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The initial interplay between HIV
and mucosal innate immunity

Valeria Caputo †, Martina Libera †, Sofia Sisti , Benedetta Giuliani ,
Roberta A. Diotti ‡ and Elena Criscuolo*‡

Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
Human Immunodeficiency Virus (HIV) is still one of the major global health issues,

and despite significant efforts that have been put into studying the pathogenesis of

HIV infection, several aspects need to be clarified, including how innate immunity

acts in different anatomical compartments. Given the nature of HIV as a sexually

transmitted disease, one of the aspects that demands particular attention is the

mucosal innate immune response. Given this scenario, we focused our attention

on the interplay between HIV and mucosal innate response: the different mucosae

act as a physical barrier, whose integrity can be compromised by the infection, and

the virus-cell interaction induces the innate immune response. In addition, we

explored the role of the mucosal microbiota in facilitating or preventing HIV

infection and highlighted how its changes could influence the development of

several opportunistic infections. Although recent progress, a proper

characterization of mucosal innate immune response and microbiota is still

missing, and further studies are needed to understand how they can be helpful

for the formulation of an effective vaccine.
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1 Introduction

The Joint United Nations Programme on HIV/AIDS (UNAIDS) has established to aim

the 95-95-95 target (95% of all HIV-positive patients to know their HIV status, 95% of all

diagnosed HIV-positive patients to receive therapy, and 95% of all treated HIV-positive

patients to have viral suppression) by 2025, to reach the more ambitious goal to stop to

consider AIDS as a public health concern in 2030 (1). However, the current numbers of HIV

infections remain substantial, with 38.4 million people living with HIV and 1.5 million new

cases in 2021 (2). Global use of antiretroviral therapy (ART), increasing prevention, and

surveillance are being employed to contain the epidemic, but an effective vaccine is needed to

end it.

Over the years, significant efforts have been made to study the pathogenesis of HIV

infection; however, several aspects need to be clarified, including how the innate immune

system acts in different anatomical compartments. Despite the molecular mechanisms were

not completely understood, the importance of innate response in the progression of HIV

infection was demonstrated by many studies on HIV-infected long-term non-progressors

(LTNPs) and elite controllers (ECs), a particular group of HIV patients able to naturally
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control the viral replication. In fact, it was shown that the high level of

cytokines, as IL-12 and IFN-a, and the increasing number and

activity of innate cells, in particular dendritic cells (DCs), natural

killer cells (NKs), macrophages and natural killer T cells (NKTs), and

invariant natural killer T cells (iNKTs), can control the infection and

delay AIDS progression (3–5). In recent years, extensive studies have

been conducted on unconventional or pre-set T cells, such as

mucosal-associated invariant T (MAIT) cells and iNKTs that can

recognize several viral, bacterial, and cancer-associated epitopes and

act as immunomodulators, due to their importance in mucosal

immunity. During the early stage of HIV infection, IL-17-

producing CD8+ MAIT cells decreased significantly, compromising

the mucosal integrity and facilitating microbial translocation. The

high activation, the consequent exhaustion and the depletion of these

cells lasted a long time in the bloodstream, even during ART (6). Early

after acute HIV infection, iNKT depletion has also been reported in

the peripheral blood and is associated with markers of infection

progression (7). On the other hand, the enrichment of cytokine-

activated MAIT in the intestinal mucosa was described as a defense

mechanism against the rapid depletion of other lymphocytes and the

excessive activation of MAIT enhances inflammation and facilitates

disease progression (6, 8, 9). Also, at the mucosal level, the

importance of innate immunity in preventing HIV infection is

demonstrated by the low-risk transmission levels, ranging from

1.38% of transmission through the rectal route to almost zero for

the oral one (numbers estimated for exposure act) (Table 1) (16).

Nevertheless, in 2020, male-to-male sexual contact counted for 68%

of all new cases in the United States, followed by 22% of all HIV

diagnoses caused by heterosexual contact (17). These numbers

highlight the importance of transmission through these routes.

Thus, understanding the molecular mechanisms and pathways that

cause and follow infection is also pivotal in developing an effective

therapeutic and prophylactic treatment that could prevent

mucosal transmission.

HIV is a retrovirus of approximately 100 nm surrounded by a

lipid membrane as its envelope. The envelope contains 72 trimers of

the Env proteins, gp120, and gp41. Inside the envelope, a conical

capsid contains two copies of positive-sense single-stranded RNA that

encodes structural and regulatory proteins. The first open reading

frame is the gag gene, which codes the proteins of the outer core

membrane, p17, the capsid protein, p24, the nucleocapsid, p7, and a

smaller protein. The second is the pol reading frame, which encodes
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for the protease, p12, reverse transcriptase, p51, RNase and integrase,

p32, while the env reading frame encodes for gp120 and gp41.

Moreover, the HIV genome encodes for several regulatory proteins:

Tat (transactivator protein) and Rev (RNA splicing regulator) are

necessary for viral replication, while the other four (Nef, Vif, Vpr, and

Vpu) are accessories for viral replication, budding, and pathogenesis

(18, 19).

The Env proteins are the first viral proteins involved in the

replication cycle; gp120 and gp41 mediate the binding to the cell,

and the fusion to the cellular membrane, respectively (20). In

particular, the binding of gp120 to the receptor CD4 and a

coreceptor – CCR5 or CXCR4 – induces a series of refolding events

in gp41 that enable the fusion to the target cell membrane (20). In

addition to these receptors, HIV exploits the presence of other

attachment factors, like integrins, glycolipids, and proteoglycans,

allowing HIV to enter in several cell types. HIV mainly infects T

cells, monocytes, macrophages, and dendritic cells (DCs), but also

transcytosis and trans-infection were described in epithelial cells and

fibroblasts, respectively (21–23). In permissive cells, the virus

undergoes transcription, genome integration, replication, and

budding from the cellular membrane. During the viral replication

cycle, numerous nucleic acid-derived pathogen-associated molecular

patterns (PAMPs) can be recognized by pathogen-recognition

receptors (PRRs) of the host. The sensing of HIV infection leads to

the activation of a cell-intrinsic innate immune response against viral

infection (24) starting with macrophages and dendritic cells and

progressing to the activation of natural killer cells (NKs) (25).

We focused on the innate immune component elicited within

each mucosal tissue affected by sexually transmitted HIV. Starting

from the physical barriers given by the mucosa tissue, we discussed

how the integrity of these barriers is lost during the infection, and how

cell-virus interaction leads to the activation of the cellular

components of the innate immune response. Studying the events

that occur within the first 96 hours after infection (26) is not easy, so

the need for new discoveries that investigate unsolved aspects is

tangible. Moreover, recent studies reveal the enrichment of Prevotella

in the feces of the elite controllers (27), and the correlation between

gut dysbiosis and HIV infection was so strong to suggest fecal

microbiota transplantation as a possible therapeutic treatment to

improve the HIV-positive patients’ status (5). We also discussed the

engagement of mucosae’s microbiota and how its composition

changes after HIV infection, but also how its impairment causes the

development of opportunistic infections that characterized the

clinical picture of many HIV patients.
2 The structure of mucosae as a
physical barrier

The mucosal epithelium assumes specific characteristics in

relation to anatomical district and function within the single

mucosa. Overall, the oral and anogenital mucosae show specific

structural characteristics that create a strong first-line defense

against HIV transmission. The stratified squamous epithelium,

which largely makes up the mucosae, is a concrete physical barrier

that separates the lower tissues from the external environment. This

structure, along with the presence of numerous tight and adherent
TABLE 1 Risk of HIV transmission by mucosal/sexual exposure (no
condom use).

Exposure act Risk per exposure
(%)

References

Receptive anal intercourse 1.38 (10–13)

Insertive anal intercourse 0.11 (10, 12)

Receptive penile-vaginal
intercourse

0.08 (14)

Insertive penile-vaginal
intercourse

0.04 (14)

Receptive oral sex Low (10, 15)

Insertive oral sex Low (15)
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junctions involved in maintaining tissue functionality, are essential

elements in preventing HIV transmission. Both types of epithelial

junctions form highly efficient biological barriers to paracellular entry

by viral pathogens, including HIV (28).

The oral mucosa presents strategic levels of keratinization in the

different layers of squamous epithelial cells with varying thicknesses

(29, 30). Structures subjected to mechanical forces (i.e., the gingiva

and hard palate) composing the masticatory mucosa are protected by

a thick keratin layer that makes antigen entry difficult (29). Areas

comprising mobile structures or specialized structures, such as lingual

papillae, have a non-keratinized composition or a mixture of

keratinized and non-keratinized epithelia (31). The thickness of the

adult oral mucosa was demonstrated to be directly involved in

reducing HIV transmission efficiency, also because of the absence

of HIV-susceptible immune cells in the superficial mucosal

layers (32).

In the female genital tract (FGT), instead, the epithelium varies

between the lower and upper reproductive tract. The lower portion,

comprehending the vagina and the ectocervix, is characterized by a

pluristratified epithelium in which the continuous sloughing of the

superficial layers of epithelial cells prevents many pathogens from

colonizing it. In contrast, the endocervix, the endometrium, and the

fallopian tubes of the upper reproductive tract are characterized by a

single layer of polarized, columnar epithelial cells with tight junctions

that prevent pathogens from breaching the epithelium (10, 33). The

transition area from columnar to squamous epithelial is called the

transformation zone (34). This area is composed of metaplastic cells,

which represent the reservoir of the endocervix (35). In addition to

the morphological characteristics, the transformation zone is the most

immunologically active site in the reproductive tract, and is an

efficient barrier against ascending pathogens (35). At the same time,

the high levels of macrophages, CD4+, and CD8+ lymphocytes may

suggest that this site is particularly vulnerable to HIV infection (35).

The male genital tract (MGT) consists of two major parts: the

penile urethra and the testes. In uncircumcised males, the foreskin

provides both physical and immunological protection to the glans

(36). The adult foreskin is a double layer of skin – outer and inner –

that covers the glans penis. The outer foreskin is a keratinized

squamous epithelium, which constitutes a physical barrier to HIV

infection. On the contrary, a thin and weakly keratinized epithelium

composes the inner foreskin, making this site more susceptible to viral

invasion (37).

Moreover, the anorectal mucosa is divided into two structurally

distinct tissues. The lower canal (anal tissue) is lined with stratified

squamous type II epithelium, while the upper part (rectal tissue) is

composed of a single layer of columnar epithelium, making it more

prone to mechanical trauma and viral infection during sexual

intercourse through micro abrasions and transcytosis across

epithelial cells (38). As with the FGT, the margin where the two

different epithelia join is referred to as transformation zone. This area

is most exposed to micro abrasions during receptive intercourse and

to the chemical factors of microbiological organisms (39), making it

the most accessible to HIV infection.

As observed in rectal tissue, variations in the structural and

functional integrity of the mucosae represent the main factors

exploited by the virus to establish the infection. Altered mucosal
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particularly in the vaginal wall and the ectocervix (40).

Increased risk of HIV transmission is also reported in different

scenarios characterized by damaged or inflamed oral mucosal tissues

(41). Under these conditions, the transient migration of inflammatory

cells from the deeper layers of the oral epithelium is facilitated. The

recruitment of immune cells, including HIV-targeted cells, in the oral

cavity, leads to a concrete increase in viral infection.
3 Oral mucosa

In adults, only a small fraction of new HIV infections is

transmitted orally. Despite the viral loads reported for semen and

cervicovaginal fluids (CVF), the presence of well-developed innate

immune mechanisms in the oral cavity makes the risk of HIV

transmission after oral-genital contact during sexual intercourse

extremely low (42).
3.1 Oral route for HIV transmission

Several events involved in HIV transmission via the oral cavity are

still to be understood; for example, the role of the oral epithelium in

the establishment of viral infection has represented an interesting

element of investigation. It was shown that the inoculation of the

chimeric simian/human immunodeficiency virus (SHIV) to the

surface of intact oropharyngeal epithelia can lead to systemic

infection of HIV-susceptible immune cells (43) but the primary site

of infection is unknown.

The oral epithelium is the first site of HIV exposure. However,

epithelial cells do not express the canonical virus receptor CD4, while

levels of CXCR4 and CCR5 appear to be very low or undetectable

(44–46). Oral keratinocytes can internalize HIV, but there is still no

evidence that they can support viral infection and replication (45). In

this context, HIV virions are more likely to migrate across mucosal

epithelial cells, without infecting them, to reach susceptible CD4+

lymphocytes naturally integrated into or underlying the epithelial

layer (47). Structural and functional abnormalities of the oral mucosa

surface could have a profound impact on its susceptibility to

HIV infection.

Oral epithelial cells play an important role in promoting viral

transmission across the mucosal tissue. Indeed, they express on their

surface a significant variety of non-canonical receptors, in this way,

the virus is transferred directly to their target cells present in oral

mucosal tissue (47). Among the different non-canonical receptors

that are bound by the viral protein gp120, there are DC-SIGN

(dendritic cell-specific intercellular adhesion molecule-3-grabbing

non-integrin) (48), GalCer (glycosphingolipid galactosylceramide)

(49, 50) and heparin sulfate glycans (HSPGs) (51). Both GalCer

and HSPGs have been shown to be highly expressed on oral epithelial

cells (52); conversely, the DC-SIGN receptor is highly expressed on

mucosal Langherans/dendritic cells (LC/DC), enabling HIV to be

captured also by intraepithelial and/or subepithelial LC/DC from the

mucosal surface (53). Thus, HIV bound on the dendritic cells can

migrate through the epithelium promoting the infection of CD4+ cells
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(54). Despite this, the density of LC/DC on oral mucosa is

significantly lower than on vaginal, cervical, and foreskin mucosa,

which may result in a lower risk of virus acquisition across it (55).

Currently, there is no evidence that any of the non-canonical

receptors can allow the infection of epithelial cells in a CD4/CCR5/

CXCR4-independent way, underlying the importance of the role of

these cells only in the establishment of initial contact events of the

virus in the oral cavity (47).

The specific interactions of HIV with its receptors on oral

epithelial cells play a key role in triggering the activation of

multiple signaling pathways which results in the disruption of

epithelial junctions (28). For example, it was demonstrated that

HIV gp120 binding with GalCer, CXCR4, and CCR5 increases

intracellular calcium leading to the activation of mitogen-activated

protein kinase (MAPK) signaling. This event causes the disruption of

epithelial and endothelial junctions by reducing the expression of

tight junction proteins ZO-1, occluding, claudins 1, 3, and 4 (56, 57).

Moreover, the viral Tat protein is directly involved in the aberrant

internalization of tight junction proteins and their down-regulation

and/or proteasome-mediated degradation (56). HIV interaction with

oral epithelial cells determines the production and the release of

proinflammatory cytokines that can activate the apoptotic pathway

leading to metalloproteases (MMPs) and/or caspase-mediated

degradation of junctional proteins (28). HIV-associated disruption

of epithelial junctions allows paracellular penetration of virions that

can reach HIV-susceptible cells into the epithelium for the

establishment of systemic infection (52, 58). In this context, the

lack of functional junctions between cells promotes the penetration

and dissemination of other viral pathogens.

Infiltration of HIV-infected CD4+ T cells and LC/DC into the oral

mucosa induces the secretion of virions leading to the activation of

the aforementioned intracellular pathways. This results in the

worsening of the barrier integrity conditions of mucosal epithelium,

facilitating bacterial translocation and penetration of their metabolites

in the tissue with the further activation of HIV-associated

inflammation and disease progression (28).

Viral transcytosis, the transcellular transport of virions by

vesicular/endosomal machinery of epithelial cells, has been also

proposed as one of the possible pathways involved in HIV

transmission through the mucosal epithelium. Transepithelial

transcytosis was shown to occur in the epithelial cells of different

tissues, including the oral mucosa. However, cell-free HIV

transcytosis was demonstrated to be less efficient, with only 0.01-

0.05% of virions from the initial inoculum that can translocate across

oral epithelial cells (58–60).
3.2 Innate immune response

The characterization of the exact immune events right after HIV

infection is very difficult considering the identification of individuals

in the specific period preceding systemic virus dissemination and the

establishment of the latent reservoir. Innate immunity offers efficient

responses for the prevention of HIV transmission at the level of the

oral mucosa, although many aspects of the specific responses

implemented at this site are still undefined.
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A pivotal role in the low incidence associated with the oral route

of transmission is attributed both to the presence of multiple anti-

HIV salivary factors (Figure 1) and to the nature of human saliva itself

(61). Daily secretion of saliva helps to physically eliminate pathogenic

bacteria, viruses, and their products from the oral cavity (62).

Moreover, it has been demonstrated that the hypotonic nature of

this body fluid works as an innate antiviral factor causing the lysis of

HIV-infected cells (63). In the context of sexual transmission,

however, isotonic secretions such as semen allow overcoming this

protective mechanism maintaining the viability of HIV-infected

leukocytes that could initiate HIV infection of the oral mucosa (64).

As mentioned above, saliva contains many molecules which are

directly released from resident cells and from different glands housed

in the oral cavity. Among these, mucin-rich fractions of

submandibular/sublingual saliva cause HIV particles to aggregate

with a subsequent reduction of viral infectivity (65). Salivary

mucins and agglutinins can also interact with viral particles

inducing the stripping of HIV gp120 from the envelope: this causes

a decrease in viral infectivity (66). Other specific salivary proteins that

appear to inhibit HIV infectivity by direct interaction with the virus

include thrombospondin and proline-rich proteins. These proteins

can bind gp120, preventing its interaction with the CD4 receptor on

target cells (67, 68) (Figure 2).

Furthermore, lactoferrin (LF) can strongly interact with the V3

domain of HIV gp120, thereby inhibiting virus entry (69). However,

this glycoprotein is thought to carry out its primary biological

activities following the interaction with its receptors, which include

CXCR4 and HSPGs, interfering with the virus-cell fusion and

binding. For instance, the membrane-penetrating HIV Tat protein,

released from HIV-infected cells, also uses HSPGs to surround and

enter cells: the binding ability of LF allows it to compete with such

viral protein for receptor occupancy (70).

Other salivary molecules such as human b-defensins (hBDs) and
cathelicidins inhibit viral replication. In particular, hBD2 and hBD3

can inhibit viral replication in primary human PBMCs and CD4+ cells

(71). In this context, it was demonstrated that hBD2 inhibits at an

early-stage post-entry, involving the induction of the host antiviral

restriction factor apolipoprotein-like 3G (APOBEC3G) exploiting the

chemokine receptor 6 (CCR6) which is expressed on highly

permissive cells for HIV infection (72, 73). hBD2 and hBD3 exert

their mechanisms directly on HIV virions and promote the

downregulation of CXCR4 (71, 74). These hBDs also compete with

viral gp120 for HSPGs binding on host cells (75).

The C-terminal part of human cathelicidins called LL-37 (or

hCAP18) can be cleaved in vivo into active fragments: one of these

fragments, called FK-13, inhibits HIV replication in peripheral blood

mononuclear cells (PBMCs) (76). Moreover, in vitro studies have

demonstrated that LL-37 has inhibitory efficacy against HIV infection

in HEK293 (77) and primary CD4+ T cells (78). The study of the

potential anti-HIV activity of LL-37 and its fragments demonstrated

that this molecule could inhibit dose-dependently viral reverse

transcriptase and, in weak measure, also virus protease (79).

Another significant HIV inhibitory molecule commonly found in

saliva but also in semen and cervical secretions is represented by

secretory leukocyte protease inhibitor (SLPI) (80). It has been shown

to be present in saliva at levels sufficient to effectively inhibit the
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infectivity of HIV in vitro (81). SLPI does not appear to exert its

antiviral activity directly on HIV virions but rather targets molecules

expressed on host cells. Preincubation of monocytes alone with SLPI

produced antiviral activity, whereas preincubation of the virus with

this protein did not suppress or inhibit HIV virions (81). Afterward, it

was established that SLPI binds monocytes with high affinity to a

single class of receptors in a dose-, pH-, and time-dependent manner

(82). Analysis of the newly generated viral DNA showed that SLPI

blocks at or before viral DNA synthesis. Therefore, it was proposed

that SLPI inhibits a step of infection that occurs after virus binding

before reverse transcription (82). Depletion of SLPI from whole saliva

results in a substantial loss of salivary anti-HIV activity (61). Higher

levels of salivary SLPI in infants reduced the risk of HIV infection;

however, breast milk levels of SLPI seem not to correlate with reduced

breastfeeding transmission of HIV (83, 84).

In addition to the production of anti-HIV salivary secretory

component investigated, other specific roles of innate immune cells

in protecting the oral mucosa from HIV infection are much

less characterized.

Oral epithelial cells are not only a mechanical barrier, but they are

among the main sources of pro-inflammatory and regulatory

cytokines released into the saliva during oral infections. A broad

range of cytokines is also produced by other resident cells of the oral

mucosa such as macrophages, fibroblasts, mast cells, and intra-

epithelial lymphocytes (62). Differences in the saliva cytokine

profiles of HIV-infected subjects compared with non-HIV-infected
Frontiers in Immunology 05
subjects were evidenced by a significant decrease of tumor necrosis

factor (TNF) -a and interleukin (IL) -6 and a significant increase of

IL-8 in HIV infection. In particular, IL-8 levels were also different

among HIV-infected individuals on and off ART (85).

The animal model for simian immunodeficiency virus (SIV)

infection shows the presence of NK cells in the tonsillar, buccal

tissues, and oral-draining lymph nodes consequently producing large

quantities of interferon (IFN) -g and the b -chemokine MIP-1b (86).

Active SIV replication in oral mucosa also induces the upregulation of

granzymes and other NK biomarkers such as CD16, NKG2C and

relative KIR expression, all indicative of a robust NK cell

response (87).

The characterization of innate lymphoid cells (ILCs) has also

generated interest. This is a subpopulation of mucosa-restricted cells

with features similar to both NK cells and Th17 and Th22 (88, 89).

SIV-infected macaques present an expansion of ILCs in oral-draining

lymph nodes and tonsils, producing large amounts of IL-17 and TNF-

a (86). This contrasts with the scenario observed in the gut, where

massive depletion of NK cells and ILCs was observed (90).

An active role in preventing HIV infection was also identified for

polymorphonuclear neutrophils (PMNs). The function of PMNs in

HIV disease has mainly been examined from the point of view of

patients’ increased susceptibility to opportunistic infections.

Dysbiotic microbiota at the mucosal surface and inflammatory

conditions (e.g., periodontal disease) can influence neutrophil

recruitment and activation in oral tissues (91, 92). Whereas PMNs
FIGURE 1

The immune components of mucosal barriers involved in HIV transmission. The extracellular environments of the oral, rectal, vaginal, and foreskin
mucosae are diverse in their tissue architecture and characterized by numerous secreted factors that can hinder the mucosal transmission of HIV. In
addition, saliva, foreskin secretion, and mucus are barrier-trapping and inactivating virions. Between the cells of the stratified epithelia and at their basal
layers, the immune cells are present and recruited when HIV bypasses the first mechanism of defense.
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are directly involved in the production and release of defensins, and

their activation can lead to the production of neutrophil extracellular

traps (NETs) for HIV virions capture and elimination (92).
3.3 Oral microbiota

The oral microbiota can be affected by different factors, including

diet, smoking, and drugs, but also changes in the saliva secretory

component (such as reduced levels of enzymes and proteins) or

alterations of the innate and adaptive immune response can be

correlated to dysbiosis (93). Evidence suggests that HIV infection

impacts the composition of the oral microbiota, despite

inconsistent results.

A recent study analyzing the saliva of HIV-infected and

-uninfected patients found a different microbiota between the two

populations. They found that the abundance of Streptococcus was

increased in HIV-infected individuals, while the abundance of
Frontiers in Immunology 06
Neisseria was higher in healthy controls (94). Another study

showed similar results: the abundance of Neisseria was decreased in

HIV-infected patients while the abundance of Veillonella, Rothia, and

Streptococcus increased significantly (95). Furthermore, Streptococcus

mutans, Lactobacillus, Candida, Haemophilus parahaemolyticus,

Actinomyces, Neisseria subflava, and Corynebacterium diphtheriae

species were more abundant in the saliva of infected HIV

individuals (96–100). Other studies also observed a lower

proportion of Streptococcus mitis in the saliva of HIV-infected

patients compared to non-infected people (97, 98, 100) (Figure 3).

In addition, alterations in the oral fungal community composition in

HIV-infected patients were described,in particular, an abundance of

Candida, Epicoccum, and Alternaria, and a decrease of Pichia were

observed (101, 102). Therefore, given the anti-Candida activity of

Pichia fungus, its absence leads to an increase in human infections,

such as oral candidiasis, in HIV-infected patients (102, 103).

The disruption of oral immunity in HIV-infected individuals

leads to an imbalance between oral microbiota and local immune

responses, which could promote oral dysbiosis contributing to the

development of HIV-related diseases and HIV-associated non-

acquired immunodeficiency syndrome comorbidities (104). The

most common comorbidity that occurs in HIV-infected patients,

even in patients under ART therapy, are periodontal diseases,

oropharyngeal candidiasis (OPC), oral warts, oral hairy leukoplakia,

and Kaposi sarcoma (KS) (105). Of these infections, OPC is the most

common (106) and it is caused by Candida albicans (107–109). A

distinct oral microbiota may affect the development of oral diseases in

HIV-infected patients, an example is an enrichment of Abiotrophia,

Rothia, and unclassified Pasteurellaceae and Treponema. in the oral

microbiota of HIV-infected individuals with moderate and severe

periodontal disease (110), while HIV-infected individuals with oralKS

presented a decrease of abundances of Aggregatibacter and Lautropia

and an abundance of Corynebacterium and Shuttleworthia (111). It is

also important to point out how HIV-infected patients are susceptible

to a variety of other viral infections, which may accelerate the

progression of HIV infection. The most common viruses identified

in the oral mucosa and associated with oral lesions in HIV-infected

patients are human herpesviruses (HHV-6 and HHV-8),

cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella-zoster

virus (VZV) and human papillomavirus (HPV) (112–115). In detail,

HHV-6 and CMV can be considered cofactors for CD4+ cell decrease

in HIV-infected patients promoting the progression to AIDS, and also

coinfection with HHV-8 contributes to the pathogenesis of Kaposi’s

sarcoma (116–119). Furthermore, in immunosuppressed patients,

VZV tends to be reactivated and cause oral ulcers while co-

infections with EBV are associated with the development of oral

hairy leukoplakia (120, 121).
4 Genital mucosa

4.1 Female genital tract

The mucosal immunity in the female genital tract is part of the

integrated mucosal immune system, with features related to specific

reproductive functions. Indeed, the FGT immune system is closely
FIGURE 2

Blocking mechanism of HIV infection in the mucosae. HIV requires the
binding between the envelope protein gp120, the cellular receptor
CD4, and other co-receptors, such as CXCR4, CCR5, and heparan
sulfate proteoglycans (HPSG). However, the mucosal
microenvironment may present some soluble factors that can block
the infection by several mechanisms: 1) Mucins interact with the
virions, causing their agglutination; 2) Agglutinins and mucins can strip
gp120 from the viral envelope; 3) immunoglobulins, thrombospondin
and proline-rich proteins bind gp120 preventing its interaction with
CD4 on target cells; 4) Defensins and lactoferrin recognize HPSG and
HIV co-receptors (CXCR4/CCR5) on the surface of susceptible cells
and compete with gp120 for their binding; 5) Defensins and IFNs
secreted by stimulated immune cells (e.g. Dendritic cells) led to
CXCR4 downregulation and APOBEC3G induction, an antiviral
restriction factor.
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regulated by cyclic changes in the sex hormones during the menstrual

cycle, in a delicate balance between tolerance to allogenic sperm and

semi-allogenic fetus and immune protection against infections

(122, 123).

To establish infection in FGT, HIV in male ejaculate must first

evade a number of intrinsic mechanical, chemical and biological

barriers. FGT’s epithelial and immune cells express a repertoire of

Toll-like receptors (TLRs) that enable them to recognize pathogens

and mount a response to infections (124). Indeed, the activation of the

TLRs response leads to the production of pro-inflammatory

chemokines and cytokines (IL-6, IL-8, SDF-1), as well as to the

recruitment of the resident immune cells (125). Unlike the lower

FGT cells, which express a small list of TLRs (1-3, 5, and 6), the upper

FGT is characterized by the expression of TLRs 1-9 (126). In addition,

all the FGT cells also express nucleotide-binding oligomerization

domain (NOD) receptors, which act as antimicrobial sensors (127).

NODs are cytoplasmic pattern-recognition receptors, and their

engagement results in NFkB activation and production of pro-

inflammatory chemokines and cytokines, such as CXCL8 (128).

In the FGT, viral particles could penetrate the epithelium through

transcytosis or paracellular passage. To reach the submucosal

compartment, HIV could bind epithelial surface molecules, such as

sulfate proteoglycans or GalCer, which induce the internalization of

viral particles (60). The production of pro-inflammatory cytokines

and IFNs induces a reorganization of the actin-cytoskeleton, and

infectious virions can be released in the basal space, where they could

encounter susceptible cells (129). Alternatively, viral-host receptor

binding induces a reduction in the expression of occludins and

claudins, thus causing a disruption of tight junctions and allowing

paracellular passage (130). The distinct abundance of immune cells in

the FGT tract may indicate a different susceptibility to HIV infection.
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The high concentration of immune cells in the lamina propria of the

transformation zone suggests that this might be the primary infection

site (35).

Nevertheless, there are other factors that can influence susceptibility

to HIV infection. Fluctuations in estradiol and progesterone have resulted

in a change in the innate and adaptive immune responses of FGT,

suggesting an increased risk of sexually acquired infections (131).

Hormonal changes during the menstrual cycle, contraceptive drugs,

and menopause affect the thickness of the epithelial layer, influencing

the permissiveness of HIV infection (132). HIV infection is more likely 7-

10 days after ovulation – the “window of vulnerability” – because of the

diminished protective immune response that is necessary to avoid

activating the immune response against the semi-allogenic fetus (133).

Moreover, different studies highlighted the presence of co-factors that

could increase the risk to acquire HIV. Notwithstanding its important

role in protection, mucosal inflammation of the FGT increases the

probability of infection (134, 135). Under physiological conditions, the

FGT environment contains less cytokines and immune cells. During

inflammation, there is the recruitment of immune cells at the infection

site, which are the target of the infection, and the production of cytokines,

such as TNF and IL-1a, responsible for the disruption of epithelial barrier

integrity (131, 136, 137). Multiple factors are involved in genital

inflammations, such as hygiene, sexually transmitted diseases, and

hormonal contraceptives (138, 139). Also, alterations in the

microbiome composition could be considered a risk factor, promoting

inflammation, and altering the correct pH of the mucus (140).

4.1.1 Innate immune response
The structure of the epithelium, together with a thick layer of

mucus that covers the lower FGT, acts as a physical and chemical

barrier to prevent HIV from entering. Cervicovaginal mucus consists
FIGURE 3

Microbiota characterization in HIV patients. The microbiota present in the mucosae can support or penalize HIV infection, and its changes can influence
the development of several opportunistic infections. Numerous studies analyzing HIV-infected and -uninfected patients’ mucosal samples identified a
different microbiota between the two populations: some species were higher in healthy controls (species reported in green) and others were more
abundant during infection (species in red).
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of vaginal transudate, mucus, antimicrobial factors, chemokines, and

cytokines, including defensins, SLPI, trappin-2/elafin, which are

associated with protection against HIV infection (141, 142)

(Figure 1). Elafin and its precursor trappin-2 are members of the

whey acidic protein (WAP) family that contain a characteristic and

evolutionary conserved four-disulfide core, or WAP domain, which is

rich in cysteine residues that stabilize the disulfide bonds involved in

protease inhibition (143). In vitro studies revealed the critical

protective role of the N-terminal portion of the elafin protein: it

reduces IL-8 secretion and NF-kB activation and significantly

modulated mRNA expression of innate sensors TLR3 and RIG-I in

cervicovaginal fluids (143, 144).

The antigen-presenting cells in the FGT secrete multiple

chemokines with antiviral actions that have been found in the

cervicovaginal fluids, such as CCL5 and CCL2 (145). CCL5 has a

pivotal role in attracting macrophages and dendritic cells at the site of

infection, while CCL2 recruits inflammatory macrophages, as results

from the analysis of the cervicovaginal lavage fluid of infected

individuals (146).

FGT cells also produce IFNs, specifically IFN-a and IFN-b, which
are well known for their potent innate immunity to broad-spectrum

viruses (147). For example, IFN-a can significantly enhance the

expression of APOBEC3G in CD4+ T cells derived from human

peripheral blood mononuclear cells, inactivating the early stages of

HIV infection (148) (Figure 2). In addition, the acid pH of the

cervicovaginal mucus played a key role in trapping the virus,

contributing to the protection from the infection (149). However,

HIV virions exploit the presence of putrescine and cadaverine in

semen to escape from acid inactivation and survive in the FGT

environment (150).

Beyond the physical barrier and the antiviral factors, the cellular

component of the innate immune system also responds to HIV

infection. Neutrophils are the first responder to HIV infection, and

once they are recruited, they engulf and destroy HIV through

mechanisms like reactive oxygen species (ROS) release,

degranulation, phagocytosis, and neutrophil extracellular trap

formation (151). Despite evidence of the protective role of

neutrophils in HIV acquisition, other studies suggest their role in

promoting the infection. Indeed, neutrophils recruit CD4+ T cells in

the FGT by secreting specific chemokines and cytokines, thus

increasing the number of susceptible cells to HIV infection (152, 153).

One of the most important functions of mucosal dendritic cells is

antigen presentation to the adaptive immune system, acting as a

bridge between the innate and the adaptive response. The plethora of

DCs subsets isolated from the FGT of healthy women could capture

HIV virions and rapidly secrete CCR5 ligands and other chemokines,

such as CCL2 and IL-8, which act as anti-HIV molecules (154).

Although the primary target of HIV infection is CD4+ T cells, the level

of FGT DCs, in particular Langerhans cells, seems to play a critical

role in HIV transmission (155). The binding to DCs surface C-type

lectin receptor, like DC-SIGN, allows the virions to migrate together

with DCs to the lymphoid tissues, where HIV infects active CD4+ T

cells, facilitating viral dissemination (155).

In addition, despite the presence of iNKT, HIV can be transmitted

through viral immune escape strategies that block iNKT effector

function against infected cells (156, 157).
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4.1.2 Vaginal microbiota
The vaginal microbiota plays a crucial role in reproductive health,

including the potential to protect against HIV and sexually

transmitted infections (STIs) and abnormal birth outcomes (158–

160). Its composition is dependent on several factors including sexual

activity, ethnicity, hygiene practices, antibiotics, the composition of

the gastrointestinal microbiota, and the hormonal shifts associated

with puberty, menopause, and the menstrual cycle (161–163). In

general, the vaginal microbiota is characterized by a dominance of

Lactobacillus species (particularly L. crispatus, L. jensenii, L. gasseri,

and L. iners (164, 165) and changes in female genital tract

microbiomes appear to influence the risk of HIV infection (164, 166).

The shift of vaginal microbiota composition from acidic-

producing bacteria, Lactobacillus, to other anaerobic bacteria,

especially Gardnerella and Prevotella, is associated with a clinical

condition referred to as bacterial vaginosis (BV) (167, 168). Different

studies reported that BV increases susceptibility to HIV infection

(169). In particular, a study in Kenya showed that the presence of BV

and the absence of Lactobacilli are significantly associated with HIV

acquisition, highlighting that the presence of this bacterium seems to

be protective not only against HIV infection, but also against the most

common sexually transmitted infection (Neisseria gonorrhoeae,

Trichomonas vaginalis, and Chlamydia trachomatis) (170,

171) (Figure 3).

Of particular interest, different studies highlighted how the

presence of normal vaginal microbiota dominated by Lactobacillus

had a protective role in the acquisition of HIV infections in high-risk

HIV-negative women and a protective role in the transmission of the

virus in HIV-positive women, reducing HIV shedding (172–174).

This may be reinforced by a prospective cohort study of 236 South

African adolescent girls not infected with HIV (18–23 years) (175).

The authors pointed out how the girls with high-diversity, low

Lactobacillus abundance bacterial communities were associated with

a significantly higher risk of HIV acquisition compared to the girls

with a high relative abundance of L. crispatus (175). Moreover, the

detection of L. crispatus was also associated with a 35% lower risk of

HIV RNA shedding bringing out its protective function in preventing

HIV infection and transmission (172–174).

Additionally, other reports showed Gardnerella vaginalis and

Prevotella. (specifically, Prevotella bivia) contributing to both HIV

risk and genital inflammation (176, 177). A recent study conducted in

Zambia on a cohort of pregnant women with and without HIV

correlated the high prevalence of diverse, anaerobe-rich microbiota

with HIV susceptibility and identified two Gardnerella spp. that may

be associated with vaginal inflammation and with spontaneous

preterm birth (sPTB) (178). Considering the important role of

Prevotella bacteria in the BV inflammation state, several studies

have identified a significant association between the abundance of

Prevotella (P. melaninogenica and P. bivia) with increased genital

inflammation and HIV acquisition (175–177). Furthermore, the

above study conducted on healthy young South Africans identified

that P. bivia and P. melaninogenica were significantly more abundant

in girls with HIV than in girls without HIV infection (175).

Many studies have focused on the mechanisms by which the

vaginal microbiota can affect HIV acquisition and transmission.

Firstly, vaginal microbiota associated with BV can activate an
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immune response by recruiting mucosal immune cells and inducing

pro-inflammatory chemokines and cytokines (175, 176, 179, 180). It

was shown that BV is associated with the presence of an HIV-

inducing factor (HIF) in vaginal secretions, which leads to

increased virus replication in T cells and monocytes (181).

Moreover, BV may be related to the disruption of the vaginal

epithelium and the shedding of HIV to the subepithelium (182,

183). Lastly, the reduction in the number of Lactobacillus species

causes an increase in pH and a reduction in H2O2 concentration, thus

compromising the protection of the vaginal epithelium (184, 185).

Another study performed in the USA comparing the vaginal

microbiota of both HIV-infected and -uninfected women with or

without BV observed that HIV-infected women with BV had higher

microbial diversity which could be related to the suppression of

immune response (186). Moreover, as mentioned above, the

G.vaginalis and P. bivia could be involved in high HIV

susceptibility risk and genital inflammation. In fact, G. vaginalis can

produce several classes of cytolysin that activate the protein kinase

pathway in vaginal epithelial cells, resulting in cell death (187).

Similarly, Prevotella produces a specific enzyme able to degrade

mucins, allowing microbial attachment and biofilm formation. P.

bivia is the most common microbial profile among women infected

with HIV and BV, and it is considered the most reliable predictor of

both genital inflammation and HIV risk in women (188). An in vitro

study confirmed that lipopolysaccharide (LPS) of vaginal P. bivia

induced cytotoxicity, therefore, this anaerobic bacterium may

contribute substantially to genital inflammation, which can

influence barrier disruption and increase the risk of HIV in women

with BV (189).

As for the other mucosae, HIV infection increases the likelihood

of contracting other sexually transmitted- and opportunistic

infections (190, 191). Several studies reported that HIV-positive

women present a higher rate of vaginal Candida colonization often

caused by Candida albicans (192–194), which increases over

progressive immunodeficiency even if vaginal Candida colonization

rates were 40% lower than those of oropharyngeal (195, 196). A study

described a strong association between Candida infection and HIV

seroconversion, highlighting the functional link between dysbiosis

and HIV transmission risk. In fact, the initial HIV infection disrupts

the local mucosal immunity, causing an alteration of the vaginal

microbiome and Candida colonization (197). The inflammatory state

caused by C. albicans compromised the integrity of the vaginal

mucosa and increased the number of HIV target cells (leukocytes

and other immune cells), enhancing HIV transmission during vaginal

intercourse. This was also described in a study conducted on the

vaginal microbiota of Tanzanian women, which reported that HIV-

infected women had an abundance of Candida spp. and a severely

compromised immunity in the lower genital tract (198).

Other sexually transmitted pathogens,N. gonorrhoeae, Chlamydia

trachomatis, and Trichomonas vaginalis, are also common in HIV-

seropositive women and are considered risk factors for HIV

transmission. This underlines how the dysbiosis state caused by

HIV infection can promote HIV transmission by activating an

immune response to the genital region or by increasing the viral

load in genital secretions (199–201). Moreover, clinical

manifestations that occur in HIV-seropositive women are genital

ulceration caused by Treponema pallidum, Herpes simplex virus
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(HSV), Haemophilus ducreyi, and CMV (202, 203). Genital herpes

occurs more frequently in HIV-infected women than in uninfected

women, which showed more severe clinical expression and

asymptomatic viral shedding due to the disruption of the physical

barriers of the skin (204, 205).
4.2 Male genital tract

Unlike the FGT, the mucosal immunity of the MGT is poorly

assessed. Studies have shown that the foreskin secretion contains

mucins, soluble mediators of the immune defense as pro-

inflammatory cytokines and immunoglobulins, as well as

antimicrobial proteins, which protect MGT from infections (37,

206) (Figure 1). For the cellular component, it has been described

that the inner foreskin contains susceptible cells to HIV infection,

including Langerhans cells and DCs, CD4+ T cells, and macrophages

(207). There is a lack of understanding of how HIV is acquired in the

foreskin. It is known that circumcision diminishes infection risk,

reducing abrasions and ulcers (208).

4.2.1 Male genital tract microbiota
The human penis is inhabited by diverse bacterial families and,

just like the other mucosae, differs by abundance and type when the

physiological condition changes. For example, it was demonstrated

that circumcision affects bacterial profile, especially aerotolerance

bacteria (209–211). In fact, the reduction in penile anaerobe

bacteria may partly account for the reduced risk of heterosexually

acquired HIV infection in men following circumcision (211).

To date, there are only two studies that analyzed the impact of the

penile microbiota and HIV infection, and both assert that penile

microbiota may be a risk factor for HIV infection in men (210, 212).

They found that among men with and without HIV infection, there

was a differential abundance of bacterial taxa (e.g., Staphylococcus,

Strenotrophominas, Propionibacterium, and Nosocomiicoccus), thus

suggesting that such bacteria either increase the risk of HIV infection

or occur because of HIV infection (210). Moreover, they found that

selected anaerobic bacteria such as Finegoldia, Peptoniphilus,

Prevotella, and Dialister were associated with the increased risk of

HIV seroconversion (211, 213) and elevated levels of chemokines,

including IL-8 (212). This has already been reported in women who

had high levels of IL-8 associated with an increased risk of HIV

acquisition (135). Moreover, sexually transmitted infections such as

N. gonorrhoea may also enhance HIV transmission by recruiting and

activating HIV target cells at the site of primary infection (214)

(Figure 3). Together, these investigations imply the involvement of

penile microbiota (particularly of uncircumcised men) and immune

activation responses in the acquisition and transmission of HIV (209,

211, 215). Penile bacteria can stimulate genital immune activation,

increasing susceptibility to HIV infection (216).

As for HIV-infected women, also in HIV-infected men, the most

common opportunistic infection that may occur in the genital tract is

candidiasis and this infection can affect the head of the penis and the

foreskin (217). HIV-infected patients are more susceptible to sexually

transmitted bacterial pathogens, such as Chlamydia trachomatis and

Neisseria gonorrhoeae (218), and to the reactivation and replication in

the genital tract of persistent herpesviruses, such as CMV, EBV, and
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HSV-1 and -2 (219–221). HIV-HSV co-infection has been associated

with increased HIV viral load, transmission, and progression of the

disease (222, 223). Moreover, alterations of penile microbiota seem to

be associated with HPV infections, in fact, it was demonstrated that

men with penile microbiota dominated by Prevotella, Clostridiales,

and Porphyromonas were more likely to have HPV infections than

men with Corynebacterium-dominated penile microbiota (210).
5 Anorectal mucosa

The rectal mucosa is also a major mucosal HIV transmission

route. The risk of transmission is approximately 1.38% per exposure

act (224), and studies in rhesus macaques suggest that HIV

acquisition by the receptive partner is higher during anal

intercourse compared to vaginal intercourse (225). In fact,

epidemiological studies report that over half of new infections in

the United States are caused by receptive anal intercourse (RAI) (226).

As far as the current knowledge, the higher transmission rate

compared to other mucosae is related to several key characteristics of

the rectal mucosa that makes it more susceptible to HIV infection.

First, as mentioned above, the mucosa has a peculiar structure (single

layer of columnar epithelial cells) that makes the rectal tissue more

prone to infection through mechanical trauma during sexual

intercourse (38). Second, although less is known about cell-virus

interactions in the rectum compared with other mucosal tissue, the

presence of HIV-target CD4+ cells such as macrophages, dendritic

cells, and T cells underneath the simple epithelium was described

(227). In particular, the relative abundance of activated CD4+ T is

very important for virus acquisition and mucosal transmission (228–

230). Lastly, the more distal section of the rectum contains a greater

concentration of CCR5-expressing macrophages (231).

Despite this, the events following exposure to HIV in the rectal

mucosa and the initial targets for rectal infection remain unknown. A

study reported findings consistent with mucosal injury (232, 233)

indicating an upregulation (24h after) of gene transcription important

in tissue remodeling, the involvement of neutrophils, DNA

proliferation, and antigen presentation (233). The importance of

neutrophils involvement has also been documented for both female

and male genital tract, but their role in rectal transmission still needs

further analysis (233). Regarding target engagement, some studies

support macrophages as the first target (234, 235). One study

observed a higher number of macrophages expressing CCR5 in the

rectum than in the proximate colonic mucosa making this tissue more

vulnerable to HIV infection (231). Macrophages can act as viral

reservoirs disseminating the virus to T cells and DCs across mucosal

tissue (236). Others identified a subclass of dendritic cells which

express DC-SIGN in the rectum as capable of binding and

transferring HIV virions to permissive T cells (48, 237). Lately, a

study using an innovative methodology to infect rhesus macaque

concluded that Th17 CD4+ T cells constituted the most abundant

target, but also intestinal DCs (iDCs) as second target. These DCs are

present at a low frequency in the anorectal tissue, but it is known that

they express coreceptors CCR5 and receptor CD4, making them

susceptible to infection. However, other cell types express these

receptors and coreceptors at different levels, so other factors

contribute to cell infection. Th17 cells and iDCs seem to express
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lower levels of Myxovirus resistance B (MxB), a restriction factor that

inhibits HIV life cycle early phase, especially in type I IFN-influenced

environment (238, 239). The higher metabolic state of these cells may

also facilitate nuclear transport, integration, and transcription of HIV

(240). On the contrary, as was already described, HIV does not

replicate well in resting CD4+ T cells, which are the main reservoir of

latent infection (241, 242).

The high metabolic state is caused by the constant maintenance of

the mucosal immune response against foreign pathogens by Th17

cells, while DCs active Th17 polarization after being exposed to

complement opsonized HIV (243). The complement system has

been the subject of a few studies. It was soon shown that HIV

exhibits on the lipid membrane complement inhibitory molecules

CD55 and CD59, which protect the virus from complement virolysis

(244, 245). However, activation of the complement system from host-

HIV interaction is mainly investigated as it makes HIV more

accessible to host cells (246). In fact, complement opsonization of

HIV results in higher infectivity and viral transfer from DCs to T cells

in a CR3 and DC-SIGN-dependent matter (247), but also transfer

from Langerhans cells (248) and causes a higher expression of genes

and proteins involved in viral replication and other aspects of the

infection (249). Moreover, opsonization reduces antiviral and

inflammatory responses compared to free HIV (250, 251). A recent

study has examined the effects of both free and opsonized HIV on the

initial response in colorectal mucosa. Free HIV leads to a strong initial

(at 24h) antiviral response (type I IFNs) creating an environment with

a lower level of infection than opsonized HIV. Opsonization, instead,

first suppresses the immune response, allowing for higher HIV-

infected CD4+ T cells, DCs, and macrophages at a later time (at

96h). Opsonization alters the activation of signaling pathways, it

lowers the level of CD8+ T cells expressing perforin and reduces the

levels of colorectal CD8+ T cells expressing PD-1, a protein that

regulates the immune response. Overall, opsonization creates an

environment that stimulates mucosal T cell activation and

inflammatory T helper cells promoting viral establishment (246).
5.1 Anorectal microbiota

The involvement of the rectal microbiota during HIV infection

has been explored in recent animal and human studies considering

the association with the immune system. Anal microbiota could

regulate local inflammation during receptive anal intercourse

driving mucosal immune response (252). The most abundant phyla

presented in the rectal microbiota are: Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, and Fusobacteria, ranked in order of

abundance (252). Studies of the rectal/anal microbiota in HIV-

infected and non-infected patients showed a reduction of

microbiota diversity (alpha diversity) resulting in a shift of

commensal bacteria composition toward a more pathogenic one.

Compositional changes in the rectal microbiota were evident beyond

the Prevotella/Bacteroides clusters with a shift from Bacteroides to

Prevotella (253). Moreover, a study performed on macaques

demonstrated that the cohort of animals more susceptible to SHIV

infection had high levels of immune activation linked to lower

Bacteroides and Firmicutes, and higher proportions of Prevotella

spp. in the anal tract (254). Different studies observed that the
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rectal mucosa of uninfected-HIV men who have sex with uninfected-

HIV men (MSM) have a substantial inflammatory state, including the

composition of the microbiota with a high Prevotella-to-Bacteroides

ratio (233, 255). This finding highlights Prevotella’s inflammatory role

and suggests that this bacterium may contribute to HIV

acquisition (Figure 3).

The presence of HIV infection disrupted the local mucosal

immunity and modified the relative abundance of several genera,

including Gardnerella, Lactobacillus, Corynebacterium, and Sutterella,

leading to microbial dysbiosis and possible opportunistic infections

(256). Chlamydial and gonococcal rectal infections are the most

common sexually transmitted rectal infections among MSM caused

by Chlamydia trachomatis and Neisseria gonorrhoeae. These

infections are associated with an increased risk of HIV infection

transmission (257). As described for the previous mucosae, the

anorectal mucosa also exhibits a correlation between HIV infections

and opportunistic infections, which further supports HIV mucosal

transmission (256, 257). Moreover, HIV infection facilitates the

persistence of mucosal HPV and increases both the risk of anal

squamous intraepithelial neoplasia (AIN) and the progression from

low-grade (LSIL) to high-grade intraepithelial lesions (HSIL) (257).
6 Conclusions

HIV is primarily a sexually transmitted infection, but the overall

risk per sexual exposure is low. One of the reasons for this discrepancy

lies in the strong protection given by the mucosal innate immune

system during the early steps of infection that need to be fully

characterized. Understanding these protective mechanisms is

crucial not only to better characterize HIV infection, but also

because it could help the development of an effective prophylactic

or therapeutic therapy. This urgency is underlined by the UNAIDS’

95-95-95 targets.

In mucosal transmission, differences in histological structures and

in the presence of innate immunological components result in a

different efficacy of HIV transmission at the mucosal surfaces

considered. Impaired mucosal integrity facilitates the infection,

while the induction of a pro-inflammatory environment and

changes in the composition of the mucosa microbiota promote its

establishment. Although some recent advances in understanding the

molecular mechanisms of HIV infection and activation of innate

immunity, the difficulty in the characterization of the early mucosal

responses after HIV infection has led to a paucity of information

about the specific events put in place by the cellular innate immune

component. The cellular mechanisms adopted by innate immunity

assume a broader significance in mucosal protection against HIV

transmission as they naturally modulate host early responses against

infections, but they also represent a bridge for the induction of

adaptive immunity. To our knowledge, mucosal DCs and

macrophages are the first sentinels that can capture the virus, but

how this sensing leads to CD4+ T cell infection and shaping of an

adaptive response is still not completely clear. Another unresolved

question concerns the escape mechanisms placed by HIV to elude

innate sensing. Additional studies should be conducted to better

understand the role of MAIT and iNKT during HIV, for example, if

these cells are able to prevent acute infection in CD4+ T cells (8).
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Nevertheless, mucosal vaccination strategies against oral and

other mucosal HIV transmissions are under intense research, but

the lack of consensus on immune correlates of protection and effective

mucosal adjuvants and delivery systems hamper progress toward an

effective vaccine. Immunological containment of HIV infection in the

mucosa would represent a strategic choice to effectively block viral

replication and prevent its peripheral spread and systemic

dissemination. Further studies are needed to assess whether a

systemic immune response is an appropriate objective, or whether

predominantly mucosal or both mucosal and systemic immunity

would be more effective (258–261).

The elicitation of specific humoral responses plays a central role

in mucosal protection, as demonstrated by a recent study that

describes how intravenous administration of a neutralizing

monoclonal antibody led to its distribution into the female genital

and male rectal mucosa, retaining its anti–HIV-1 functionality (262).

However, the viral clearance mediated by innate immunity is a

fundamental determinant of vaccine efficacy. In particular, the use

of specific adjuvants able to stimulate different innate immune cells

represents a possible approach to shape mucosal immune responses

against HIV infection (260), underlining once again how the precise

understanding of the molecular mechanisms that promote innate

immune response is pivotal for the development of effective vaccine

formulations. The question remains whether local vaccination is

superior to a systemic or distant mucosal vaccine for protection

from infection or disease in clinical settings. Based on observations on

how HIV and simian immunodeficiency virus (SIV) are transmitted

mucosally and spread systemically, a multi-level barrier model that

would confer generalized immunity against HIV transmission has

been proposed (263, 264).

Vaccination against oral transmission is a new field and requires

more in-depth studies. Oral vaccines are attractive because they can

induce high intestinal immunity, are relatively non-invasive, and can

be administered on a large scale (265). An alternative strategy of oral

vaccination is to directly target the tissues within the oral mucosa for

antigen delivery, targeting the buccal (inner cheek, B) and sublingual

(below the tongue, SL) tissue (266, 267). A recent study demonstrates

the vaccine-mediated protection of MVA-HIV/cycP-gp120

immunization against a pathogenic, heterologous SHIV, as well as

the viability and effectiveness of needle-free SL/B immunization as an

alternative to conventional needle-based vaccination (268). Although

oral, sublingual, and nasal routes are more convenient, vaccination in

the genital tract could have significant advantages in targeting STDs,

even as a vaccine-boosting approach. A vaccine trial in women was

described in which a vaccine consisting of HIV-1 gp140 linked to the

chaperone 70-kDa heat shock protein (HSP70) was administered by

the vaginal mucosal route (269). The results demonstrated that the

immunization led to ex vivo inhibition of HIV-1 replication and early

innate response in women. The rectal route of transmission is

important not only among homosexuals, but it is becoming

increasingly apparent as an important route of transmission among

heterosexuals who engage anal sex. Although there is some

preliminary evidence that oral immunization can protect against

rectal HIV transmission, general vaccination studies suggest that

rectal immunization may prove to be more protective. To date, few

in vivo studies have compared rectal vs. oral or vaginal vaccination,

and protection against rectal challenge, using recombinant HIV-1
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Gag p24 protein plus cholera toxin and HIV-DNA, respectively

(270, 271).

The most important obstacle to mucosal immunization, including

those against HIV, is the design and development of safe and effective

immune adjuvants and delivery systems. The use of live attenuated viral

and bacterial delivery systems would most likely reduce the need for

adjuvants. However, live attenuated delivery systems present safety and

anti-vector pre-existing immunity issues. On the other hand, DNA- and

protein-based vaccines require the use of adjuvants. There is a current

need to find safe and effective formulations, particularly those that can

induce a Th1-type immune response, or at least do not cause an overt

Th2-type immune response (272). This is because a Th2-inducing

adjuvant given intra-nasally could result in adverse mucus production,

vasoconstriction, and asthma-like symptoms.

It has been suggested that microbiome modulation through

probiotic therapy increases mucosal immunity. Previous studies

have confirmed that probiotics are well-tolerated by HIV-infected

individuals under ART, although the overall conclusions varied

between studies (273). Recent work has theorized that the

immunologic shifts induced by probiotic therapy could

simultaneously enhance SIV/HIV vaccine-specific mucosal

immunity while limiting the accumulation of potential SHIV cells

(274). The data indicate that although the SIV/HIV DNA/protein co-

immunization strategy elicited both T and B cell adaptive responses in

vivo in rhesus macaques, it did not protect from the heterologous,

intrarectal SHIV.CH505 challenge. However, an exploratory study

identified pre-existing gut microbial and immune activation

signatures as potential predictors of sustained HIV-1 control in the

absence of ART, providing a potential target for future treatment

strategies and opening new chances for a functional HIV cure (275).

An alternative therapy strategy could be based on iNKT as a

candidate for the generation of innovative anti-HIV chimeric antigen

receptor T (CAR-T). These cells have many advantages over

conventional T-cells as potent cytotoxicity and an improved safety

profile due to the lack of MHC restriction (276–278).

Lastly, findings that some infections induce immunity not only

against the causative agent but also against unrelated pathogens, have

been proposed in the context of HIV infection. The mechanisms

behind this phenomenon have started to be identified only recently.

It was found that the key cells responsible for heterologous protection

are innate immune cells such as NKs, DC, and monocytes/

macrophages. These hyper-responsive cells may be the cause of

sustained inflammation, which underlies most comorbidities

associated with HIV infection, even if successfully managed by ART.

Altered epigenetic profiles such as DNA methylation have been

reported in HIV-infected individuals (279–281). Specific profiles have

been associated with progressive aging and non-AIDS–related
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comorbidities, such as insulin resistance, neurocognitive disorders,

and chronic kidney disease (282–284). Interestingly, HIV/SIV DNA

vaccination was shown to induce a trained immunity phenotype in vivo

through the upregulation of IL-1b–related genes, which correlated with
protection against subsequent SIV infection in macaques (285). At the

same time, there is increasing evidence that some infections may

increase susceptibility to HIV infection. As demonstrated by Jensen

et al. (286), non-specific induction of trained immunity may not be an

effective approach for HIV-1 elite control due to possible off-target

effects on other immune cells. Instead, infusion of specific innate

effector cells exhibiting enhanced immunity, such as CAR expression

(knockout of anti-inflammatory genes), and overexpression of innate

effector molecules could be a more feasible strategy to utilize trained

immunity for HIV-1 immunotherapeutics (287).

Whether there will be a vaccine that will protect against

transmission through all the routes that have been discussed here,

is the subject of future research endeavors. As of now, almost all

investigators focus on a single mucosal route of transmission. The

design of a vaccine that can protect any of these mucosal routes

against transmission will be a great achievement and will also pave the

way for protection against transmission through the other routes.

The study of all the aspects involved in the mucosal HIV

transmission is significant to gain information and expand the

knowledge that could help vaccine design and adjuvants choice for

HIV infection eradication.
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