected pathway

might not contain the KO gene. Thirdly, the PathwayKO platform

does not fit to other kinds of data sources beyond GEO and KEGG

pathways (47). Fourthly, a large-scale benchmark (constituted by KO

transcriptomes) deserves to be created because a larger benchmark

will yield a fairer comparison to evaluate the performance difference

of methods under the same conditions (5). For which, qualified data

must be selected, whose strong signals over noise must be validated

through comprehensive characterizations, as revealed in the present

study (see Figure 6). Finally, a large-scale benchmarking study toward

gold-standard benchmarking remains to be explored, as another

major challenge in the field (5, 7, 8, 46). All of these prospects

deserve to be explored via updating the platform in the future.
7 Conclusion

This article exemplified case studies associated with systems

immunology to elaborate the methodology, principle and

application features of the PathwayKO platform. The PathwayKO

platform can comprehensively analyze gene-knockout (KO)

transcriptomes to uncover mechanisms underlying systems

immunology triggered by non-infectious extensive hepatectomy

born by GSE22873 in the present study and by infectious CASP-

model surgery born by GSE24327 in our previous publication. The

PathwayKO platform model-based assessments on the performance

of pathway analysis methods can also effectively evaluate the

performance difference of methods when benchmarked on a

collection of KO transcriptomes. A proper method toward data can

be inferred. Taken together, we recommend the PathwayKO platform

be applicable to broad fields (e.g., immunology, microbiology,

genetics, pharmacology, cancers biology, cell and developmental

biology, etc.) as long as KO transcriptomes are available.

The PathwayKO platform is suitable for systems characterization

of immunemolecular landscapes of innate inflammatory responses in

health, disease and clinical intervention cases through analyzing high-

throughput transcriptomes from gene-knockout (KO) experiments.

Real-world case studies suggest that both cases (GSE22873 and

GSE24327) in the study share the same core set of 21 KO MyD88-

associated target signaling pathways, including the Toll-like receptor

signaling pathway, the NFkB signaling pathway, the MAPK signaling

pathway, and the PD-L1 expression and PD-1 checkpoint pathway in
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cancer, alongside the pathways of bacterial, viral and parasitic

infections. These findings suggest common fundamental

mechanisms between the two cases and offer valuable insights into

a better understanding of mechanisms underlying the innate

inflammatory responses triggered by the non-infectious extensive

hepatectomy (2 hours after 85% liver resection surgery in GSE22873)

and the infectious CASP-model sepsis (12 hours after CASP-model

surgery in GSE24327). Our results thus provide novel informative

cues from the perspectives of bioinformatics analysis and systems

immunology, which warrant further experimental validation in mice

and may serve as models for humans.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

HA and YA designed the project HA designed and

implemented the PathwayKO platform, conducted computations

and analyzed data. HA, FM and YA interpreted results, wrote

manuscript and approved the final manuscript. All authors

contributed to the article and approved the submitted version.
Funding

This work was supported by a grant-in-aid from the National

Science and Technology Major Programs of China (2014ZX0801105B-

002) and the Supercomputing Program of National Natural Science

Foundation of China (No. U1501501-534) to YA.
Frontiers in Immunology 24
Acknowledgments

The authors sincerely acknowledge TH-2 supercomputing

resources in National Supercomputing Center at Guangzhou, Sun

Yat-sen University. We sincerely thank numerous colleagues at Sun

Yat-sen University and Guangzhou Medical University for their

kind consultations on clinical cases under study. The authors

gratefully acknowledge contributions by reviewers to

improvement of the manuscript.
Conflict of interest

HA was employed at SINOMACH-IT.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be constructed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1103392/

full#supplementary-material
References
1. Ai H, Li B, Meng F, Ai Y. CASP-model sepsis triggers systemic innate immune
responses revealed by the systems-level signaling pathways. Front Immunol (2022)
13:907646. doi: 10.3389/fimmu.2022.907646

2. Rime D, Rossmann-Bloeck T, Jusek G, da Costa OP, Holzmann B. Improved
host defense against septic peritonitis in mice lacking MyD88 and TRIF is linked
to a normal interferon response. J Leukoc Biol (2011) 90:613–20. doi: 10.1189/
jib.1110602

3. Zeng S, Zhang QY, Huang J, Vedantham S, Rosario R, Ananthakrishnan R, et al.
Opposing roles of RAGE and MyD88 signaling in extensive liver resection. FASEB J
(2012) 26:882–93. doi: 10.1096/fj.11-192997

4. Gong T, Liu L, JiangW, Zhou R. DAMP-sensing receptors in sterile inflammation and
inflammatory diseases.Nat Rev Immunol (2020) 20:95–112. doi: 10.1038/s41577-019-0215-7

5. Nguyen T, Shafi A, Nguyen T, Draghici S. Identifying significantly impacted
pathways: a comprehensive review and assessment. Genome Biol (2019) 20:203.
doi: 10.1186/s13059-019-1790-4

6. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res (2016) 44:D475–
62. doi: 10.1093/nar/gkv1070

7. Nguyen T, Mitrea C, Draghici S. Network-based approaches for pathway level
analysis. Curr Protoc Bioinf (2018) 1:28. doi: 10.1002/cpbi.42
8. Nguyen T, Mitrea C, Tagett R, Draghici S. DANUBE: Data-driven meta-analysis
using unbiased empirical distributions - applied to biological pathway analysis. Proc
IEEE (2017) 105:496–515. doi: 10.1109/JPROC.2015.2507119

9. Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in
gene expression studies: a structured permutation approach. Bioinformatics (2005)
21:1943–9. doi: 10.1093/bioinformatics/bti260

10. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci USA (2005) 102:15545–50. doi: 10.1073/
pnas.0506580102

11. Efron B, Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat
(2007) 1:107–29. doi: 10.1214/07-AOAS101

12. Tarca AL, Draghici S, Bhatti G, Romero R. Down-weighting overlapping genes
improves gene set analysis. BMC Bioinf (2012) 13:136. doi: 10.1186/1471-2105-13-136

13. Breitling R, Amtmann A, Herzyk P. Iterative group analysis (iGA): a simple method
to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinf
(2004) 5:34. doi: 10.1186/1471-2105-5-34

14. Goeman JJ, Buehlmann P. Analyzing gene expression data in terms of gene sets:
methodological issues. Bioinformatics (2007) 23:980–7. doi: 10.1093/bioinformatics/btm051
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1103392/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1103392/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.907646
https://doi.org/10.1189/jib.1110602
https://doi.org/10.1189/jib.1110602
https://doi.org/10.1096/fj.11-192997
https://doi.org/10.1038/s41577-019-0215-7
https://doi.org/10.1186/s13059-019-1790-4
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1002/cpbi.42
https://doi.org/10.1109/JPROC.2015.2507119
https://doi.org/10.1093/bioinformatics/bti260
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1214/07-AOAS101
https://doi.org/10.1186/1471-2105-13-136
https://doi.org/10.1186/1471-2105-5-34
https://doi.org/10.1093/bioinformatics/btm051
https://doi.org/10.3389/fimmu.2023.1103392
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ai et al. 10.3389/fimmu.2023.1103392
15. Tarca AL, Draghici S, Khatri P, Hassan SS, Mitta P, Kim J, et al. A novel
signaling pathway impact analysis. Bioinformatics (2009) 25:75–82. doi: 10.1093/
bioinformatics/btn577

16. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems
biology approach for pathway level analysis. Genome Res (2007) 17:1537–45.
doi: 10.1101/gr.6202607

17. Hanoudi S, Donato M, Draghici S. Identifying biologically relevant putative
mechanisms in a given phenotype comparison. PloS One (2017) 12:e0176950.
doi: 10.1371/journal.pone.0176950

18. Killick R, Eckley IA. Changepoint: An r package for changepoint analysis. J Stat
Soft (2014) 58:1–19. doi: 10.18637/jss.v058.i03

19. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an
open-source package for r and s+ to analyze and compare ROC curves. BMC Bioinf
(2011) 12:77. doi: 10.1186/1471-2105-12-77

20. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based
data integration and visualization. Bioinformatics (2013) 29:1830–1. doi: 10.1093/
bioinformatics/btt285

21. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray
preprocessing. Bioinformatics (2010) 16:2363–7. doi: 10.1093/bioinformatics/btq431

22. Smyth GK. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol (2004) 3:3.
doi: 10.2202/1544-6115.1027

23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

24. Zhang JD, Wiemann S. KEGGgraph: a graph approach to KEGG pathway in r and
bioconductor. Bioinformatics (2009) 25:1470–1. doi: 10.1093/bioinformatics/btp167

25. McClish DK. Analyzing a portion of the ROC curve. Med Decis Mak (1989)
9:190–5. doi: 10.1177/0272989X8900900307

26. Youden WJ. Index for rating diagnostic tests. Cancer (1950) 3:32–5.
doi: 10.1002/1097-0142

27. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J R Statist Soc B (1995) 57:289–300. doi: 10.1111/
j.2517-6161.1995.tb02031.x12

28. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple
testing under dependency. Ann Stat (2001) 29:1165–88. doi: 10.1214/aos/1013699998

29. Cataldegirmen G, Zeng S, Ippagunta N, Dun H, Qu W, Lu Y, et al. RAGE limits
regeneration after massive liver injury by coordinated suppression of TNF-alpha and
NF-kappa b. J Exp Med (2005) 201:473–484. doi: 10.1084/jem.20040934

30. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K. Pim-1 controls
NF-kB signaling by stabilizing RelA/p65. Cell Death Differ (2010) 17:689–98.
doi: 10.1038/cdd.2009.174

31. Meloche J, Paulin R, Courboulin A, Lambert C, Barrier M, Pierre Bonnet P, et al.
RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic
vascular remodeling processes. Arterioscler Thromb Vasc Biol (2011) 31:2114–24.
doi: 10.1161/ATVBAHA.111.230573

32. Chen X, Xu C, Zhang F, Ma J. Microarray approach reveals the relevance of
interferon signaling pathways with rat liver restoration post 2/3 hepatectomy at the
cellular level. J Interferon Cytokine Res (2010) 30:525–39. doi: 10.1089/jir.2009.0111
Frontiers in Immunology 25
33. Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of
the inflammatory response–the evidence mounts. J Leukoc Biol (2009) 86:505–12.
doi: 10.1189/jlb.0409230

34. Stepniak E, Ricci R, Eferl R, Sumara G, Sumara I, Rath M, et al. C-Jun/AP-1
controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev
(2006) 20:2306–14. doi: 10.1101/gad.390506

35. Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological
mechanisms and implications. Nat Rev Gastroenterol Hepatol (2021) 8:40–55.
doi: 10.1038/s41575-020-0342-4

36. Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov
YO. Molecular pathways of liver regeneration: A comprehensive review. World J
Hepatol (2021) 13:270–90. doi: 10.4254/wjh.v13.i3.270

37. Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation:
from fundamental science to clinical applications. Nat Rev Mol Cell Biol (2021) 22:608–
24. doi: 10.1038/s41580-021-00373-7
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