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Intraperitoneal metastasis of
ovarian cancer: new insights
on resident macrophages in
the peritoneal cavity

Taito Miyamoto*, Brennah Murphy and Nan Zhang*

Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The
Wistar Institute, Philadelphia, PA, United States
Ovarian cancer metastasis occurs primarily in the peritoneal cavity. Orchestration

of cancer cells with various cell types, particularly macrophages, in the peritoneal

cavity creates a metastasis-favorable environment. In the past decade,

macrophage heterogeneities in different organs as well as their diverse roles in

tumor settings have been an emerging field. This review highlights the unique

microenvironment of the peritoneal cavity, consisting of the peritoneal fluid,

peritoneum, and omentum, as well as their own resident macrophage

populations. Contributions of resident macrophages in ovarian cancer

metastasis are summarized; potential therapeutic strategies by targeting such

cells are discussed. A better understanding of the immunological

microenvironment in the peritoneal cavity will provide a stepping-stone to

new strategies for developing macrophage-based therapies and is a key

step toward the unattainable eradication of intraperitoneal metastasis of

ovarian cancer.
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Introduction

According to Globocan’s 2020 projections, the incidence rate of ovarian cancer is

expected to climb from ~300,000 new cases to ~430,000 new cases worldwide by 2040 (an

increase of nearly 37%), with mortality rates also projected to increase by more than 50%

(1). Currently, more than 200,000 women die annually from ovarian cancer, making it the

second most deadly gynecological cancer (1). Because effective screening methods for early

detection have not yet been established (2), patients are often found to have advanced

disease that has spread outside the ovaries at the time of diagnosis (3). Although maximum

efforts should be made for tumor reduction because complete resection at the primary

surgery leads to a good prognosis, complete resection is often difficult due to the spread of

the disease (4). Despite advancements in molecular targeted therapies (such as the recent

introduction of poly (ADP-ribose) polymerase (PARP) inhibitors and anti-vascular
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endothelial growth factor (VEGF) monoclonal antibodies),

recurrence is inevitable for most patients and the disease

eventually becomes resistant to treatment (5, 6). Efficacies of

immune checkpoint therapies remain limited in ovarian cancer,

which is why immunotherapies have not yet become a standard

treatment option (7–10).

Ovarian cancer cases with peritoneal metastasis are very

common. More than 75% of patients show intraperitoneal

metastases at the time of their first surgery (11) and 75% of

recurrent disease is intraperitoneal (12). Because the epithelium of

the ovary or the fallopian tube (where ovarian cancer originates) is

exposed in the abdominal cavity with no anatomic barriers (13),

ovarian cancer cells easily detach from the primary tumor and enter

the peritoneal fluid. These cells disseminate throughout the entire

peritoneal cavity but preferentially metastasize to the peritoneum

and omentum. Here, cancer cells thrive in a favorable tumor

microenvironment for survival, engraftment, and development

through various interactions with stromal cells (14, 15).

Unfortunately, eradication of intra-abdominal lesions in ovarian

cancer is an unresolved issue and the efficacy of intraperitoneal

chemotherapy and hyperthermic intraperitoneal chemotherapy

(HIPEC) is presently inconclusive (16, 17).

Macrophages in the peritoneal cavity play an important role in

shaping the tumor microenvironment in ovarian cancer metastasis

(18). It has been known for more than half a century that

macrophages are abundant in the peritoneal fluid (19). It is now

clear that multiple macrophage populations with unique

characteristics are present not only in the peritoneal fluid, but

also in the peritoneum and omentum in the steady state. These are

called tissue-resident macrophages. Elegant lineage-tracing studies

in mice in the past decade reveal that tissue-resident macrophages

generally have two distinct origins, embryonic precursors prenatally

and bone marrow precursors postnatally (i.e., monocyte-derived).

The ratios between these two fractions vary across tissue types and

are regulated by tissue-specific signals (20–25). Macrophages of

different origins can exhibit hardwired differences that may not be

as “plastic” as we previously thought (26). Macrophages in tumors

(tumor-associated macrophages; TAMs) consist of different

proportions of these resident fractions which are present before

tumor formation and newly-infiltrated monocyte-derived fraction

which come during tumor progression. Importantly, TAMs with

different origins have been suggested to play different roles in tumor

progression (27). Notably, embryonically-derived resident

macrophages in the peritoneal fluid, peritoneum, and omentum

have been individually shown to have tumor-promoting role in

ovarian cancer (24, 25, 28). Therefore, targeting these cells may be

of therapeutic interest for the development of novel anti-

cancer immunotherapies.

Here, we provide an overview of the unique microenvironment

and resident macrophage populations within the peritoneal fluid,

peritoneum, and omentum, as well as their roles in ovarian cancer

progression in mice and humans. Detailed knowledge of the

intraperitoneal environment, including the origin-based diversity

of macrophages, will deepen our understanding about the

intraperitoneal metastasis of ovarian cancer. Furthermore, it will

help overcome the limited efficacy of macrophage-targeted cancer
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therapy in clinical settings due to the complexity of macrophage

origins, plasticity, and intra-tumor heterogeneity (29, 30), and help

toward controlling the ovarian cancer progression in the

peritoneal cavity.
The unique intraperitoneal
environment and its contribution to
ovarian cancer progression

The peritoneal cavity contains serous exudate with various

components such as steroid hormones, cytokines, and growth

factors at steady state (31, 32). The peritoneal fluid volume is 5-

20 mL in humans, which varies widely depending on the

physiological condition. For example, in females, this volume

changes during the estrus cycle and reaches the maximal level

after ovulation (31). Macrophages are the most abundant immune

cell population in peritoneal fluid, followed by smaller populations

of T cells, dendritic cells, mast cells, NK cells, and B cells (33, 34)

(Figure 1A). During ovarian cancer metastasis, cancer cells detach

from the primary tumor as single cells or clusters that form

multicellular spheroids containing other cellular components such

as macrophages and fibroblasts. Epidermal growth factor (EGF)

secreted from these cells in spheroids promotes cancer cell growth

and survival (Figure 1B). These conditions help metastatic cancer

cells floating in the peritoneal fluid overcome anoikis (15, 35, 36).

The peritoneal cavity is lined by a single layer of mesothelial

cells, known as the mesothelium, which covers all visceral organs.

The peritoneal mesothelium not only provides a non-adhesive

protective surface to facilitate the movement of organs within the

cavity but also serves as an important immune barrier against

breaching of microorganisms (37). During ovarian cancer

metastasis, mesothelial cells stimulated by cancer cell- or

macrophage-derived cytokines, such as transforming growth

factor beta 1 (TGF-b1) and macrophage inflammatory protein 1

beta (MIP-1b), promote cancer cell adhesion, invasion, and

proliferation via expression of fibronectin, stromal cell-derived

factor-1a (SDF-1a) and P-selectin (38–40). Mesothelial cells also

support cancer cells by undergoing mesothelial-to-mesenchymal

transition (MMT) induced by cytokines such as TGF-b, hepatocyte
growth factor (HGF), and plasminogen activator inhibitor-1 (PAI-

1) from cancer cells (41–43). In addition, spheroids in contact

with mesothelial cells facilitate their migration and clearance,

allowing cancer cells access to the sub-mesothelial environment

(44) (Figure 1C).

The omentum is a central regulator of intraperitoneal

homeostasis, controlling inflammation, regulating fluid exchange,

promoting angiogenesis, and storing and supplying lipids (45).

Underneath the mesothelial cells that cover the surface are

abundant adipocytes, adipose-derived stromal cells (ASCs),

fibroblasts, and immune cells (14). Milky spots are lymphoid

tissues within the omentum consisting mainly of macrophages, T

cells, and B cells. Importantly, the mesothelial lining in the milky

spots is not continuous, which enables circulating leukocytes to

migrate into the peritoneal cavity (46). Milky spots are also known
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to be a major implantation site of cancer cell metastasis (47).

Indeed, cancer cells preferentially lodge and grow in omental

milky spots rather than in other peritoneal fat depots (48).

Macrophages in the milky spots promote colonization of cancer

cells via secretion of C-C motif chemokine receptor 1 (CCR1)

ligand (49). It was also reported that neutrophil influx to the

omentum, predominantly in milky spots and through neutrophil

extracellular traps (NETs), facilitated a premetastatic niche (50). In

addition, a mechanism of hematogenous metastasis with a

preference for the omentum via the ErbB3-neuregulin1 axis has

been reported (51). Omental adipocytes increase adipokine

secretion, such as Interleukin 8 (IL-8) and C-C motif chemokine

ligand 2 (CCL2) to promote homing of ovarian cancer cells to the

omentum (52, 53). Moreover, once cancer cells are seeded in the

omentum, adipocytes transfer fatty acids to cancer cells and

increases energy production through fatty acid oxidation (53, 54).

ASCs in the omentum increase production of nitric oxide (NO) and

matrix metalloproteinases (MMPs) in ovarian cancer cells and
Frontiers in Immunology 03
promote cancer cell growth and metastasis (55, 56). Finally,

ovarian cancer cells can also transform omental fibroblasts into

cancer associated fibroblasts (CAFs) via miRNAs and TGF-b1 to

modulate the tumor microenvironment at the metastatic niche (57,

58) (Figure 1D).

In summary, there are supportive mechanisms for ovarian

cancer that are specific to each of the organs of the peritoneal

fluid, peritoneum, and omentum.
Identification and characterization of
tissue-resident macrophages in the
peritoneal cavity in mice

Peritoneal fluid contains an abundance of immune cells, of

which macrophages are the most dominant, accounting for about

half of the total number (59). In the steady state, macrophages
A

B

D

C

FIGURE 1

Intraperitoneal metastasis of ovarian cancer. (A) Immune cell populations represented in the peritoneal fluid; macrophages represent the largest
population followed by T cells, dendritic cells, mast cells, NK cells, and B cells. (B) Ovarian cancer cells metastasize via detaching from the primary
tumor to form multicellular spheroids containing various stromal cells in the peritoneal fluid and seed in pro-tumor secondary sites including the
peritoneum (C) and omentum (D). EGF, epidermal growth factor; TGF, transforming growth factor; MIP, macrophage inflammatory protein; MMT,
mesothelial-to-mesenchymal transition; SDF, stromal cell-derived factor; hepatocyte growth factor (HGF); PAI, plasminogen activator inhibitor; CCR,
C-C motif chemokine receptor; CCL, C-C motif chemokine ligand; NO, nitric oxide; MMP, matrix metalloproteinase; CAF, cancer associated
fibroblasts; ASC, adipose-derived stromal cells.
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do not adhere to the peritoneum but float in the peritoneal fluid

(59). Fate mapping studies have shown that there are two

types of resident macrophages in the peritoneal fluid in mice:

Large peritoneal macrophages (LPMs) from embryonic origins

and small peritoneal macrophages (SPMs) derived from

circulating monocytes (22). LPMs represent approximately 90%

of intraperitoneal macrophages at homeostasis and are

characterized by the expression of GATA6 and GATA6-regulated

peritoneal macrophage-specific genes (20, 21, 60). Retinoic acid

supplied by omental adipose tissue and Wilms tumor 1 (WT1)-

expressing mesothelial cells or submesothelial fibroblasts plays a

central role in GATA6 expression in LPMs (60, 61). Although the

composition of SPM niche is unclear, development of SPMs

requires IRF4 and signals from microbiome (62). LPMs express a

higher level of F4/80 and lower level of MHCII than SPMs (20),

however, intracellular adhesion molecule 2 (ICAM2) and Tim-4 are

specifically expressed by LPMs and CD226 in SPMs, therefore they

are considered selective markers (62–65). Embryo-derived LPMs

are partially replaced by monocyte-derived macrophages during

aging and inflammation (66–68). Interestingly, monocyte-derived

macrophages that replace the resident LPMs after inflammation

exhibit a phenotype similar to embryo-derived LPMs (69, 70).

LPMs phagocytose more and differentially secrete inflammatory

cytokines in response to stimuli when compared to SPMs (71).

Moreover, LPMs rapidly form multicellular aggregates at the site of

intraperitoneal bacterial exposure or peritoneal injury to control the

spread of bacterial infection and assist in wound healing

respectively (59, 72, 73). In addition, LPMs are known to be
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involved in IgA production by B1 cells in gut-associated

lymphoid tissue (GALT) (60) and play an important role in B1

cell homeostasis.

In addition to resident macrophages in the peritoneal fluid,

macrophages within parietal membranes in mice have been

described by Uderhardt et al. (74). Specifically, a resident

macrophage population was identified in mesothelial cell layers of

the mesentery and peritoneum, characterized by CD64+F4/

80+LYVE1hi expression, and noted to be distinct from

macrophages in the peritoneal fluid (24). These LYVE1hi

membrane-associated macrophages derive primarily from

embryonic progenitor cells and are regulated by colony stimulating

factor 1 (CSF1), which is produced by WT1+ stromal cells. These

macrophages resemble LYVE1+ macrophages present on the surface

membranes of other organs (with the exception on the liver) and have

a different gene expression phenotype from resident macrophages in

other body compartments, such as peritoneal fluid macrophages,

alveolar macrophages, and microglia (24).

In the murine omentum, there is also a dominant LYVE1+

macrophage population. Among the LYVE1+ macrophages (also

CD169+), the CD163+Tim-4+ population has been shown to be the

resident fraction derived from embryonic progenitor cells, while

others derive from monocytes. This embryo-derived population is

found in the vicinity of the milky spots and has a unique gene

expression pattern that is enriched in the JAK-STAT pathway (25).

LYVE1+ macrophages in the omentum during the embryonic

period have been shown to regulate lymphatic permeability and

function through modulation of IL-1b production (75).
FIGURE 2

Murine resident peritoneal macrophages and their supporting environment at steady state. Both embryonically-derived and monocyte-derived
resident macrophages are present in murine peritoneal cavity at steady state. These resident macrophages from different origins are regulated
differently in the tissue-specific niche. LPM, large peritoneal macrophage; SPM, small peritoneal macrophage; CSF1, colony stimulating factor 1;
WT1, Wilms tumor 1.
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Thus, tissue-specific resident macrophage fractions of

embryonic or monocyte origins have been identified in the

peritoneal fluid, peritoneum and omentum, revealing the origin-

and compartment-based diversity of macrophages in the peritoneal

cavity (Figure 2). Markers for compartment-specific resident

macrophage in the peritoneal cavity are summarized in Figure 3.
The role of resident peritoneal
macrophages in ovarian cancer
progression in mice

Macrophages in the peritoneal cavity contribute to the

intraperitoneal metastasis of ovarian cancer through spheroid

formation, increased adhesion of cancer cells to mesothelial cells,

and colonization to milky spots in omentum (36, 40, 49).

Macrophage-mediated inflammation has also been shown to be

important in the progression of ovarian cancer (76). In the past

decade, it has been elucidated that macrophages of both embryonic

and monocytic origins coexist in tumors in varying proportions,

and that these different macrophages have distinct effects on

tumorigenesis depending on tumor types (27).

First, regarding macrophages in the peritoneal fluid, Xia et al.

showed that in an ID8 ovarian cancer model, macrophages in the

peritoneal fluid can be divided by Tim-4 expression into the Tim-

4+GATA6+ resident type and the Tim-4-GATA6- monocyte-

derived type. Functionally, monocyte-derived macrophages do not

contribute to ID8 tumorigenesis using CCR2 deficient murine

models, whereas resident peritoneal macrophages support tumor
Frontiers in Immunology 05
progression. These protumor resident macrophages have high

arginase 1 expression, high mitophagy activity, and decreased

mTORC1 activity. Selective autophagy deficiency in myeloid cells

by deleting FIP200 induces loss of Tim-4+ macrophages, enhanced

T cell immunity, and suppressed ID8 intraperitoneal tumor growth

in vivo (28). Casanova-Acebes et al. showed that Tim-4+GATA6+

LPMs are maintained by retinoid X receptors (RXRs). RXR

deficiency 1.) reduces the survival of Tim-4+ LPMs through

excess lipid accumulation, 2.) reduces LPM accumulation in

early ovarian tumors, and 3.) slows primary ovarian tumor

growth (65). Weiss et al. showed that the immune responsive

gene 1 (IRG1)-synthesized metabolite, itaconic acid, and oxidative

phosphorylation are upregulated in F4/80+ resident macrophages

in intraperitoneal tumors. Interestingly, IRG1 deletion in

macrophages reduces oxidative phosphorylation and subsequent

reactive oxygen species (ROS) production in resident macrophages,

which leads to attenuated ROS-mediated MAPK activation in

tumor cells and suppressed growth of ID8 intraperitoneal

tumors (77).

Embryonic LYVE1+ resident macrophages in the peritoneum

are characterized by increased expression of alternatively activated

macrophage genes such as Retnla (RELMa) and Mrc1 (CD206).

Although LYVE1+ macrophages are also present in the omentum,

removal of LYVE1+ macrophages suppressed intraperitoneal tumor

growth of ID8 cells in an omentectomized mouse model,

demonstrating that LYVE1+ macrophages in the peritoneal

membrane promote intraperitoneal expansion of ovarian cancer

independent of the omentum (24).

Etzerodt et al. showed that resection of the omentum prior to

tumor cell injection delayed intraperitoneal progression in the ID8

mouse model of ovarian cancer, confirming the tumor-promoting

properties of the omentum in ovarian cancer. They showed that

Tim-4+CD163+ resident macrophages in the omentum contributed

to the acquisition of a cancer stem cell (CSC)-like phenotype

in tumor cells and increased the tumor cell number in the

ascites without affecting tumor development in the omentum.

Furthermore, continuous administration of CD163-targeted lipid

nanoparticles (LNPs) specifically reduced the numbers of

embryonic Tim-4+CD163+ and monocyte-derived Tim-4-CD163+

macrophages. This led to reduced tumor burden in both the

omentum and ascites (25). These data indicate that macrophage

subpopulations in the omentum may be separately involved in

tumor progression. However, the mouse models used in this study

cannot separate the role of omental macrophages from membrane

macrophages, because both omental and membrane but not fluid

macrophages express CD163 (24, 25). Further studies need to

design a model that can specifically target the omental macrophage.

In summary, embryonically-derived resident macrophages in

the peritoneal fluid, peritoneum, and omentum promote

intraperitoneal progression of ovarian cancer. Tim-4, LYVE-1,

and CD163 are some of the surface markers for the resident

macrophages in the peritoneal fluid, membrane, and omentum,

respectively. It remains less well understood what roles monocyte-

derived macrophages play in the progression of ovarian cancer in

these peritoneal compartments.
FIGURE 3

Markers for resident macrophage in the peritoneal fluid, peritoneum,
and omentum in mice and human. ICAM, intracellular adhesion
molecule; LPM, large peritoneal macrophage; SPM, small peritoneal
macrophage.
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Resident peritoneal macrophages and
ovarian cancer in humans

Unlike murine resident macrophages, resident peritoneal

macrophages in humans are much less well-studied, mainly due

to the limited sample availability, particularly in the steady state.

Furthermore, it is nearly impossible to definitively determine their

precise origin because of ethical concerns. Therefore, in this review,

we consider human macrophages as tissue resident when they are

present before detectable diseases. Whether they develop prenatally

during embryogenesis or postnatally from circulating monocytes

remains unknown and difficult to test. Despite such limitations,

recent technical advances have led to important discoveries of some

aspects of resident peritoneal macrophages in humans.

Like in mice, macrophages are the predominant immune cell

component in human peritoneal fluid (78). Although it remains

controversial whether resident macrophages in human peritoneal

fluid require GATA6 for survival and self-renewal, Ruiz-Alcaraz

et al. analyzed peritoneal fluid from patients undergoing tubal

ligation or gynecological surgery for benign tumors and found

that over 80% of CD14+CD16+ cells in the monocyte/macrophage

fraction in humans were GATA6 positive (79). On the other hand,

CD14+ macrophages in cancerous ascites did not appear to express

GATA6 (80). Interestingly, resident macrophages are decreased in

cancer tissues compared to normal tissues in lung cancer (81),

which could potentially explain the difference in GATA6 expression

in the peritoneal macrophages between healthy donors and cancer

patients (67). Interestingly, the analysis of peritoneal fluid from

infants to adolescents who underwent surgical procedures that were

considered immunologically intact showed that the percentage of

CD14+CD16high fractions was higher in infants and lower in

adolescent children, which might reflect age-related changes in

resident macrophages (82). This is somewhat consistent with the

murine data showing that increasing proportions of resident

peritoneal macrophages derive from monocyte precursors in the

bone marrow as mice age (68).

Two studies have suggested CD16+CD206+ macrophages as

resident macrophages in the peritoneal fluid in humans. In one

study, a CD16+CD206+ macrophage fraction can be detected in

patients before peritoneal dialysis, whose peritoneal environment is

considered as homeostatic and physiologic. These CD16+CD206+

“mature” macrophages were abundant before dialysis, but

decreased after dialysis, whereas the CD16+CD206- fraction

increased after dialysis. Moreover, during acute peritonitis, the

CD16+CD206+ macrophage fraction decreased and the CD16-

CD206- fraction increased compared to the steady state, which is

consistent with a decrease in the resident macrophage fraction

during infection in mice (83). In the other study, Stengel et al.

characterized macrophages in ascites from cirrhotic patients by

CD206 expression and defined CD206+ cells as human LPMs and

CD206- cells as human SPMs because the former was larger and

more granular. Human LPMs contain a homogenous CD16+ and

CCR2- population and express higher levels of CD163 and CRIg

than human SPMs. Additionally, human LPMs showed higher

Ki-67 positivity than human SPMs, which indicates the increased
Frontiers in Immunology 06
proliferative potential of human LPMs. Moreover, the proportion of

human LPMs decreases in the presence of peritoneal infection,

which phenocopies what has been reported in mice LPMs (84).

Irvine et al. compared macrophages in human cirrhotic ascites with

mouse peritoneal fluid macrophages by RNA sequencing. They

showed similarities between CRIghigh human macrophages and F4/

80high murine resident macrophages, as well as between CRIglow

human macrophages and monocytes and F4/80low murine

monocyte-derived macrophages. These hypothesize that CRIghigh

and CRIglow macrophages may represent tissue-resident and

monocyte-derived populations in humans, respectively (85).

Importantly, recent single cell RNA sequence data confirmed

expression of CD16 (FCGR3A), CD206 (MRC1), CD163, and

CRIg (VSIG4) in macrophages from both peritoneal fluid at

steady state and ovarian cancer ascites (33, 86).

Tim-4 is another potential marker for resident peritoneal

macrophages in humans. In ovarian cancer ascites from patients,

Chow et al. demonstrated the presence of Tim-4+ macrophages

(which marks tissue-resident macrophages in murine peritoneal

fluid), but Tim-4 was not expressed on steady-state circulating

monocytes. Moreover, Tim-4 expression within tumor tissues was

detected only in the remaining native tissue compartment, not in the

tumor-invaded area, suggesting that Tim-4 is also a specific marker for

resident macrophages in human peritoneal fluid (80). Another study

by Xia et al. reported only 3% of Tim-4+ macrophages in ovarian

cancer ascites. They postulated that Tim-4may not be amarker for the

resident macrophage fraction in ovarian cancer ascites, but they also

acknowledged the possibility of poor sensitivity of the anti-human

Tim-4 antibody they used. Using RNA seq data of macrophages in

ovarian cancer ascites (87), they showed a similarity in ovarian cancer

ascites between human CRIghigh macrophages and murine Tim-4+

macrophages, and that ovarian cancer patients with higher CRIghigh

expression had poor prognosis (28).

Even less is known about resident macrophages in the

peritoneal membrane and omentum in humans. Single-cell

RNA seq of metastatic omental tumor of ovarian cancer

identified a CD163+CD204+ cluster with high CD14 and CD16

expression and a NR1H2+ cluster in macrophages of all 6 cases

(88). This may indicate the presence of specific macrophage

subsets in the omentum. However, it is not clear whether these

macrophage subsets are also present in the steady state, i.e.,

resident macrophages.

Thus, it has been suggested that molecules such as CD16,

CD206, CD163, CRIg, and Tim-4 may be associated with resident

macrophages in the human peritoneal fluid, and macrophages

expressing these molecules are also found in ascites from ovarian

cancer patients (Figure 3).
Therapeutic potential of resident
peritoneal macrophages for
ovarian cancer

There has been a significant development of therapies targeting

macrophages in the tumor microenvironment. The two main
frontiersin.org
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approaches are 1.) reducing the number of macrophages, via

CSF1-colony stimulating factor 1 receptor (CSF1R) or CCL2-

CCR2 pathway inhibition, and 2.) exploiting the macrophage

plasticity by reprogramming immunosuppressive macrophages to

immunoreactive, as represented by successful targeting the CD47-

SIRPa pathway (30). However, apart from toll-like receptor (TLR)

agonists, such as imiquimod and BCG, most of the therapeutic

strategies that showed efficacy in preclinical models have yet to

become the standard treatment in clinical settings (89). Clinical

efficacies of macrophage-targeting therapies in solid tumors have

been limited due to the complexity of the origin, plasticity, and intra-

tumor heterogeneity of macrophages (27, 29, 30). Recently, adoptive

immunotherapy using genetically modified macrophages (chimeric

antigen receptor-macrophage; CAR-M) with enhanced phagocytosis

and high T cell costimulatory capability has been developed. A Phase

I trial using CAR-M that recognize HER2 antigen have been initiated

to verify its safety and efficacy (29, 90, 91).

The contribution of resident macrophages to tumor progression

has been demonstrated not only in the peritoneal cavity, but also in

the brain (92), pancreas (93), and lung (81, 94), suggesting the

promising therapeutic potential of targeting resident macrophages

in cancer. Below, we highlight strategies of targeting several

potential markers of resident peritoneal macrophages as cancer

therapies. Because resident macrophages in the omentum and the

peritoneal membrane were only recently characterized in tumor

models, there has been no published data on specifically targeting

these two populations. The following summary only focuses on

resident macrophages in the peritoneal fluid.

As previously discussed, Tim-4 is a phosphatidylserine receptor

that has been identified in resident peritoneal macrophage in both

mice and humans (28, 80, 95). In a murine intraperitoneal

metastatic model of colorectal and lung cancer, Tim-4 blockade

alone showed no significant effect on tumor progression. However,

combined with an immune checkpoint inhibitor, Tim-4 blockade

significantly slowed tumor progression, proposing the treatment

strategy that blockade of Tim-4-mediated sequestration against

phosphatidylserine+CD8+ T cells to enhance the efficacy of CD8+

T cell-based immunotherapies (80). Interestingly, targeting another

phosphatidylserine receptor, MerTK, which is in the same pathway

(efferocytosis) as Tim-4, in these macrophages increases anti-tumor

immunity (96), suggesting that targeting the efferocytosis pathway

in resident peritoneal macrophages holds a great promise in treating

intraperitoneal metastasis of ovarian cancer.

Another potential cross-species marker of resident peritoneal

macrophage is CRIg, also known as VSIG4. It has been

characterized as a complement receptor as well as a co-inhibitory

immune checkpoint molecule of T cells (97, 98). An exciting

ongoing study highlights an anti-CRIg antibody (VTX-1218) by

Verseau Therapeutics. Preliminary results suggest a synergistic anti-

cancer effect of VTX-1218 and immune checkpoint therapy in

syngeneic mouse models. Mechanistically, VTX-1218 repolarizes

tumor-associated macrophages into proinflammatory phenotypes

and promotes T cell-mediated tumor killing (99). Further studies

using VTX-1218 or targeting CRIg in murine models of ovarian

cancer is needed to validate these preclinical data targeting

this pathway.
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CD206 and CD163 are other candidates to target on resident

peritoneal macrophages in humans. Because both molecules have

garnered attention as a marker of immunosuppressive M2

macrophages within TAMs, therapeutic development targeting

them is being vigorously pursued (100, 101). However, it should

be noted that those molecules can also be expressed on TAMs

differentiated from circulating monocytes and therefore therapies

targeting them may not be specific to tissue-resident fraction in

cancer setting. For example, CD206 expression can be induced on

CD14+ monocytes from peripheral blood cocultured with IL-6, one

of the major cytokines upregulated in ovarian cancer ascites (102,

103). Nonetheless, Zhou et al. showed that Fe3O4-based polylactic-

glycolic acid (PLGA) nanoparticles, whose surface was modified with

an anti-CD206 monoclonal antibody, repolarized M2 macrophages

to a M1 phenotype (104). Additionally, Jaynes et al. developed a 10-

mer peptide (RP-182) that selectively induces a conformational

switch of CD206 from the open to the closed state. This activation

enhances endocytosis, phagosome-lysosome formation, and

autophagy programs, resulting in reprogramming M2-like tumor

associated macrophages to an antitumorM1-like phenotype. RP-182

suppresses tumor growth in a mouse pancreatic cancer model and

synergizes with chemotherapy (105). Finally, a bispecific T-cell

engager (BiTE) recognizing CD206/CD3 and a trispecific T-cell

engager (TriTE) with bivalent anti-CD3 binding have also been

developed. These BiTEs and TriTEs can activate T cells and induced

cytotoxicity toward M2 macrophages in vitro (106). Etzerodt et al.

demonstrated that depletion of CD163+ macrophages with

doxorubicin-loaded, antibody-conjugated lipid nanoparticles

inhibited tumor growth in an intraperitoneal metastasis model of

melanoma (107). Moreover, OR2805, an anti-CD163 antibody, has

been developed and is now in phase I/II clinical trials as a single

agent or in combination with a PD-1 antibody against multiple

tumor types (NCT05094804). Preliminary results demonstrate an

anti-tumor activity in lung cancer xenograft models in humanized

mice (108).

In summary, therapies targeting molecules that are regarded as

markers of resident macrophages are being eagerly developed. In

particular, an anti-CD163 antibody is being tested in a phase I/II

clinical trial.
Future challenges about resident
peritoneal macrophages in relation to
ovarian cancer

During intraperitoneal metastasis of ovarian cancer, it is still not

clear how much of the intra-tumoral macrophages are derived from

the resident fraction, or how plastic they are (i.e., whether they

switch between M1/M2 phenotypes). Although macrophages

derived from circulating monocytes are generally considered to be

highly plastic, tissue-resident macrophages appear to have a

restricted plasticity (26). This may be because it is desirable to

limit the plasticity of resident macrophages, which remain in tissues

for a long time and whose main function is to maintain tissue

homeostasis (26). Indeed, in lung cancer, resident macrophages and
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monocyte-derived macrophages coexist in early lung cancer lesions

and retain their distinct phenotypic and molecular programs even

in late-stage tumors (81). Therefore, reprograming resident

macrophages within human tumors may pose a significant

challenge. From this perspective, depletion might be better way

than repolarization for targeting resident macrophage.

A lack of understanding resident peritoneal macrophages is

another hurdle against the therapeutic development. All murine

resident macrophages in the peritoneal cavity (fluid, membrane,

omentum) act in a tumor-promoting manner during ovarian cancer

metastasis, but the detailed mechanisms of how they contribute to

tumor progression is still not fully elucidated. In addition, resident

macrophages in the ovary and fallopian tubes have not been studied

in detail, and the impact of these resident macrophages on

primary tumor development is unknown. Finally, comprehensive

characterization of resident macrophages in the human peritoneal

cavity has only just begun to emerge. Specific transcriptional

regulatory mechanisms modulated by the unique intraperitoneal

environment (such as retinoic acid and GATA6 in murine LPMs)

have not been identified in humans. Therefore, attempts to translate

from preclinical mouse models to human therapies are significantly

impinged. Although it remains difficult to collect steady-state

samples, it is necessary to continuously attempt a comprehensive

analysis of tissue macrophages, including in non-cancerous

environments, when approaching the peritoneal cavity during

benign or malignant surgeries.

Current therapies for late-stage ovarian cancer patients

mainly rely on intravenous chemotherapy. However, the unique

microenvironment of the peritoneal cavity (highly dynamic fluidics,

crosstalk between multiple tissue compartments, and the

peritoneal-plasma barrier) prompts the field to consider shifting

to an intraperitoneal delivery (109). Although intraperitoneal

chemotherapies show inconsistent results in ovarian cancer

patients, they have shown a tremendous improvement in patients

with intraperitoneal metastasis of other cancers (109). In order to

efficiently and specifically target resident peritoneal macrophages,

intraperitoneal injection is also a preferred option in comparison to

intravenous injection. Future macrophage-based therapies need to

comprehensively compare these two routes of drug delivery in

preclinical models and clinical settings.
Concluding remarks

The peritoneal cavity is a dynamic microenvironment with a

wide variety of functions that interact closely with all peritoneal

tissues. Only recently have resident macrophages in the peritoneal

cavity been identified and their pro-tumor roles in ovarian cancer

metastasis has come under scrutiny. Because most ovarian cancer
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growth and metastasis occur in the peritoneal cavity, a better

understanding of the unique microenvironment and cellular

characteristics present in the peritoneal cavity is essential for

combating ovarian cancer metastasis. Besides the well-established

T cell-based immune therapies, we call for more extensive research

on macrophage-targeting therapies, which may lead to a cure for

ovarian cancer in combination with other established immune

therapies and targeted therapies.
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