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Modeling antibody dynamics
following herpes zoster indicates
that higher varicella-zoster virus
viremia generates more VZV-
specific antibodies
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Antwerp, Belgium, 3Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and
Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium, 4Division of
Infection and Immunity, University College London, London, United Kingdom, 5Global Health Institute
(GHI), Family Medicine and Population Health (FAMPOP), University of Antwerp, Antwerp, Belgium,
6Data Science Institute (DSI), Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-
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Introduction: Studying antibody dynamics following re-exposure to infection and/

or vaccination is crucial for a better understanding of fundamental immunological

processes, vaccine development, and health policy research.

Methods: We adopted a nonlinear mixed modeling approach based on ordinary

differential equations (ODE) to characterize varicella-zoster virus specific antibody

dynamics during and after clinical herpes zoster. Our ODEs models convert

underlying immunological processes into mathematical formulations, allowing

for testable data analysis. In order to cope with inter- and intra-individual

variability, mixed models include population-averaged parameters (fixed effects)

and individual-specific parameters (random effects). We explored the use of

various ODE-based nonlinear mixed models to describe longitudinally collected

markers of immunological response in 61 herpes zoster patients.

Results: Starting from a general formulation of such models, we study different

plausible processes underlying observed antibody titer concentrations over time,

including various individual-specific parameters. Among the converged models,

the best fitting and most parsimonious model implies that once Varicella-zoster

virus (VZV) reactivation is clinically apparent (i.e., Herpes-zoster (HZ) can be

diagnosed), short-living and long-living antibody secreting cells (SASC and LASC,

respectively) will not expand anymore. Additionally, we investigated the

relationship between age and viral load on SASC using a covariate model to gain

a deeper understanding of the population’s characteristics.
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Conclusion: The results of this study provide crucial and unique insights

that can aid in improving our understanding of VZV antibody dynamics and

in making more accurate projections regarding the potential impact

of vaccines.
KEYWORDS
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1 Introduction

Varicella zoster virus (VZV) is a neurotropic double-stranded

DNA virus of the Herpesviridae family and the subfamily alpha-

herpesvirinae, which is only hosted by humans. After infection of the

nasopharyngeal lymphoid tissue, the virus spreads to the regional

lymph nodes and induces viremia before infecting the skin and

causing the typical rash (1). After retrograde transmission from the

skin to the sensory neurons, this is followed by a latent phase in the

sensory neurons in the posterior horn of the spinal cord. Clinical (and

subclinical) reactivation leads to herpes zoster (shingles) and is

promoted by several factors such as decreased T-cell immunity

and stress.

Many studies have focused on the characterization of the

secondary immune response following human vaccination or using

animal challenge studies. However, the study of secondary immune

responses after natural re-exposure in humans has received far less

attention. An exceptional series of observational studies has focused

on immune responses following exogenous re-exposure to VZV

(2–4).

The application of mathematical models to describe immune

dynamics, which lie behind longitudinal immunogenicity data post

vaccination, has provided us with new avenues to test the validity of

theoretical biological model constructs describing the dynamics of

antibody-secreting cells following re-exposure, or to propose new

theoretical models.

For instance, long-term antibody decay dynamics following

Hepatitis A Virus vaccination have been modeled longitudinally (5)

and this analysis supported the imprinted lifespan model, formulated

by Amanna and Slifka (6), assuming the presence of two types of

antibody producing plasma cells. However, until now such analyses

have not yet been performed on data concerning exogenous re-

exposure in humans or for antibody dynamics during ongoing

endogenous antigen exposure.

Here, we applied mathematical models to describe antibody titer

concentrations collected longitudinally after herpes zoster onset,

thereby representing endogenous re-exposure to VZV. In previous

research (7), the use of this framework has proven to be insightful

with regard to B- and T-cell dynamics following VZV vaccination. A

system of ordinary differential equations (ODEs) was formulated to

model the dynamics of both B- and T-cells and this system was used

to draw conclusions with regard to the underlying immunological

processes. For example, Keersmaekers and colleagues (7) found that
02
the difference in T-cell dynamics following two different types of VZV

vaccines was partially due to the difference in the proliferation rate of

these T-cells induced by vaccination. In addition to Keersmaekers

et al. (7), other researchers have also used mathematical modeling

based on ODEs to study immune responses in humans. Pasin et al. (8)

used ODEs to study the effects of IL-7 injections on T-cell dynamics

in HIV-infected patients. Picat et al. (9) used ODEs to study the effects

of IL-7 injections on T-cell dynamics in HIV-infected patients. Picat

et al. (9) used machine learning to study chronic immune T-cell

activation in successfully treated HIV patients. Both studies used

mathematical modeling and data analysis techniques to investigate

immune responses in humans and have potential implications for the

treatment of HIV infection and other immune-related conditions.

Here, a similar approach was used to gather further insight into

the immunological processes underlying the secondary immune

response after natural endogenous re-exposure elicited by VZV

reactivation. We developed multiple models and applied them to

observational data. The results of our approach are described in detail

in Section 3. A further discussion about the key findings, the

advantages and disadvantages of our approach and avenues for

future research are presented in Section 4.
2 Materials and methods

2.1 Data

We used data derived from a study conducted in the UK (10) in

which a total of sixty-one herpes zoster (HZ) patients was recruited at

onset of HZ rash symptoms. VZV Immunoglobulin G (IgG) antibody

titer concentrations (mIU/ml) were determined at symptom onset, and

one month, three months and six months after symptom onset. The

timing of the assessment of the IgG antibody titer levels is not equal

across all individuals in the sample. The corresponding longitudinal

profiles are depicted in Figure 1. For most individuals, antibody levels rise

quickly after the onset of HZ symptoms, followed by a decrease at a

slower rate. Background information comprised participants’ age (range:

17-85 years), sex (45% females), and whether they used antivirals during

the study (67% of the patients did), and we used a single time point of

viral load at the commensal point. This sample was collected at baseline

and was the only one taken into account in order to reduce the

complexity of the calculation. We used this information to study the

influence of these factors on the antibody dynamics.
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2.2 Mathematical models

To describe the antibody dynamics, we utilized systems of

(nonlinear) ODEs. A systematic strategy was used to fit and assess

the performance of multiple models to identify the ones that describe

the data best while offering enough biological meaning. Appendix A

contains a comprehensive summary of the systems of ODE associated

with the different models. The reasoning for the use of these ODE

systems to describe antibody dynamics is presented in the subsections

that follow.

2.2.1 Antibody dynamics models
We formulated different systems of nonlinear ODEs to model the

observed antibody dynamics. We assumed that the incubation period

is the same for all individuals and we take the value proposed in the

literature. We assumed antibody levels to change over time due to a

proliferation function (f1) and a decay function (f2). In all models, we

assumed that proliferation depended on the number of antibody

secreting cells (ASC, e.g., plasma cells), and decay on the number of

antibodies (AB). For ease of presentation, we suppress the time

dependence of the number of AB and the number of ASC from the

notations below. Hence, we can express the progression of the

number of antibodies in the following general differential equation:

dAB
dt

= f1(ASC) − f2(AB) (i)

Next, we describe the number of ASC using a second differential

equation. We assume that proliferation of ASC occurs according to a

function g1, during a time period [0, h] after which no new ASC will

be generated. ASC decay is assumed to occur at all-time points

according to a decay function g2. This leads to the second

differential equation:

dASC
dt

= g1(ASC)It≤h − g2(ASC) (ii)
Frontiers in Immunology 03
where It≤h represents an indicator function that takes value one if

t ≤ h, and is equal to zero otherwise.

In all our proposed models, antibody decay is assumed to be

proportional to the number of antibodies and can therefore be written

as: f2 (AB) = uAB × AB, with uAB denoting a time-invariant decay rate

(i.e., implying exponential decay). Similarly, the antibody production

is assumed to be proportional to the number of ASC, and thus f1
(ASC) = pAB × ASC, where pAB is the constant antibody production

rate by ASC. Equations (1) and (2) can be combined as follows:

dAB
dt = pAB � ASC − uAB � AB

dASC
dt = g1(ASC)It≤h − g2(ASC),

(
(iii)

where AB0 = AB(0) and ASC0 = ASC(0) are the antibody and

plasma cell counts at time 0 (days), respectively. We can further

divide the population of ASC into two sub-populations: one with a

short lifespan and the other with a long lifespan (11, 12). Short-living

antibody secreting cells (SASC) can be interpreted as B-cells (whether

or not including plasmablasts). Long-living antibody secreting cells

(LASC) can be seen as plasma cells, which can reside in the bone

marrow with a lifespan of many years (13, 14).

Models (4), (5) and (6) treat the population of ASC as a single

population without discriminating between short- and long-living

plasma cells, while models (7), (8) and (9) look at the aforementioned

sub-populations separately. by the choice of the proliferation function

g1(ASC).

In model (4), we assume that ASC expansion occurs with the

constant function g1(ASC) = pASC during time period [0, h]. In model

(5), expansion happens proportional to the number of ASC, g1(ASC)

= pASC × ASC. Model (6) assumes no proliferation g1(ASC) = 0 and

thus the number of ASC monotonously decreases over time starting

from the initial level ASC0. We can interpret this as proliferation that

can be neglected over a short time period [0, h].

Similarly, we defined models (7), (8) and (9), explicitly

distinguishing between LASC and SASC. First of all, in order to
FIGURE 1

Individual-specific VZV IgG antibody titer concentration (expressed in mIU/ml) profiles by time (in days) since symptom onset in 61 herpes zoster
patients. Data are shown per age group.
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limit the number of model parameters, we assume that the number of

LASC remains constant over time, i.e., dLASC / dt = 0. Moreover, we

assume no SASC at time 0, i.e., SASC(0) = 0 and decay of SASC

following g2(SASC) = uSASC × SASC.

Models (7) to (9) rely on the use of different proliferation

functions for SASC. More specifically, in model (7) a constant

expansion g1(SASC) = pSASC is assumed, in model (8) a

proportional expansion g1(SASC) = pSASC × SASC is considered

and finally in model (9) no expansion g1(SASC) = 0 is presumed.
2.3 Statistical modeling

2.3.1 Nonlinear mixed models
We can now formulate nonlinear mixed models based on the

dynamic models described in the previous subsection. The nonlinear

mixed effects model implemented is defined as:

yij = f (tij,yi) + g(f (tij,yi), x)ϵij, 1 ≤ i ≤ N , 1 ≤ j ≤ ni

where yij∈R is the jth observation in the ith subject, Yi is the

parameter vector of the structural model f for individual i. The

residual error model is defined by the function g of the structural

model f and an additional vector of parameters x. The residual errors
(eij) are standard Gaussian random variables (mean 0 and standard

deviation 1). In this case, it is clear that f(tij,yi) and g(f(tij,yi),x) are the
conditional mean and standard deviation of yij, E(yij|yi)=f(tij,yi) and

sd(yij|yi)=g(f(tij,yi),xi) .

The assumption that the distribution of any observation yij is

symmetrical around its predicted value is a very strong one. In order

to achieve that, we may want to transform the data to make it more

symmetric around its (transformed) predicted value. An extension of

the statistical model to include a Log-normal distribution was

therefore proposed as transformation since all observations are

u(yij) = u(f (tij,yi)) + g(u(f (tij,yi)), x) :

In mixed models, both fixed and random effects are included.

Consider a parameter Ppop (e.g., the decay rate of antibodies) which is

constant across different individuals. Such a parameter can be

interpreted as a population(-averaged) parameter, representing the

average value across all individuals, while the use of random effects

leads to an individual-specific interpretation of parameters and a

description of possible variation between individuals. An individual-

specific model parameter Pi can be written as Pi=ui×Ppop , where Ppop
is the so-called population parameter and ui is an individual-specific

random effect. In this paper, we will assume that ui follows a log-

normal distribution with a unit mean (to ensure identifiability and the

aforementioned interpretation for Ppop) and variance w2.

Categorical variables, such as sex or the use of antivirals, can be

taken into account by adding a dummy variable with an additional

parameter bj describing how the parameter of group j deviates from

the reference group.

For example, if we consider sex as a categorical variable assuming

that the population values of antibodies are different for male and

female, we implemented the following model: log(Ai)=log(Apop)
Frontiers in Immunology 04
+bA1sexi=F+hA,i, where 1sexi=F if individual i is a female and 0

otherwise. Then, Apop is the population antibody for males while

Apope
bA the population antibody for females. This allows investigating

which particular parameter of the structural model (e.g., proliferation

of antibodies, decay of antibody secreting cells,…) leads to the

differences observed between different groups (e.g., male vs. female

individuals). Dependency can be introduced between individual

parameters by assuming that the random effects h i are

not independent.

The model parameters were estimated using the Monolix software
©Lixoft (2021 version) (15). The estimation of the population

parameters was achieved by a two-step algorithm with 106 + 105

iterations to assess convergence. This algorithm consists of a built in

stochastic approximation of the standard expectation maximization

algorithm (SAEM) with simulated annealing, combined with a

Markov Chain Monte Carlo (MCMC) procedure which replaces the

simulation step of the SAEM algorithm (16). Next, importance

sampling was used to determine the log-likelihood per model, in

which a fixed t-distribution is assumed with 5 degrees of freedom. The

models were assessed using the Akaike Information Criterion

(AIC) (17).
2.3.2 Inference and model selection
For the antibody data set, the following procedure was used for

comparing and selecting the most suitable biologically plausible

model to describe the data.

In order to compare the different models and select the most

suitable and biologically plausible model to describe the antibody data,

we deployed the following procedure. First of all, for each model, the

model parameters were estimated using the Monolix software. In case

of SAEM-MCMC convergence, we used the AIC (17) to compare the

different models resulting in a list of six models to be compared in the

next step. Models with poor SAEM convergence, likely because of

abundant model complexity, were discarded. Subsequently, the model

with the lowest AIC value on the list was selected as the first candidate

model. We performed a non-parametric bootstrap with 1000 bootstrap

samples to investigate model stability. If the bootstrap did not converge

well, we excluded the model from the list of candidate models. Since a

sequential approach based on the candidate models with the lowest

AIC values was used, the need to perform bootstraps for all candidate

models was avoided, in order to decrease the number of computations.

It was found that for a bootstrap, 63%-77% of the samples had proper

SAEM convergence. For this reason, the criterion for good bootstrap

convergence was defined as having at least 65% of bootstrap samples

with proper SAEM convergence. Finally, a sensitivity analysis of the

(converging) candidate model’s bootstrap results was performed to

determine whether the presence or absence of specific profiles of

individuals in the bootstrap samples influenced model convergence.

For example, if a single participant’s profile appeared more frequently

in a non-converging dataset, a new bootstrap was run, excluding the

specific participant’s profile. Again, if the bootstrap convergence was

poor, the candidate model was rejected. If convergence remained robust

enough, the candidate model was chosen as the final model. (for more

details see Appendixes C and D).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1104605
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Besbassi et al. 10.3389/fimmu.2023.1104605
3 Results

3.1 Antibody dynamics

In our mathematical models, we combined ordinary differential

equations with a statistical mixed model approach. ODEs allow for

the translation of specific biological processes into a testable

mathematical framework. These models, and the differences

between the models we tested, are explained in more detail in

Section 2.2.

Table 1 displays lists of all models, along with the corresponding

information criteria.

Based on the results presented in Table 1, we can see that model 6

has the lowest AIC, BIC, and BICc values among all the models

considered. Additionally, the results from the bootstrap analysis show

that model 6 has the highest convergence rate of 96%. These results

suggest that model 6 is the most robust and reliable model for

explaining the experimental VZV IgG data.

Model 9 assumes an underlying structure of antibody-secreting

cells (ASC) that differentiate between short-lived antibody-secreting

cells (SASC) and long-lived antibody-secreting cells (LASC). The
Frontiers in Immunology 05
number of LASC is assumed to remain constant over time, while the

number of SASC decays at a rate of uSASC without proliferation.

Antibody dynamics are then assumed to be proportional to the

number of LASC (pABL) and the number of SASC (pABS), with an

antibody decay rate of uAB. Each parameter is considered to have a

random effec t , i . e . , a popula t ion component and an

individual component.

Therefore, Model 9 suggests that the experimental VZV IgG data

measured after VZV reactivation had already resulted in SASC

expansion, and that the ASC expansion had already stopped when

VZV reactivation became clinically significant. This finding has

important implications for understanding the immune response to

VZV and could potentially inform vaccine development efforts.

Based on the data in Figure 1, we developed several ODE models,

which are shown in Figure 2. Figure 3 demonstrates that the observed

values are within the confidence interval of the predicted values for

Model 9, which we consider to be the best model. Figure 4 shows the

individual fit for 12 of the 61 participants, further validating the

accuracy of Model 9 (the remaining participants can be found in

Figure S3 in the appendix D). In Figure 5, we compare the simulations

results obtained from our best model and the observed data using the
FIGURE 2

Schematic diagram depicting the different proliferation functions used to characterize antibody dynamics in the different models.
TABLE 1 Model comparison: Estimated information criteria and model performance.

Model Model BIC BICc −2×Log Likelihood Number of
parameters

Model 1 4266.62 4298.28 4308.86 4236.62 7

Model 2 4619.51 4651.17 4661.75 4589.5 7

Model 3 4259.74 4282.96 4290.9 4237.74 5

Model 4 4244.92 4280.8 4292.71 4210.91 8

Model 5 4247.61 4283.49 4295.39 4213.61 8

Model 6 4243.84 4275.5 4286.39 4213.84 7
Comparison of Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC) and Corrected Bayesian Information Criteria (BICc) values for different models, along with the estimated -2×
Log-Likelihood and number of parameters fit. Model 6 is selected as the final candidate model due to its lowest AIC, BIC, and BICc values and high convergence rate.
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visual predictive check (VPC). It is noticeable that the predicted

percentiles are close to the observed percentiles and remain within

95prediction intervals, which highlights the accuracy of our

best model.
3.2 Influence of correlations and covariates
on model parameters

3.2.1 Correlation between random effects
It is possible to introduce dependency between individual

parameters by assuming that the random effects hi are not

independent. This can be done by introducing linear correlation

between the random effects. To test for this type of correlation, we

performed Pearson’s correlation tests. In our scenario, we found a
Frontiers in Immunology 06
significant correlation between hAB0
(the initial value of antibodies)

and hmAB
(the decay rate of antibodies). This indicates that the

distributions of these two random effects are not independent and

that the correlation must be included in the model and estimated.

Once the correlation is included in the model, the random effects

for AB0 and mAB are drawn from a joint distribution rather than two

independent distributions. In our scenario, including the correlation

in the model resulted in an AIC of 4232.25, compared to 4243.84 for

the original model. No other significant correlations were found.

3.2.2 Individual parameters vs covariates
In order to understand the drivers of inter-individual variability,

building a covariate model is a critical effort to explain antibody

population dynamics. Many runs are usually required to find a solid

covariate model (18). Several ways to automate this operation have
FIGURE 4

Individual antibody response to VZV Reactivation in 12 participants using Model 6. Individual predictions using individual parameters and individual
variables with respect to time on a continuous grid with observed VZV antibody data overlaid are displayed in this graphic. (more details about other
participants are shown in Figure 9).
FIGURE 3

Observed antibody levels vs Model 6 predictions. The dots represent the observed data, while the y=x line represents the predicted values. The 95%
predicted interval is also plotted, which shows the range within which we would expect 95% of the observations to fall. The plots are presented on both
a linear scale (right) and a log-log scale (left). Overall, the figure suggests that the model predictions are in good agreement with the observed data, as
the dots fall within the predicted interval for the majority of the data points.
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been proposed in the past. Stepwise Covariate Modeling (SCM) is the

most often utilized. We apply a new stepwise strategy based on

statistical tests between individual parameters taken from their

conditional distribution and covariates validated by Lixoft and

published elsewhere (18).

The Conditional Sampling usage for Stepwise Approach based on

Correlation testing (COSSAC) uses the information in the current

model to determine which parameter-covariate relationship to test

next. This technique drastically decreases the number of covariate

models examined while keeping the models that improve the log-

likelihood on the search path. The Pearson correlation test for

continuous covariates and ANOVA for categorical covariates can

be used to calculate p-values. The p-values are used to sort all of the

random effect-covariate correlations, regardless of whether or not

they are included in the model. Depending on the results of the

correlation tests, COSSAC iterations switch between forward and

backward selection. Group-specific effects on chosen parameters

make it possible to investigate the influence of covariates and

correlation in the selected model 9. More specifically, we
Frontiers in Immunology 07
investigated whether participants’ sex, age, viral load, and use of

antivirals affect model parameters, as well as whether there is any

correlation between random effects.

We acquired the best fitting model after testing and running all

possible parameter-covariate relationships, resulting in an AIC value

of 4214.14 improving the AIC value of the original model 9 by 29.7

points (see Table 2 for the estimates of the model parameters). Since

there is a significant correlation between AB0 and uAB in this model,

where AB0 is the initial value of the antibodies and uAB is the decay

rate allowing the correlation to be included in the model

and approximated.

This model, on the other hand, yielded viral load and age as

significant covariates. More particularly, an increasing viral load was

found associated with a much higher proliferation rate pABS (see

Figure 6). The decay rate of SASC, uSASC, was shown to decline

considerably with increasing age.

Viral load refers to the amount of virus present in a person’s body

and is typically measured in terms of the concentration of virus in a

sample of blood or other bodily fluid (19). High viral load can indicate

a more severe infection or a greater risk of transmission to others. Age

is another important factor that can influence immune function and

the body’s response to infection or vaccination (20, 21). As people get

older, their immune system may become less efficient at mounting a

response to foreign substances, such as viruses or vaccines.

Specifically, we found that increasing viral load was associated

with a higher production rate of antibodies by SASC (pABS). This

finding is supported by the study of (22), which found that increased

levels of gp350-specific neutralizing activity were directly correlated

with higher peripheral blood Epstein-Barr virus DNA levels during

acute infectious mononucleosis. This suggests that individuals with

higher viral loads may have a more pronounced immune response to

varicella-zoster virus, resulting in the production of more antibodies.

This has important implications for understanding the immune

response to varicella-zoster virus and could potentially inform

vaccine development efforts. It is worth noting, however, that while

higher viral loads may lead to increased antigen exposure and

potentially more need for antibody production, it is also possible

that individuals with higher viral loads may have less effective
TABLE 2 Parameter estimates and corresponding 95% confidence intervals (CI) of final model 6.

Parameter Estimate 95% CI P-value

AB(0) 2043.49 (1446.367, 2942.913)

SASC(0) 0.1227 (0.013, 0.215)

LASC(0) 39.631 (20.611, 139.461)

pABL 13.3669 (6.563, 45.608)

pABS 8138.55 (10589.869, 153685.949)

bpABS (V L) 0.4924 (0.164, 0.718) 1.32e-4

uAB 0.2637 (0.174, 1.066)

uSASC 0.0115 (0.006,0.032)

buSASC (AGE) 0.9876 (0.083, 2.379) 9.41e-4

corr(AB0, uAB) -0.2853 (-0.896, -0.549) 1.53e-6
fron
AB(0), SASC(0) and LASC(0) denote the initial number of antibodies, short living and long living antibody secreting cells respectively. pABL and pABS are antibody proliferation rates, proportional to
the number of antibody secreting cells. Decay of antibodies occurs at rate uAB, and decay of SASC at rate uSASC.
FIGURE 5

The Visual Predictive Check (VPC) comparing the results of the
model-based simulations with observed data. The blue lines are
empirical percentiles and summarize the observed data. The blue and
pink areas are 95% prediction intervals and summarize predictions
from the model 9. The observed percentiles are close to the predicted
percentiles and remain within the corresponding prediction intervals.
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antibodies and therefore require a stronger immune response to

control the virus. Further research is needed to confirm and better

understand these findings and the underlying mechanisms involved.

We found that sex and antiviral load did not significantly affect

the results of the model. This may be due to the small sample size or

the short duration of the study. Further research with larger sample

sizes and longer follow-up periods would be needed to more fully

examine these questions.

Additionally, we found that the decay rate of certain antibody-

secreting cells was shown to decrease considerably with increasing

age. This finding is supported by a previous study that demonstrated a

positive correlation between VZV IgG and ageing (22). Further

research is needed to confirm this finding and to better understand

the potential underlying mechanisms involved.
4 Discussion

In this study, we combined a nonlinear mixed model approach

with ordinary differential equations in order to explore the secondary

immune response after re-exposure to Varicella-Zoster Virus. More

specifically, we constructed a range of plausible models describing the

observed VZV antibody dynamics from symptom onset up until

six months.

In the most optimal model, the change of VZV-specific antibodies

is proportional to the number of short living antibody secreting cells

and the number of long living antibody secreting cells along with a

constant decay rate of antibodies. The number of LASC remains

constant over time, but our mathematical modeling predicted that the

number of SASC decays according to a constant decay rate, after onset

of symptoms. This prediction suggests that following VZV

reactivation the number of SASC rapidly increases, at which point

baseline sampling (thus after herpes zoster onset) might already occur

after all SASC are generated (and without further SASC expansion,

although there is ongoing VZV viremia). Indeed, the first VZV IgG

antibody titers were measured at symptom onset and therefore a few

days after the VZV re-exposure (i.e. VZV reactivation). At this time

point, we expect that the number of antibody secreting cells has
Frontiers in Immunology 08
already been on the rise. For this reason, the proliferation rate of

antibody secreting cells might not have been necessary in the

prediction of antibodies and therefore in the best-fitting model.

Our natural re-exposure modeling contrasts with the situation in

vaccination models, where the first measurement is made prior to

vaccination. In that situation, the proliferation rate of antibody

secreting cells is likely needed as a model parameter to obtain the

candidate model for the antibody dynamics.

Our mathematical modeling of VZV reactivation has highlighted

several potential interesting avenues to be studied in the future. We

found that in the best fitting model both viral load and age were

associated with some key parameters. In particular, our findings here

support the role of viral load in increasing pABS, the antibody

production rate by SASC. Given that the viral load stimulates

antibody production, this stands to reason. It implies that ongoing

VZV viremia does not cause an ongoing SASC proliferation, but

rather more antibody production by the initially - upon VZV

reactivation - generated SASC. We also discovered that age has an

effect on uSASC, the decay rate of SASC, causing it to decrease with

increasing age. A variety of biological interpretations are possible;

inspired by several articles (6, 23, 24), we postulate that as a

participant’s age increases, memory B cells proliferate and

differentiate into short-lived antibody-secreting cells, lowering the

mortality rate. In other hand, we noticed that sex or antiviral of

participants does not have an effect on our model.

Our findings indicate that the ODE model is more capable of

simulating the nonlinear relationship between treatment effects and

immunological response. Although the ODE model is more flexible

and intends to include more factors or covariates in the model, it is

also better at identifying the significant factors for an immunological

response. It is very flexible in fitting immunological response data

when combined with the nonlinear mixed-effects model.

Furthermore, this method may overlook critical aspects. The ODE

model is very beneficial for forecasting and simulating various

biological scenarios and is biologically reasonable. One of the

ramifications of this model is the significant computing effort and

the demand for biological assumptions, which might be challenging

to validate.

The limitations we encountered were the limited sample size,

which only allowed for the analysis of models with moderate

complexity, and the limitations in the frequency and timing of

sampling. Future work should focus on estimating an optimal

sampling schedule for subsequent modeling analysis in order to

overcome these limitations.

Despite the fact that we have demonstrated through nonlinear

mixed modeling using ODEs that following clinical VZV reactivation,

short-lived antibody-producing cells do not expand for a long time,

ongoing VZV circulation appears to cause a higher production of

antibodies by these cells rather than an increase in their numbers. The

primary objective of this study was to apply cutting-edge techniques

to real immunology datasets, rather than to focus on the practical

application of these approaches.

Indeed, instead of the more common group-wise or time-wise

comparisons using standard comparative statistics, we concentrated

on the benefits and potential of ODE modeling in combination with a
FIGURE 6

The proliferation rate of SASC increases with the presence of a higher
viral load. Correlation coefficient is 0.84 and p-value of 2.97×10-15.
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mixed effect approach in the analysis of empirical re-exposure

immunogenicity data. The methods developed in this work can

now be quickly applied to relevant datasets to answer fundamental

questions about the development of immune response systems.
5 Conclusion

Future research should aim to expand the sample size and

diversify the population to increase the generalizability of the

findings. Additionally, it would be valuable to investigate the effect

of various interventions such as antiviral treatment and vaccination

on SASC dynamics, and to assess the correlation between viral load

and antibody production rate. Furthermore, it would be useful to

conduct a long-term study to investigate the persistence of the

immune response, and to compare our findings with other related

studies in the field, in order to identify areas for further investigation

and to establish the robustness of our conclusions.

In conclusion, this study has provided crucial insights into the

dynamics of the immune response following varicella-zoster virus

(VZV) endogenous re-exposure by using a nonlinear mixed modeling

approach. Our findings indicate that once VZV reactivation is

clinically apparent, the expansion of short-lived and long-lived

antibody secreting cells will not occur anymore. This is a significant

discovery that can aid in understanding the mechanisms underlying

VZV antibody dynamics and in making more accurate projections

about the potential impact of vaccines.
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