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Objective: An analysis of the relationship between rheumatoid arthritis (RA) and

copper death-related genes (CRG) was explored based on the GEO dataset.

Methods: Based on the differential gene expression profiles in the GSE93272

dataset, their relationship to CRG and immune signature were analysed. Using 232

RA samples, molecular clusters with CRG were delineated and analysed for

expression and immune infiltration. Genes specific to the CRGcluster were

identified by the WGCNA algorithm. Four machine learning models were then

built and validated after selecting the optimal model to obtain the significant

predicted genes, and validated by constructing RA rat models.

Results: The location of the 13 CRGs on the chromosome was determined and,

except for GCSH. LIPT1, FDX1, DLD, DBT, LIAS and ATP7A were expressed at

significantly higher levels in RA samples than in non-RA, and DLST was

significantly lower. RA samples were significantly expressed in immune cells such

as B cells memory and differentially expressed genes such as LIPT1 were also

strongly associated with the presence of immune infiltration. Two copper death-

related molecular clusters were identified in RA samples. A higher level of immune

infiltration and expression of CRGcluster C2 was found in the RA population. There

were 314 crossover genes between the 2 molecular clusters, which were further

divided into two molecular clusters. A significant difference in immune infiltration

and expression levels was found between the two. Based on the five genes obtained

from the RFmodel (AUC = 0.843), the Nomogrammodel, calibration curve andDCA

also demonstrated their accuracy in predicting RA subtypes. The expression levels of

the five genes were significantly higher in RA samples than in non-RA, and the ROC

curves demonstrated their better predictive effect. Identification of predictive genes

by RA animal model experiments was also confirmed.
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Conclusion: This study provides some insight into the correlation between

rheumatoid arthritis and copper mortality, as well as a predictive model that is

expected to support the development of targeted treatment options in the future.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease

where patients usually exhibit symptoms such as synovitis and bone

erosion induced by cartilage destruction and osteoclast activation.

This eventually destroys the patient’s bone, cartilage and tendons, and

in severe cases results in deformity and disability which seriously

affects the patient’s quality of life (1–4). In addition, if patients do not

receive timely and effective treatment after the onset of the disease, it

may lead to a series of complications such as cardiovascular disease,

making it more difficult to treat clinically (5, 6). Studies have shown

that about 1% of the world’s population is affected by RA, which can

occur in any age group and is about 2-3 times more common in

women than in men (7). The pathogenesis of RA is still unclear, but it

is clinically believed that there is a close relationship between genetic

susceptibility, environmental factors and the development of the

disease (8). Notably, RA is affected by the infiltration of multiple

inflammatory cells and the release of abnormal cytokines. A range of

immune cells, including macrophages, dendritic cells, mast cells,

neutrophils, T cells and B cells are all closely associated with RA

(9, 10).

The mitochondrion is a semi-autonomous organelle with a

double membrane structure, which can provide cell energy through

the tricarboxylic acid cycle (TCA) oxidative phosphorylation (11, 12).

Previous studies have found that imbalances in mitochondrial

homeostasis may contribute to the development of various

autoimmune diseases including RA, scleroderma, desiccation

syndrome and systemic lupus erythematosus (13, 14). Thus, there is

a relationship between RA and mitochondria. Copper death is a new

mode of cell death that is distinct from iron death and necroptosis,

and its related genes include SLC31A1, PDHB, PDHA1, LIPT1,

FDX1, DLD, DLST, DBT, LIAS, DLAT, GCSH, ATP7A and ATP7B

(15, 16). The main mechanisms of copper death are the excessive

accumulation of lipoylated mitochondrial enzymes and depletion of

Fe-S cluster proteins (17, 18). Notably, copper ions (Cu2+) act as co-

factors for the enzyme, and copper homeostasis is closely related to

the presence of mitochondrial regulation (19). Copper is mainly

present in the form of cytochrome C oxidase (COX) and

superoxide dismutase (SOD1) in mitochondria and plays an

important regulatory role in the TCA process, ultimately interfering

with various biological processes such as redox homeostasis, iron

utilisation, oxidative phosphorylation and cell growth (20, 21). An

analysis of 1444 patients with RA showed that serum levels of copper

were significantly higher in RA patients compared to the healthy

population (22). It was also suggested that when the human synovial
02
membrane is exposed to hypoxic conditions or excessive glycolysis in

multiple cells, copper death may be inhibited, leading to excessive

survival and proliferation of various immune cells such as fibroblast-

like synoviocytes, effector T cells and macrophages, further leading to

inflammatory responses and bone destruction in RA patients;

Meanwhile, important regulatory genes of copper apoptosis such as

PDHA1, DLAT, FDX1MTF1 and LIAS have been shown to be closely

associated with the RA process (23). Therefore, we hypothesise that

there may be a relationship between the onset and progression of

rheumatoid arthritis and copper death.

The present study analysed for the first time the differential

expression and immune profile of CRG between RA and non-RA

individuals. We divided 232 RA patients into two copper death-

related molecular clusters based on 13 CRG expression profiles, and

further analysed expression differences and immune cell differences

between the two. RA patients were further grouped according to the

genes that subsequently intersected between molecular clusters and

gene clusters, their expression profile and immune profile were

analysed, along with their copper death-related scores. The

differentially expressed genes (DEGs) in the GSE93272 data were

obtained, the specific genes between CRGclusters were identified by

the WGCNA algorithm, and an optimal prediction model was built

using four machine learning methods. The performance of these

prediction models was then validated by the Nomogram model,

Calibration curve and DCA, and the expression profiles of five

important genes obtained from the optimal prediction models were

also demonstrated.
2 Methods

2.1 RA and copper death-related gene data
collection and analysis

Retrieval of RA microarray data from Gene Expression Omnibus

(GEO) (www.ncbi.nlm.nih.gov/geo) (24, 25). The test set GSE93272 was

reported by Tasaki S (15) et al. which provides transcriptomic data from

whole blood obtained from a population of RA patients (n = 232) and

healthy controls (n = 43) from the GPL570 ([HG-U133_Plus_2]

Affymetrix Human Genome U133 Plus 2.0 Array). The expression

matrix of the experimental and control samples in GSE93272 was

obtained using a Perl (V5.35.0), and the differential genes between

samples in the dataset were obtained using the R language. The source

of copper death-related genes was Tsvetkov et al (15). A total of 13 CRGs

were obtained.
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2.2 Correlation between CRG and immune
cells and chromosomal analysis

To further demonstrate the association between CRG and RA-

related immune cell properties, we analysed the correlation coefficient

between CRG expression and the relative percentage of immune cells

using the “corrplot” R package. The location of the CRG on the

chromosome was obtained using the perl program, the “RCircos”

package in the R language.
2.3 Assessment of immune cell infiltration

The relative abundance of each sample in 22 immune cells was

assessed based on the gene expression data of GSE93272 using the

CIBERSORT algorithm (26). p<0.05 represents a significant difference.
2.4 Unsupervised clustering and gene set
variance analysis of RA patients

The “ConsensusClusterPlus” package (27) was used to perform

unsupervised cluster analysis by classifying 232 RA samples into

different clusters using the k-means algorithm for 1000 iterations. The

maximum number of clusters k = 9 and the optimal number of

clusters were synthesised based on the cumulative distribution

function (CDF) curve, consensus matrix, and consistent cluster

score. PCA was then used in conjunction with t-distributed

stochastic neighbour embedding (tSNE) to determine whether these

genes could be used to distinguish samples (28, 29).
2.5 Re-consensus clustering based on
CRGcluster intersection genes

Based on the intersecting genes obtained from the unsupervised

clustering of RA patients, we used the ConsensusClusterPlus and

limma packages to reclassify the RA patients and identify different

subgroups (30). Cluster-to-cluster expression and immune profiles

were analysed. The expression of CRG between CRGcluster and

genecluster clusters was analysed using the “ggpubr” and

“reshape2” packages.
2.6 Differential gene enrichment analysis
and weighted gene co-expression
network analysis

We used the R language to screen the DEGs in the GSE93272

dataset according to Padj < 0.05 and ∣logFC∣ > 0.5, and the results are

presented in the form of volcano plots and heat maps. In addition, we

performed GO and KEGG enrichment analysis on the above 276

DEGs using the R language. We used the ‘WGCNA’ package (31) in
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the R language to identify co-expression modules. The top 25% of

genes with the highest variability were applied to the subsequent

WGCNA analysis to ensure the accuracy of high quality results. We

selected the best soft threshold to construct a weighted neighbour-

joining matrix and further converted it into a topological overlap

matrix (TOM). Modules were obtained using a TOM dissimilarity

measure (1-TOM) based on a hierarchical clustering tree algorithm

when the minimum module size was set to 100. Each module is

assigned a random colour. The module signature genes represent the

global gene expression profile in each module. The relationship

between module and disease state is expressed through modular

significance (MS), and gene significance (GS) is described as the

correlation between a gene and a clinical phenotype (32).
2.7 Building predictive models based on
multiple machine learning methods

The Random forest model (RF) is an integrated machine learning

method that can use multiple independent decision trees for

classification or regression (33, 34). The support vector machine

model (SVM) can generate hyperplanes with maximum margins in

the feature space to effectively differentiate data points (35). The

generalised linear model (GLM) is based on and extends the multiple

linear regression model to provide a more efficient and flexible

assessment of the relationship between normally distributed

dependent features and categorical or continuous independent

features (36). eXtreme Gradient Boosting (XGB) is a collection of

boosted trees based on gradient boosting, which is an effective

algorithm to compare classification error and model complexity (37).

We’ve used the ‘caret’ package in R to build a machine learning model

based on 2 different CRG clusters (including RD, SVM, GLM and

XGB). The 232 RA samples were randomly divided into training set

(70%, N = 163) and validation set (30%, N = 49). All machine learning

models were executed according to default parameters and evaluated in

a comprehensive manner using 5-fold cross-validation. The four

machine learning models are interpreted and their residual

distribution and feature importance are visualised using the ‘DALEX’

package in R. The “pROC” R package was used to visualise the area

under the ROC (receiver operating characteristic) curve (Area Under

Curve, AUC). The best machine learning model was determined, and

the top five genes included were used as predictors for RA.
2.8 Construction and validation of the
nomogram model

A Nomogram model was constructed based on the predictor

genes obtained from the RF, and the RA cluster was evaluated using

the “rms” R package (38). Each predictor variable is assigned a score

and the ‘total score’ represents the sum of the scores of the above

predictors. The calibration curve and DCA were used to assess the

predictive power of the Nomo model.
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2.9 RF candidate gene expression
diagnostic analysis

ROC curves were constructed to assess the diagnostic specificity

and sensitivity of RF candidate genes, and the expression of each gene

in non-RA samples and RA samples were analysed in the form of

box plots.
2.10 Verification of the animal experiment

2.10.1 Animals and models
10 male SD (6 weeks old, 140g each, SPF class) rats (n = 5 in each

group) were obtained from Liaoning Changsheng Biotechnology Co.

The experimental animal certificate number is SCXK (Liaoning)

2020-0001. The Institutional Animal Care and Use Committee of

Changchun University of Traditional Chinese Medicine approved all

experimental protocols and all experiments were conducted in

accordance with relevant guidelines and regulations (No. ccucm-

2017-0015). Animals were given one week to acclimatise to their new

environment prior to the experiments. Each rat was randomly

assigned to one of two groups with ten rats in each: the control

group and the RA model group. The RA model group used a bovine

type II collagen solution (concentration 2 mg/ml) added dropwise to

an equal volume of incomplete Freund’s adjuvant to a final

concentration of 1 mg/ml. The mixture was emulsified in an ice

bath with a homogeniser and injected intradermally into the tail root

at 0.2 mL per rat, followed by a booster immunisation at 0.1 mL per

rat 7 days later. During the moulding period, the rats were subjected

to wind, cold and humidity stimulation (wind speed 5m/s, humidity

90%-95%, temperature 0-2°C) for 14 days, once a day for 4 hours. The

control group was injected intradermally with an equal volume of

saline (39, 40). At the end of 14 days of moulding, the right ankle joint

of the rat was taken for follow-up experiments.

2.10.2 Quantitative reverse transcription-
polymerase chain reaction

The expression levels of the DEGs were further verified by qRT-

PCR (Applied biosystems, USA). Relative gene expression levels were

normalised to Actin according to the 2-DDCT method. the primer

sequences used are shown in Table 1.
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3 Results

3.1 CRG identification and immunoassay

We analysed the expression of 13 CRGs between RA and non-RA

controls through the GSE93272 dataset (of which GCSH was not

present in this dataset, thus leaving 12 CRGs). The results identified

seven CRGs as differentially expressed copper death genes. Of these,

LIPT1, FDX1, DLD, DBT, LIAS and ATP7A were expressed at

significantly higher levels in RA than non-RA levels, while DLST

expression levels were significantly lower in RA than non-RA levels

(Figures 1A, B). Subsequently, we analysed the location of the 12

CRGs on the chromosome (Figure 1C). We analysed the correlation

between CRGs with differential expression to explore whether copper

death genes play a role in the development of RA disease (Figure 1D).

In addition, we performed an immune infiltration analysis between

RA and non-RA samples (Figure 1E). The results showed that RA

patients showed higher levels of infiltration in B cells memory, T cells

CD8, T cells gamma delta, Macrophages M0, Macrophages M1,

Macrophages M2, Dendritic cells activated, Neutrophils showed

high levels of infiltration (Figure 1F). This suggests a close

association between the development of RA and the immune

system. Subsequently, we performed immune infiltration analysis

on seven differentially expressed CRGs (Figure 1G). The results

showed that there were significant positive correlations between

LIPT1, FDX1, DLD and T cells gamma delta; LIAS, DLST, LIPT1,

FDX1 and B cells naive; LIAS, LIPT1, DBT, DLST and T cells CD4

naive also had significant positive correlations and so on. It can be

seen that CRG may play a key role in the regulation of RA and

immune infiltration.
3.2 RA unsupervised clustering identification
and analysis

To analyse the expression of RA and CRG, we used a consensus

clustering algorithm to identify 232 RA samples in groups with the

expression profile of seven CRGs, with the best number of clusters

when k = 2 (Figure 2A). The CDF values gradually increased when k =

2, 3 and 4, and became smaller when k = 4 (Figures 2B–D). We

divided the 232 RA samples into two groups, including cluster 1 (n =

153) and cluster 2 (n = 79). PCA analysis of the two clusters showed

significant differences between the two (Figure 2E).
3.3 Expression profile and immune
infiltration characteristics of CRGcluster

To explore the characteristics among CRGclusters, we analysed

the expression differences of seven CRGs between CRGcluster C1,

and CRGcluster C2 (Figure 3A). CRGcluster C2 showed significant

high expression levels of FDX1, DLD, LIPT1, and LIAS (Figure 3B).

In addition, the immune infiltration of CRGcluster C1 and

CRGcluster C2 was analysed (Figure 3C). The results showed that

CRGcluster C2 showed higher levels in T cells CD8, T cells CD4

memory activated, and T cells gamma delta. CRGcluster C1 showed
TABLE 1 The primers used in this study.

Gene Forward primer Reverse primer

FAM96A GGCAACTCTTATTGGACTGTG TCGCTCTTTGTCATTTATC
TGCT

MAK4P3 ATCCAGCAGGAAATTGTCA TTCTACCTTGCATCCCGTG

PRPF39 GCAGCTTTTGAGGAACAAC CATTGCCAATCCTAGA
ACAC

SLC35A1 AAAGAGTTCCGACACTTCC CCAGACATAATACGTG
TAGCC

TMX1 CCTGGTGTCCTGCTTGTCA TAAACCGTCCACTTAGT
CCTGT

Actin CTGAACGTGAAATTGTCCGAGA TTGCCAATGGTGATGA
CCTG
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higher levels in T cells regulatory (Tregs), Macrophages M0,

Macrophages M2, Dendritic cells activated, and Neutrophils had

higher expression levels (Figure 3D). Taken together, this suggests

that CRGcluster C2 may be more closely associated with the

development of RA.
3.4 Consensus clustering analysis of
CRGcluster intersection genes

We analysed the role of the 314 intersecting genes in RA by re-

clustering the intersecting genes obtained from CRGcluster C1 and

CRGcluster C2 using “ConsensusClusterPlus” and further classifying

RA patients into different subgroups. The number of clusters was

optimal when k = 2 (Figure 4A). When k = 4, the CDF values became

smaller (Figures 4B–D). We reclassified the 232 RA samples into two

groups: genecluster 1 (n = 146) and genecluster 2 (n = 86).

We also analysed the expression differences of the seven CRGs

between genecluster C1 and CRGcluster C2 (Figure 4E). genecluster

C2 showed significantly higher expression levels of LIPT1, FDX1,

DLD, and LIAS than genecluster C1 (Figure 4F). In addition, we

analysed the immune infiltration of genecluster C1 and genecluster
Frontiers in Immunology 05
C2 (Figure 4G). The results showed that genecluster C2 had higher

levels of T cells CD4 memory activated, T cells gamma delta.

genecluster C1 had higher levels of T cells regulatory (Tregs),

Macrophages M0, Macrophages M2, Dendritic cells activated, and

Neutrophils (Figure 4H). Taken together, the correlation between

genecluster C2 and RA may be higher than that between

genecluster C1.

We plotted the alluvial distribution of copper death-related score

subtypes for CRGcluster C1, C2 and genecluster C1, C2 (Figure 5A).

We compared the copper death-related scores between genecluster C1

and C2. The results showed that genecluster C2 had a significantly

higher copper death-related score than genecluster C1 (Figure 5B). In

addition, we also analysed the copper mortality-related scores

between CRGcluster C1 and C2. The results showed that

CRGcluster C2 had a significantly higher copper death-related score

than CRGcluster C1 (Figure 5C). It can be seen that genecluster C2

and CRGcluster C2 correlated more significantly with copper death-

related genes. We also compared the expression of 12 CRGs between

CRGcluster C1, and C2 and genecluster C1, and C2. The results

showed that PDHB, PDHA1, LIPT1, FDX1, DLD, LIAS and DLAT

were significantly more expressed in CRGcluster C2 and genecluster

C2 than in CRGcluster C1 and genecluster C1; while SLC31A1 and
A B

D E

F G

C

FIGURE 1

Correlation analysis of RA and CRG. (A) Heat map of 7 CRGs with differential expression. (B) Box line plot of expression of 12 CRGs in RA and non-RA.
***p< 0.0001, **p< 0.001, *p< 0.01, ns, not significant. (C) position of the 12 CRGs on the chromosome. (D) correlation analysis of the 7 differentially
expressed CRGs, red and blue represent positive and negative correlations, respectively. The area of the pie chart indicates the correlation coefficient.
(E) relative abundance of RA and non-RA among 22 infiltrating immune cells. (F) box plot of the differences in immune infiltration between RA and non-
RA. (G) correlation analysis between 7 differentially expressed CRGs and infiltrating immune cells.
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ATP7B were significantly more expressed in CRGcluster C1 and

genecluster C1 than in CRGcluster C2 and genecluster C2

(Figures 5D, E).
3.5 Gene module screening and co-
expression network construction

The 276 DEGs in GSE93272 were screened according to the

criteria of Padj < 0.05 and ∣logFC∣ > 0.5 and are presented as volcano

and heat maps (Figures 6A, B). In addition, we performed GO and

KEGG enrichment analysis on the above 276 DEGs using R language

(Figures 7A, B). The enrichment results showed that the 276 DEGs

were mainly enriched in response to the virus, defence response to the

virus and other pathways involved in Ribosome and

Parkinson’s disease.
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In addition, we analysed key gene modules closely associated with

the CRGcluster using the WGCNA algorithm. We constructed a

scale-free network using b = 13, R2 = 0.9 as a criterion (Figure 8A).

5413 genes were classified into 10 key modules and the heat map

depicted the TOM of all module-associated genes (Figures 8B–D).

Analysis of module-clinical characteristics (Cluster1 and Cluster2)

relationships showed that the MEturquoise module (931 genes) had

the highest correlation with Cluster2 (0.65) and high intra-module

gene significance (Figure 8E). The MEturquoise module gene

correlation analysis with Cluster 2 is shown in Figure 8F.
3.6 Construction and evaluation of machine
learning models

To further identify specific genes with high diagnostic value, we

built four machine learning models, namely RF, SVM, GLM and
A B

D

E

C

FIGURE 2

Identification of molecular clusters of genes associated with copper death in RA. (A) consensus clustering matrix at k = 2. (B-D) representative cumulative
distribution function (CDF) curves, CDF incremental area curves, consensus clustering scores. (E) visual analysis of the two clustering distributions.
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XGB, based on the 276 DEGs in GSE93272 with crossover genes in

the MEturquoise module hub gene. using the “DALEX “ package was

used to compare the above four models and to analyse the residual

distribution of each model. The results show that the RF model has

the relatively lowest residuals (Figures 9A, B). We ranked the top 10

significant genes of each model based on Root mean square error

(RMSE) (Figure 9C). The ROC curves of the four models were then

plotted based on the 5-fold cross-validation to comprehensively assess

their discrimination performance. The AUCs of the four models were,

in order, RF: AUC = 0.843; SVM, AUC = 0.746; XGB, AUC = 0.710;

and GLM, AUC = 0.773 (Figure 9D). Taken together, we concluded

that the RF model was able to better differentiate between the different

clusters of patients. the RF model ultimately obtained five significant

genes (SLC35A1, PRPF39, MAP4K3, TMX1 and FAM96A), which

were used as predictive genes for subsequent analysis.

We constructed column line plots to further evaluate the

predictive effectiveness of the RF model (Figure 10A). The

predictive efficiency of the constructed line plot model was

evaluated using a combination of the calibration curve and DCA,
Frontiers in Immunology 07
with the calibration curve showing a small margin of error between

the actual and predicted risk of RA clustering (Figure 10B), and the

DCA results indicating that the line plot is highly accurate and can

provide some reference and basis for clinical treatment

decisions (Figure 10C).
3.7 RF candidate gene evaluation analysis

In addition, we analysed the ROC curves of five genes, SLC35A1,

PRPF39, MAP4K3, TMX1 and FAM96A, between RA and non-RA

patient samples, and also compared their differential expression levels

in different samples. the results of the ROC curves showed that

FAM96A had the highest diagnostic value (AUC=0.902), while the

other four genes had AUC all over 0.750, which was a more

satisfactory prediction (Figures 11A–E). In addition, by performing

a differential analysis of their expression levels, the results showed that

all five genes were significantly more expressed among RA patients

than in the non-RA patient group (Figures 11F–J).
A B

D
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FIGURE 3

Analysis of the expression and immunological profile between the two molecular clusters. (A) Heat map of the expression of 7 CRGs between two molecular
clusters. (B) Box line plot of the expression of 7 CRGs between two molecular clusters. (C) relative abundance between two molecular clusters in 22 infiltrating
immune cells. (D) box line plot of immune infiltration between two molecular clusters. **p < 0.0001, *p < 0.01, ns, not significant.
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3.8 Predictive gene validation by qRT-PCR in
experimental RA animal models

qRT-PCR was used to detect and compare the expression of

identified genes in the ankle tissue of the RA model and control rats

(Figure 12). Compared with normal controls, five genes were

significantly increased in the ankle RA rat model, including

FAM96A, MAK4P3, PRPF39, SLC35A1, and TMX1(P<0.05).
4 Discussion

Because the complex pathophysiological mechanisms of RA are

not fully understood, early and accurate diagnosis as well as treatment

and management of RA is essential (41). Over the past few decades,

there have been increasing advances in the symptomatic treatment of

RA (NSAIDs and GCs) and the management of disease remission

(DMARDs) (4). The identification of more appropriate molecular

clusters is therefore essential to guide the individualised treatment of

RA. The recently reported copper-dependent form of cell death is

mainly caused by aggregation of lipid acylation-related proteins, loss

of iron-sulfur cluster proteins and a series of other stress responses

culminating in cell death, and the association with RA is multifaceted

(15, 23). However, the specific mechanisms and roles of copper death
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regulation in various diseases have not been further investigated.

Therefore, this study attempts to elucidate the relationship between

copper death-associated genes and RA phenotypes, as well as to

analyse their specific role in the immune microenvironment, and we

also use copper death-associated genes to predict subtypes of RA.

Finally, the expression of the identified predicted genes was detected

and compared in the ankle tissue of the RA model and control rats by

qRT-PCR. Five genes were significantly increased in the ankle RA rat

model compared to the normal control group.

In the present study, we conducted the first comprehensive

analysis of the differential expression of CRGs between healthy and

RA patients. The results showed that 7 out of 12 CRGs were

differentially expressed between RA and healthy individuals and

that the expression of 7 CRGs was significantly higher in RA

patients than in normal individuals, suggesting that CRGs may be

closely associated with the development of RA. Subsequently, we

analysed the correlation between CRGs to elaborate on the association

between CRGs and RA. In contrast, RA patients had significant

infiltration of B cells memory, T cells CD8, T cells gamma delta,

Macrophages M0, Macrophages M1, Macrophages M2, Dendritic

cells activated, Neutrophils. In addition, we performed an

unsupervised clustering analysis based on CRG expression levels

and identified two clusters of copper death-related gene molecules.

Four differentially expressed CRGs, namely FDX1, DLD, LIPT1, and

LIAS were expressed at significantly higher levels in CRGcluster C2
A B D
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FIGURE 4

Identification of gene clusters and expression immunoassays in RA. (A) consensus clustering matrix at k = 2. (B-D) representative CDF curves, CDF
incremental area curves, consensus clustering scores. (E) heat map of expression levels between two gene clusters. (F) box line plot of expression of 7
CRGs between two gene clusters. ***p< 0.0001, **p< 0.001, *p< 0.01, ns, not significant. (G) relative abundance between two molecular clusters in 22
infiltrating immune cells. (H) box line plot of immune infiltration between two gene clusters.
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than in CRGcluster C1 and had higher levels of immune infiltration in

T cells CD8, T cells CD4 memory activated, and T cells gamma delta.

We further grouped RA patients by re-clustering the intersecting

genes between CRGcluster C1 and CRGcluster C2 and obtained two

different subgroups: genecluster C1 and genecluster C2. genecluster

C2 showed that the expression levels of LIPT1, FDX1, DLD, LIAS

genecluster C2 showed significantly higher levels of LIPT1, FDX1,

DLD and LIAS than genecluster C1. genecluster C2 showed higher

levels of T cell CD4 memory activated and T cell gamma delta. The

correlation between genecluster C2 and RA may be higher than that

between genecluster C1. copper death-related scores showed that

CRGcluster 2 and genecluster C2 had higher scores than CRGcluster

C1 and genecluster C1, respectively, and the expression levels of 12
Frontiers in Immunology 09
CRGs were also higher than those of CRGcluster C1, and

genecluster C1.

In recent years, machine learning (ML) has been widely used in

the clinical field and is considered an important tool in healthcare (42,

43). ML has also contributed to the prediction of biomarkers for RA

disease, prognostic modelling, and drug screening. And ML has also

contributed to the prediction of RA disease biomarkers, the

development of prognostic models, and drug screening (44, 45). In

comparison with the traditional statistical model, the comprehensive

analysis of ML ensures the robustness of the model and improves the

prediction accuracy through iterative algorithm (46, 47). In the

current study, we compared the predictive performance of four

machine learning models (RF, SVM, GLM and XGB). These models
A
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FIGURE 5

Analysis of copper mortality-related scores and expression differences. (A) Analysis of copper death correlation scores for molecular clusters and gene
clusters. (B) Comparison of copper death scores between gene clusters. (C) Comparison of copper death scores between molecular clusters.
(D) Differences in expression levels of 12 CRGs between gene clusters. (E) Differences in expression levels of 12 CRGs between molecular clusters
*p< 0.0001.
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FIGURE 6

Identification analysis of DEGs. (A) DEGs volcano map. (B) DEGs heat map.
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FIGURE 7

Bar graph of DEGs enrichment. (A) Bar chart of DEGs GO enrichment analysis. (B) Bar chart of DEGs KEGG enrichment analysis.
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FIGURE 8

Weighted network analysis between two molecular clusters. (A) Determination of soft threshold power. (B) Cluster tree dendrogram of co-expression
modules. Different colours indicate different co-expression modules. (C) representation of clusters of module signature genes. (D) representative heat
map of correlations between the 10 modules. (E) correlation analysis between module signature genes and clinical status. (F) scatter plot between
MEturquoise module genes and Cluster 2 significantly different genes.
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are based on 276 cross genes in MEturquoise modules closely related

to DEGs and CRGclusters in GSE93272 and established a predictive

model based on RF, which gives the best prediction (AUC = 0.843). We

subsequently identified five significant predictive genes (SLC35A1,

PRPF39, MAP4K3, TMX1 and FAM96A) based on RF. Solute carrier

family 35 member A1 (Slc35a1) is a specific transporter protein. In

sialic acid (SA) metabolism, the transfer of cytidine-5 ’-

monophosphate-SA to the medial and trans-Golgi is a substrate for

the sialylation of proteins by various sialic acid transferases (48). SA is a

highly diverse family of acidic glycans, whose functions are to stabilize

cell membranes, facilitate interactions with the environment, enhance

intercellular adhesion and signalling, and regulate the affinity of ligands

for receptors (49, 50). Previous studies have found that Slc35a1 is a key

step in all SA synthesis pathways, and that ablation of Slc35a1 decreases

SA translocation to the cell surface and thus reduces expression (51–

53). On the other hand, SA-modified liposomal formulation, based on

the high expression of L-selectin in peripheral blood neutrophils and

SA as its targeting ligand have been proved to be an effective

neutrophil-mediated drug delivery system targeting RA (54).
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Pre-mRNA splicing factor 39 (PRPF39) is an alternative splicing

factor. It is a homolog of the yeast Prp39 and Prp42 paralogs, that is

tightly coupled to gene transcription and subsequent splicing

processes (55, 56). Previous studies have found that PRPF39

expression levels strongly influence in vitro splicing (57),

particularly in immune cell differentiation and activation, for which

regulated intron retention has been shown to play an important role

in controlling gene expression and function (58). On the other hand,

it was found that RA was closely related to splicing variants (59, 60),

and by examining the altered levels of splicing mechanism

components and inflammatory mediators, it was found that the

dysregulation of splicing mechanism components, such as

SNRNP70, SNRNP200 and U2AF2, could be reversed when TNFi

was intervened in vivo (61). Previous studies have identified an

alternatively spliced TNRF2 isoform, a soluble receptor. The

alternatively spliced absence of exons 7 and 8 (DS-TNFR2), which

encode transmembrane and cytoplasmic structural domains,

constitutes the majority of sTNFR2 in RA patients and serum

sTNFR2 is strongly associated with RA activity and severity (62–64).
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FIGURE 9

Construction and evaluation of RF, SVM, GLM and XGB machine models. (A) Box plot of residuals for the four machine learning models. The red dots
represent the root mean square of residuals (RMSE). (B) Cumulative residual distribution of the 4 machine learning models. (C) Significant functions of
the 4 machine learning models. (D) ROC curves of the 4 machine learning models plotted based on a 5-fold cross-validation of the test set.
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Mitogen-activated Protein kinase kinases (Also called Germinal

center kinase-like kinase, GLK/MAP4Ks), belong to the mammalian

Ste20-like family of serine/threonine kinases (65). Previous studies

have found that MAP4K3 is involved in extracellular signalling to

regulate gene transcription, apoptosis and immune inflammation

(66–68); On the other hand, MAP4K3 also activates mTOR

signalling in epithelial cell lines after sensing cellular nutrient and

energy levels and plays a key role in activating NF-kb signalling in T

cells after antigen stimulation (69). Previous studies have
Frontiers in Immunology 12
demonstrated that MAP4K3 expression levels are significantly

increased in peripheral blood T cells from patients with

autoimmune diseases such as RA (70), SLE (71) and adult-onset

Still’s disease (66). In a study by Chen et al., it was found that the

frequency of overexpression of MAK4P3 by circulating T cells was

significantly increased, and the production of MAK4P3 was found to

decrease in parallel with disease remission in these patients, thus

suggesting that MAK4P3 is closely related to immune like disease

activities (66, 71). These enrich the evidence that overexpression of
A

B C

FIGURE 10

Validation analysis of RF predicted genes. (A) Nomogram model for predicting RA risk based on 5 genes in RF. (B) Construction of calibration curve.
(C) Construction of DCA.
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FIGURE 11

Validation and expression analysis of RF predicted genes. (A-E) ROC plots of RF 5 genes. (B-J) Differences in expression levels of RF 5 genes between RA
and non-RA. *p< 0.0001.
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MAK4P3 is associated with a series of inflammatory diseases. In

conclusion, MAP4K3 plays an important role in immune cell

signalling, immune response and inflammation.

ER is known to be the site of biosynthesis of all secreted and

membrane proteins. Its inner lumen is a unique environment that is

critical for the correct folding of proteins secreted or displayed on the

cell surfacee (72). ER stress, in turn, results from the accumulation of

unfolded proteins (UPR) in the ER and can cause a range of

pathologies such as chronic autoimmune inflammation (73).

Previous studies have found that RA inflammation and ER stress

work in parallel by driving inflammatory cells to release cytokines that

induce chronic ER stress pathways, and synovial cells promote

inflammation by continuously producing large amounts of proteins

and that ERAD may be a necessary processing system for ER

homeostasis in order to prevent further development (74, 75);

Another study has shown that enhanced ERAD can effectively

remove unfolded proteins from the ER, thereby indirectly inhibiting

UPR activation (76). This suggests that a dysregulated ER response is

closely linked to the development of synovial hyperplasia and chronic

arthritis. TMX1 is a topology-specific endoplasmic reticulum-resident

reductase, the most characteristic member of the TMX family, whose

main biological functions are protein folding and ER-associated

degradation Ca2+ flux regulation (77, 78). Thus TMX1 may be

closely associated with RA by promoting misfolded polypeptide

mismatches across the ER membrane for ER-related degradation.

Family with sequence similarity 96 member A (FAM96A), also

known as Cytosolic iron-sulphur (Fe/S) assembly component 2A

(CIAO2A), is an evolutionarily conserved protein highly expressed in

the immune system, associated with cytosolic iron assembly and

tumour suppression, and is widely expressed in many tissues (79, 80).

Yin et al. found that the release of relevant pro-inflammatory factors

was significantly slowed in FAM96A knockout mice and that sepsis

could be slowed by the action of macrophages (79). Probably due to

the important role of macrophages in immune homeostasis and

inflammatory processes (81, 82), FAM96A may regulate RA by

controlling the secretion of multiple inflammatory factors as well as

multiple metabolisms of macrophages.
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However, there are still some limitations in this study. First, our

current study is based on bioinformatic analysis and simple

experimental validation. In the future, more comprehensive clinical

or experimental studies are needed to validate the relationship

between copper death-related candidate genes and RA. In addition,

more detailed clinical characterisation is needed to test the

performance of the prediction model, and more RA samples are

needed to assess the accuracy of copper death-related candidate genes.

5 Conclusion

In this study, we constructed column line plots based on 5 genes,

SLC35A1, PRPF39, MAP4K3, TMX1 and FAM96A, and the results

showed that the predictive effect of the model was more obvious. In

addition, we analysed the expression differences of the above five

genes between RA and non-RA patients, and the results showed that

the expression levels of all five genes were significantly higher among

RA patients than the non-RA patient group; and the ROC curve

results showed that FAM96A had the highest diagnostic value

(AUC=0.902). Finally, validation was performed by qRT-PCR assay.

In conclusion, the five important candidate genes obtained based on

the RF model have more satisfactory results in assessing the

pathological outcomes and subtypes in RA patients.
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FIGURE 12
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MAK4P3, PRPF39, SLC35A1 and TMX1, were significantly increased. *P<0.05, **P<0.01, ***P<0.001.
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61. Ibáñez-Costa A, Perez-Sanchez C, Patiño-Trives AM, Luque-Tevar M, Font P,
Arias de la Rosa I, et al. Splicing machinery is impaired in rheumatoid arthritis, associated
with disease activity and modulated by anti-TNF therapy. Ann Rheum Dis (2022) 81:56–
67. doi: 10.1136/annrheumdis-2021-220308

62. Lainez B, Fernandez-Real JM, Romero X, Esplugues E, Cañete JD, Ricart W, et al.
Identification and characterization of a novel spliced variant that encodes human soluble
tumor necrosis factor receptor 2. Int Immunol (2004) 16:169–77. doi: 10.1093/intimm/
dxh014

63. Cañete JD, Albaladejo C, Hernández MV, Laıńez B, Pinto JA, Ramıŕez J, et al.
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