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Construction of a novel
molecular typing and
scoring system for anoikis
distinguishes between
different prognostic risks and
treatment responsiveness
in low-grade glioma

Ganghua Zhang1†, Aiyan Chen1†, Jianing Fang1, Anshan Wu2,
Guanjun Chen1, Panpan Tai1, Haotian Chen, Xinyu Chen1

and Ke Cao1*

1Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China,
2Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
Background: The main factors responsible for low-grade glioma (LGG)s’ poor

prognosis and treatment effectiveness include recurrence and malignant

progression. A specific type of programmed cell death, known as anoikis,

which is crucial for tumor invasion and metastasis, however, has not yet been

investigated in LGGs.

Methods: We downloaded data of 509 samples from the TCGA-LGG cohort,

carried out cluster analysis for typing twice on the basis of 19 anoikis-associated

genes, and the subtypes were evaluated the differences in clinicopathological

and biological features. ESTIMATE and single-sample gene set enrichment

analysis were employed to examine the immunological milieu of LGGs, and

enrichment analysis was used to look into the underlying biological mechanisms

in LGGs. Cox regression analysis and the Least Absolute Shrinkage and Selection

Operator regression algorithm were used to create a prediction scoring system.

The scoring system was used for classifying LGG into high- and low- anoikis

riskscore (anoiS) groups. The impact of the anoiS on the prognosis, standard

treatment, and immunotherapy of patients with LGG was assessed using survival

analysis and drug sensitivity analysis. Cell experiments were employed for the

verification of the differential expression between LGG cells and normal cells of

the anoikis gene team that regard CCT5 as the core.

Results: Based on the expression profiles of the 19 anoikis-associated genes, all

individuals with LGG were classified into four subtypes and two macrosubtypes.

The different macrosubtypes had significantly different biological characteristics,

and the anoirgclusterBD subtype manifested a significantly bad prognosis and a

high immune level of infiltration. And subsequent secondary genotyping also

showed good prognostic discrimination. We further constructed an anoikis

scoring system, anoiS. LGG patients having a high anoiS had a worse prognosis
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in comparison to those having a low anoiS. The high anoiS group exhibited larger

levels of immune infiltration and superior immunotherapy efficacy than the low

anoiS group. The high anoiS group was also more susceptible to temozolomide

(TMZ) than the low anoiS group, according to a drug sensitivity analysis of TMZ.

Conclusion: This study constructed a scoring system for predicting the

prognosis of patients with LGG and their responsive to TMZ and immunotherapy.
KEYWORDS
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1 Introduction

As stated by the World Health Organization’s 2016

classification based on histological type, diffuse gliomas are

classified as low-grade gliomas (LGGs; grades II and III) and

glioblastomas (GBMs; grade IV) (1, 2). Grade II LGGs are

defined as astrocytomas and grade III as oligodendrogliomas.

LGGs grow more slowly than high-grade gliomas. LGGs comprise

approximately 7.6% of all primary brain tumors, and their median

survival rate is between 4.7–9.8 years (3). Although the prognosis of

LGGs is significantly better than that of GBMs, LGGs are highly

susceptible to recurrence and metastasis (4), and 45–74% of these

recurrent metastatic cases progress to GBMs in patients with LGGs

(5). Unfortunately, the existing key marker gene status (including

isocitrate dehydrogenase (IDH) mutations, 1p19q co-deletions, and

O6-methylguanine-DNA methyltransferase (MGMT) promoter

methylation) does not manifest clinically important significance

for LGGs as for GBMs. Therefore, new molecular typing and

scoring systems should be developed to more accurately

differentiate between patients with different prognostic risks and

therapeutic sensitivities to develop individualized and precise

treatment plans for each patient with LGG.

Standard treatment for LGG, temozolomide (TMZ) or PCV

regimens based chemotherapy, radiotherapy and surgery, has not

been very effective in preventing tumor recurrence and progression

(6). Yao et al. (2021) found that overall survival after surgery and

radiotherapy had improved following chemotherapy in newly

diagnosed high-risk IDH-mutant patients with LGG, respectively;

however, a proportion of individuals treated with TMZ developed

TMZ-induced hypermutation recurrent tumors (7). Radiotherapy

can provide survival benefits for most patients with LGGs.

However, the optimal timing of radiotherapy remains

controversial. It is unclear whether radiotherapy should be used

early in the postoperative period or delayed until tumor progression

has occurred (8). The advent and refinement of immunotherapy has

had a significant influence on cancer treatment. Many clinical

studies on immunotherapeutic agents are currently underway to

ascertain the safety and efficacy in the treatment of gliomas (9). The

clinical trials comprised only GBM patients; however, GBM

patients have not shown any survival benefits from nivolumab
02
(NCT02550249) administration (10). The tumor immune

microenvironment (TIME) has a key involvement in cancer

progression and tumor immunity, as it harbors key factors that

may alter the efficacy of immunotherapy. The function of the TIME

in LGGs requires systematic investigation, which may bring novel

options for improving survival benefits in radiotherapy-resistant

patients (11). Studies have shown that IDHmutations are not only a

disease-defining biomarker and oncogenic driver in glioma, but are

also a neoantigen and modulator of glioma immune evasion and are

associated with an immunosuppressive phenotype (12, 13). This

shows that immunotherapy may have a positive impact on how

patients with LGG are treated.

A particular type of planned apoptosis, referred to as anoikis, is

brought on by a lack of intercellular adhesion and cell-extracellular

matrix (ECM) adhesion, or by an erroneous form of adhesion, and

it is connected to a number of necessary cellular functions, for

instance, cell migration and invasion (14, 15). Anoikis is generally

triggered by the interplay of two apoptotic pathways, which can

happen when mitochondria are interfered with or cell surface death

receptors are activated (16–18). Cancer cells can avoid anoikis and

acquire resistance to anoikis, which allows them to survive and

colonize distant sites. Anoikis is a key mechanism that takes part in

cancer invasion and metastasis (19–21). In the tumorigenesis

models of breast cancer, it has been found that the deletion of E-

cadherin (also known as CDH1) encourages angiogenesis and

anoikis resistance, which in turn contributes to the development

of metastatic disease. Moreover, HGF promotes anoikis resistance

in endometrial cancer cells by elevation of cyclooxygenase-2 (COX-

2) expression that is dependent on the PI3K-Akt pathway. A

number of cancers have also been shown to overexpress

promyosin-related kinase B (TrkB, also known as NTRK2), a

powerful and selective inhibitor of anoikis. TrkB transfection

confers anoikis resistance by activating the PI3K-Akt pathway in

a highly anoikis-sensitive rat intestinal epithelial cells. Furthermore,

in mammary epithelial cells, CDH1 acts synergistically with EGFR

and ERBB2 protects cells from anoikis (22). CCT5 markedly

promotes gastric cancer anti-anoikis to promote gastric cancer

lymph node metastasis formation (23). In addition, several

previously studies reported RAN, KIF11, ECT2, GDH1, and

PLAG1 were related to anoikis resistance (24–27). And six
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datasets (GSE145806, GSE106592, GSE155457, GSE40690,

GSE55958, GSE39220, and GSE40171) identified six anoikis-

related genes. We then selected 19 ANOIRGs from those

previously published articles (14, 22–27) and those six datasets

(GSE145806, GSE106592, GSE155457, GSE40690, GSE55958,

GSE39220, and GSE40171). Recent studies have shown that 27

anoikis-associated genes, based on gene set enrichment analysis

(GSEA) screening of GBM, can predict patient prognosis and

response to immunotherapy (28). Anoikis genes contribute to

carcinogenesis, tumor invasion, and tumor infiltration despite the

fact that few researchers have thoroughly evaluated their

significance in LGGs. Our hypothesis was that LGGs develop a

malignant phenotype and become anoikis resistant, which may

explain their poor prognosis and aggressive metastatic spread.

First, we looked at 19 anoikis-related genes’ (ANOIRGs)

differential expression and prognostic significance in LGGs. Then,

based on 19 ANOIRGs, we developed new molecular typing using

the Cancer Genome Atlas (TCGA) and China Glioma Genome

Atlas (CGGA) databases, and we used ESTIMATE and single-

sample gene set enrichment analysis (ssGSEA) algorithms to

examine the intra-tumoral immune infiltrative landscape of

LGGs. For predicting patient prognosis and responsiveness to

TMZ treatment, an anoikis risk score (anoiS) was devised based

on the anoikis potentially related genes (APRGs) identified from the

screen. Studying anoikis-related gene expression patterns

contributes to the personalization and improvement of treatment

strategies for LGG patients by deepening our understanding of the

aggressiveness of LGG.
2 Materials and methods

2.1 Data collection and processing

The GDC database’s (https://portal.gdc.cancer.gov/) TCGA-

LGG cohort, which contains 509 LGG samples, was downloaded.

Clinical information, FPKM values for gene expression, and RNA

sequencing information were received from GDC. For further

investigation, the FPKM values were subsequently transformed to

transcripts per kilobase million (TPM) values (29). Table 1 displays
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the TCGA-LGG cohort’s starting data. The mRNA expression

profiles of normal brain tissue were acquired from the Genotype-

Tissue Expression Project (GTEx, https://www.gtexportal.org).

Data of a total of 527 simple nucleotide variation from the GDC

database were downloaded. Tumor mutation burden (TMB) (mut/

mb) = total number of mutations (including synonymous and

nonsynonymous point mutations, substitutions, insertions, and

deletions mutations)/size of the target region coding area. For

each sample, TMB values were computed taking into

consideration the definition of TMB. From UCSC Xena (https://

xenabrowser.net/datapages/), data for 533 gene copy number

variants (CNVs) were retrieved. The CGGA database (http://

www.cgga.org.cn) was used to download the gene expression

profiles and clinical information for the CGGA cohort. The

IMvigor210 dataset was obtained in order to assess the anoikis

riskscore’s ability to forecast the immunotherapy response. Using

previously released studies (14, 22–27) and datasets(GSE145806,

GSE106592, GSE155457, GSE40690, GSE55958, GSE39220, and

GSE40171), we chose 19 ANOIRGs.
2.2 Multi-omics analysis based
on 19 ANOIRGs

Mutation annotation format (MAF) files of TCGA mutation

data were subjected to analysis utilizing the “maftools” R package,

and waterfall plots were drawn to visualize the mutations of the 19

ANOIRGs in the TCGA-LGG cohort. A CNV landscape of 19

ANOIRGs was developed based on CNV data from the TCGA-LGG

cohort. To examine the differences in mRNA expression between

normal and LGG samples, a differential analysis of the 19 ANOIRGs

based on the LGG integrated expression profiles of GTEx and

TCGA was carried out. The samples were separated into low and

high expression groups by employing an optimal cutoff value of the

gene expression profile, and comparison of the difference in overall

survival (OS) between the low and high expression groups was

made using the log-rank test and univariate Cox regression. A co-

expression prognostic network of 19 ANOIRGs was built

employing univariate cox regression analysis and Pearson’s

correlation analysis.
2.3 Unsupervised clustering based
on 19 ANOIRGs

Unsupervised consistency clustering and classification based on

19 ANOIRGs was attempted via the “ConsensusClusterPlus” R

package (30), re-sampling 80% of the samples 50 times using

coalescent pam clustering with Euclidean distance. After that, the

differences in OS between various subtypes were compared by

employing the Kaplan-Meier (K-M) survival analysis, the

expression of the 19 ANOIRGs between subtypes was compared

using box line plots, and comparison of the distribution of the 19

ANOIRGs’ expression across subtypes was made using the t-

Distributed Stochastic Neighbor Embedding (t-SNE). In an

attempt to display the distribution of the 19 ANOIRG expressions
TABLE 1 Baseline Data Sheet of the TCGA-LGG cohort.

Characteristic Levels N (%)

Age >45 years old 204 (39.6%)

≤45 years old 311 (60.4%)

Gender Male 285 (55.3%)

Female 230 (44.7%)

Grade G2 249 (48.4%)

G3 265 (51.6%)

histological_type

Oligodendroglioma 191 (37.1%)

Oligoastrocytoma 130 (25.2%)

Astrocytoma 194 (37.7%)
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and clinicopathological characteristics across the various subtypes,

heat maps were produced using the “pheatmap” R package.
2.4 Gene set variation analysis

Molecu l a r S i gna tu re Da taba se (Ms igDB , h t tp : / /

software.broadinstitute.org/gsea/msigdb/) was employed for

obtaining data for the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway, HALLMARK pathway and Reactome pathway and

“c2.cp.kegg.v7.5.1. symbols.gmt”, “h.all.v7.5.1.symbols.gmt” and

“c2.cp.reactome.v7.5.1.symbols.gmt” was obtained as the reference

gene set. We subsequently performed Gene Set Variation Analysis

(GSVA) (31) on various subtypes using the “GSVA” R package to

examine the variation in the biological processes of different subtypes

and visualize it using a heatmap.
2.5 Infiltration estimation of the
immune microenvironment

The StromalScore, ImmuneScore, and ESTIMATEScore were

computed using the “ESTIMATE” R program. The quantitative

metrics known as the ImmuneScore and the StromalScore, which

measure the quantity of stromal and immune components,

respectively, are obtained from gene expression profiling data.

Also, the two scores are added to create the ESTIMATEScore,

which has a negative correlation with tumor purity (32). Using the

ssGSEA method based on the “GSVA” R package, the enrichment

score of 23 immune cells in the TIME was then calculated, which is

a depiction of the relative infiltration abundance of individual

immune cells (33).
2.6 Screening for differentially expressed
genes and enrichment analysis

Using |logFoldChange|>1 and FDR<0.05, differentially

expressed genes (DEG) were screened between various subtypes.

Gene Ontology (GO) and KEGG functional enrichment analyses

were performed by employing the “clusterProfiler” R package (34),

and statistically significant results can be represented by adjusted p-

value <0.05.
2.7 Second unsupervised clustering based
on differentially expressed prognostic
genes with strong prognostic significance

DEGs with p <0.05 were screened using univariate Cox

regression analysis, and genes with differentially expressed

prognostic genes with strong prognostic significance (SDEPGs)

were subsequently selected based on a threshold of |1-HR| >0.5.

Forest plots of the results from the Cox regression analysis, were
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drawn using the “forestplot” R package. A secondary unsupervised

cluster analysis was then performed based on SDEPGs, classifying

the samples into different subtypes with identical specific clustering

parameters. Subsequently, we compared the OS differences between

subtypes using survival analysis, compared the differential

expression of 19 ANOIRGs between subtypes using box-line

plots, and plotted heatmaps to show the distribution of SDEPGs

expression and clinicopathological features between the subtypes.
2.8 Construction and validation of anoiS

The “glmnet” R package was used to execute the Least Absolute

Shrinkage and Selection Operator (LASSO) regression analysis,

which reduces the dimensionality of high-dimensional data by

capping the sum of the absolute values of coefficients at less than a

set threshold. Only genes with non-zero coefficients in the LASSO

regression analysis were chosen for additional investigation since the

coefficients of the relatively tiny contributing variables were zero. We

increased the stability and reproducibility of the LASSO model by

adding a random seed. Then, the “randomForest” R package was

used to screen genes for anoikis characteristics. The default iteration

number of random forest algorithm is 100. When 500 trees are

constructed, the model is considered to be robust enough. Based on

Gini coefficient method, the “important” function was used to score

for genes screened by LASSO model, and genes with a score above

two were proceeded for further analysis. Finally, the genes obtained

were screened using the multivariate Cox proportional risk regression

analysis to obtain 12 potentially relevant anoikis genes that were

identified as the best predictive traits and named as APRGs. These

genes were selected to further calculate the anoiS for each patient

using a multivariate Cox regression model: anoiS = ho(t) * exp (b 1X1
+ b 2X2+…. + b nXn). In the equation mentioned, b denotes the

regression coefficient, and ho(t) refers to the baseline risk function.

Multivariate Cox regression model was constructed from the

“predict” function of the “rms” R package. Using the median anoiS,

patients from the TCGA database were split into high- and low-anoiS

groups. To ascertain the clinical independence of the anoiS for

prognostic prediction, univariate and multivariate Cox analyses

were utilized. The K-M survival analysis was then used to assess

the differences in OS and progression-free survival (PFS) between

LGG patients with high and low anoiS. Receiver operating

characteristic (ROC) analysis and area under the curve (AUC)

values were utilized for evaluating the prediction accuracy of the

anoiS for 1-year, 3-year, and 5-year OS and PFS. The calibrate

function of the “rms” R package plots the calibration curve, with a

maximum resampling sample size of 1000. PFS and OS calibration

curves for 1, 3, and 5 years were drawn. The forecast output of the

model matches the actual one more closely the closer the calibration

curve is near the line “y=x”. Last but not least, Sankey plots were

created with the “ggalluvial” R package to show the relationship

between various subtypes, an anoiS group, and prognosis.

Comparison of the variations in anoiS between subtypes was

achieved via box plots.
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2.9 Exploration of anoiS-based immune
microenvironment and immunotherapy

Through the correlation matrix, the ssGSEA algorithm was

employed for quantifying the infiltration abundance of 23 different

kinds of immune cells in the TIME, to show the correlation among

the anoiS and immune cell infiltration levels, as well as investigate

any potential relationships between the APRGs and the anoiS and

46 immune checkpoints. Finally, the prognostic predictive effect of

the anoiS in the immunotherapy population was investigated using

a survival analysis based on the IMvigor210 cohort.
2.10 AnoiS-based mutational analysis

First, we created distinct mutation landscapes for the high and

low anoiS groups by making use of the “Maftools” R package. We

analyzed variance to examine the variations in TMB levels between

the high and low anoiS groups based on the TMB values of each

TCGA-LGG cohort sample and Spearman’s correlation analysis to

investigate the relation between anoiS and TMB. The optimal cutoff

value was then determined using the “surv cutpoint” and “surv

categorize” functions of the “survminer” R package and was taken

into consideration as the boundary. Survival analysis was then

conducted for the comparison of the differences in OS between

patients with different anoiS and TMB statuses. The sample was

then divided into high and low TMB groups.
2.11 Clinical subgroup analysis
based on anoiS

“Age,” “gender,” “grade,” and “histological type” were selected

as the clinical subgroup characteristics of patients with LGG, the

distribution ratio of different clinical subgroup characteristics were

counted in the high and low anoiS groups, and explored the

differences of the anoiS among patients with different clinical

subgroup characteristics.
2.12 Validation and exploration of the
CGGA cohort

First, the prognostic differences between the whole population,

chemotherapy alone, radiotherapy alone, and radiochemotherapy

population were compared using the K-M survival analysis based

on OS data. Next, the potential association of anoiS with three

classical genetic statuses, 1p19q co-deletion, IDH mutation, and

MGMT promoter methylation, was determined using differential

analysis and correlation analysis, and the AUC values of ROC

curves were employed for comparing the predictive efficacy of the

three gene statuses, anoiS, and grade. For 1-, 3-, and 5-year OS

survival, the corresponding calibration curves were plotted. Finally,

we compared the differences of OS among people with different
Frontiers in Immunology 05
treatment modalities and genetic status in the high and low anoiS

groups, respectively.
2.13 Temozolomide sensitivity analysis

The sensitivity to TMZ in patients with LGG was predicted

using the “pRRophetic” R package (35) and the “oncopredict” R

package (36) by predicting the IC50 value of temozolomide, ridge

regression model was constructed to predict the AUC value of

TCGA cohort by the “oncopredict” R package based on the

expression profile data and AUC data of GDSC2 database. the

lower the value of IC50 or AUC, the greater the sensitivity of

the patient to TMZ. Differences in drug sensitivity to TMZ among

the low and high anoiS groups were subjected to comparison, and

correlations between the IC50 values of the anoiS and TMZ were

demonstrated using Spearman’s correlation analysis. Correlation

matrices were constructed to visualize the correlation between the

19 ANOIRGs with 12 APRGs and the IC50 values of TMZ.
2.14 Screening of key genes for anoikis and
potential reciprocal genes

Based on the correlation matrix of genes with predicted IC50

values of TMZ, the genes with the largest negative correlation

coefficients, when correlated with the IC50 values of TMZ obtained

from the combination of the two algorithms, were screened from the 19

ANOIRGs. The results of the combined differential analysis and

prognostic analysis were excluded for obtaining the anoikis key genes

(AKGs), and the gene co-expression network was constructed by

employing AKG and the 12 APRGs with a correlation coefficient |r|

>0.5 as the threshold to screen APRGs closely related to AKG as their

potential reciprocal genes by using Pearson’s correlation coefficient.

Additionally, the Human Protein Atlas (HPA; https://

www.proteinatlas.org/) database was used to acquire the protein level

immunohistochemical (IHC) staining results for chaperonin

containing TCP1 subunit 5 (CCT5) between normal and LGG tissues.
2.15 Cell culture

The Cell Bank of Type Culture Collection of the Chinese

Academy of Science (Shanghai, China), supplied the human

Hs683 low-grade glioma cell line employed in the current work.

American Type Culture Collection (ATCC, Manassas, VA, USA)

provided human astrocytes (NHA) and human SW1088 low-grade

glioma cell lines. Hs683 cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM; HyClone, Logan, USA) supplemented

with 10% fetal bovine serum (FBS; Gibco, NY, USA) and 1%

penicillin-streptomycin (HyClone, Logan, USA) at 37°C with 5%

CO2. 10% Fetal bovine serum (FBS; Gibco, NY, USA) was

supplemented to Leibovitz’s (L)-15 media to develop a culture

media for SW1088 cells. The fetal bovine serum (FBS; Gibco, NY,
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USA), 15%, and 1% penicillin-streptomycin (HyClone, Logan,

USA) were added as supplements to the Dulbecco’s modified

Eagle’s medium (DMEM; HyClone, Logan, USA) for the

NHAs’ culture.
2.16 Quantitative reverse transcription
polymerase chain reaction

A faster reagent (Invitrogen) was used to extract total RNA

from cultured cells. PrimeScript RT Reagent Kit (TaKaRa, Shiga,

Japan) was employed to create cDNA from isolated RNA, and SYBR

Green PCR Master Mix was utilized for quantitative reverse

transcription polymerase chain reaction (qRT-PCR). GAPDH was

employed as an internal loading control, and expression levels were

quantified by employing the 2–DDCt method. GraphPad Prism

version 9.0.1 (GraphPad Software, San Diego, California USA,

www.graphpad.com) was used for the visualization of qRT-PCR

results and a two-sample unpaired t-test. Tsingke Biotech (Tsingke,

China) synthesized the complete set of primers used for qRT–PCR.

Supplementary Table 2 lists all the primer sequences used in

this work.
2.17 Statistical analysis

R version 4.2.1 (R Foundation for Statistical Computing,

Vienna, Austria) was used to perform analyses, and the Perl

language, which was mainly used for batch cleaning and collation

of the data. The “limma” R package (37) was employed for DEGs

screening. The Wilcoxon test was applied for differential analysis to

compare the two groups in the bioinformatics analysis part. For the

Analysis of Variance, the Kruskal-Wallis test was employed for

comparisons involving more than two groups. The Spearman’s

correlation coefficient was employed in this study’s correlation

analysis unless otherwise noted. The survival of the various

patient groups was compared using the K-M survival analysis and

the log-rank test. A two-tailed p value < 0.05 was regarded as

statistically significant for all statistical analyses.
3 Results

3.1 Mutational landscape, transcriptional
alteration, and prognostic value of
ANOIRGs in LGGs

Figure 1 illustrates the workflow of this study. The differential

expression and prognostic significance of 19 ANOIRGs in LGGs

were analyzed using the combined expression profiles of the TCGA

and GTEx cohorts and survival prognostic data of the TCGA

cohort. The findings demonstrated that PLAG1 and SNAI1 were

expressed at low levels in LGGs compared to normal tissues, and the

remaining 17 ANOIRGs were highly expressed in LGGs

(Supplementary Figure 1A). The co-expression prognostic

network of the 19 ANOIRGs showed that GLUD1 and NTRK2
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were protective factors based on Univariate Cox regression analysis,

whereas the remaining 17 ANOIRGs were LGG risk factors.

Broadly speaking, 17 risk ANOIRGs positively correlated with

each other, whereas two protective ANOIRGs correlated

negatively with each other (Supplementary Figure 1B). The K-M

survival analysis showed that the remaining 18 ANOIRGs had a

significant effect on the prognosis of patients with LGG except for

WNT2 (p < 0.05; Supplementary Figure 1C). Mutation analysis

showed that ANOIRGs-related mutations occurred in 43 of 523

samples, with an incidence of 8.22% (Supplementary Figure 2A).

Among the 43 mutations, EGFR had the highest mutation

frequency of 6%, mainly missense mutations (Supplementary

Figure 2A). The outcome of CNV analysis showed that SPIB had

the highest copy number deletion frequency, while EGFR had the

highest increase in copy number frequency (Supplementary

Figure 2B). Finally, we constructed a CNV landscape of 19

ANOIRGs at chromosomal loci (Supplementary Figure 2C).
3.2 Identification of anoikis related
subtype in LGGs

TCGA-LGG cohort samples were clustered according to the

consistent expression of the 19 ANOIRGs into four different

modification patterns representing four different molecular

subtypes (Figure 2A). The consensus clustering results are shown

in Supplementary Figures 3A–C. The K-M survival analysis revealed

significant differences in OS among the four anoikis related subtypes,

with patients in anoirgclusterA and anoirgclusterC having a better

prognosis than those in anoirgclusterB and anoirgclusterD (p < 0.001,

Figure 2B). In addition, we plotted box plots (Figure 2C) and

heatmaps (Figure 2D) to visualize the differential expression of 19

ANOIRGs in different molecular subtypes and found that the

expression of HGF, KIF11, ECT2, CCT5, ERBB2, POU3F2, SPIB

and SNAI2 was higher in anoirgclusterB and anoirgclusterD than in

anoirgclusterA and anoirgclusterC (p < 0.01). Compared with the

histological type, there were mostly astrocytomas in anoirgclusterB

and anoirgclusterD and oligoastrocytomas and oligodendeogliomas

in anoirgclusterA and anoirgclusterC. Grade 3 was also the most

common grade in anoirgcluster B and anoirgcluster D, while grade 2

was mostly observed in anoirgcluster A and anoirgcluster C

(Figure 2D). Furthermore, GSVA was employed to compare the

enriched pathway of both macrosubtypes of anoirgclusterA and

anoirgclusterC, and anoirgclusterB and anoirgclusterD in the

KEGG pathway (Supplementary Figure 4A), HALLMARK pathway

(Supplementary Figure 4B), and Reactome pathway (Supplementary

Figure 4C), and detected significant pathway variations between them

(primarily enriched in cell cycle-related pathways).
3.3 Characterization of TIME in different
anoikis related subtypes

Patients with different anoikis related subtypes exhibited t-SNE-

based ANOIRGs ’ expression distinguishabil ity feature

(Supplementary Figure 5A). Then, we applied stromal, immune,
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and ESTIMATE scores to all LGG samples to gauge the degree of

TIME cell infiltration in various subtypes. According to

Supplementary Figure 5B, anoirgclusterB and anoirgclusterD

outperformed anoirgclusterA and anoirgclusterC in terms of

StromalScore, ImmuneScore, and ESTIMATEScore (p < 0.001).

Additionally, we employed ssGSEA for quantifying the infiltrating

abundance of 23 immune cells and investigate the distinct patterns

of the immune-infiltrating landscape of the four subtypes in order

to characterize the immune cell infiltration in various anoikis-

related subtypes. anoirgclusterB and anoirgclusterD manifested a

higher infiltration level of activated B, dendritic, CD4 T, CD8 T,

CD56 bright natural killer, macrophages, gamma delta T, immature
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B, mast, dendritic, natural killer, natural killer T, regulatory T,

plasmacytoid dendritic, type 1 T helper, type 2 T helper, T follicular

helper, and myeloid-derived suppressor cells (MDSCs) than

anoirgclusterA and anoirgclusterC (p <0.05, Supplementary

Figure 5C). The outcome suggests that anoirgclusterB and

anoirgclusterD have an elevated degree of stromal and immune

cell infiltration than anoirgclusterA and anoirgclusterC. Based on

these results, we found that anoirgclusterAC and anoirgclusterBD

have similar ANOIRG expression profiles and prognostic and

immune infiltration characteristics, which supports our

classification of samples into two macrosubtypes: anoirgclusterAC

and anoirgclusterBD.
FIGURE 1

The flowchat of this study.
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3.4 Identification and secondary clustering
of DEGs among macrosubtypes

For an additional investigation on the potential biological

behavior of various anoikis subtypes, we carried out a differential

analysis of the two anoikis macrosubtypes. DEGs with |

logFoldChange| >1 and p < 0.05 were then screened, and 1251

DEGs were identified. Volcano plots showed that DEGs mainly

expressed in the large anoirgclusterBD subtypes were highly
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expressed (p < 0.05, Figure 3A). KEGG (Figure 3C) and GO

(Figure 3D) enrichment analysis was conducted for these DEGs,

showing that the top five pathways were based on adjusted p-values

in KEGG and the corresponding network of relationships with

associated genes (p < 0.05, Figure 3B). A number of pathways are

associated with the cell cycle.

A univariate Cox regression analysis on 1251 DEGs associated

with anoikis was performed for the identification of DEGs with

prognostic significance for LGG, yielding 1218 differentially
B

C

D

A

FIGURE 2

Identification of anoikis related subtypes and exploration of the clinical and biological features of subtypes. (A) Unsupervised consensus clustering
divides LGG samples into four clusters (k=4) based on 19 ANOIRGs. (B) OS curves for the four subtypes of patients with LGG. (C) Expression
differences analysis of 19 ANOIRGs among the four subtypes. (D) Difference distribution of clinicopathological features and ANOIRGs expression
among the four subtypes. ANOIRGs, anoikis-related genes; ***p < 0.001.
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expressed prognostic genes. A further 669 genes (SDEPGs) were

selected based on the criterion of |1-HR| >0.5. Based on the 669

SDEPGs, secondary clustering was performed two clusters were

identified: genecluster C1 and C2 (Figure 4B). Supplementary

Figures 3D–F presents the clustering results. As depicted by the

K-M survival curves, a significantly better prognosis was predicted

for genecluster C1 in comparison to genecluster C2 (p < 0.001,

Figure 4A). Eighteen ANOIRGs had significantly different

expressions between genecluster C1 and C2 (p < 0.001,

Figure 4C). In addition, a heatmap was employed to show the

distribution of expression of 669 SDEPGs and clinicopathological

characteristics for both geneclusters (Figure 4D).
3.5 Construction of the anoiS in LGGs

First, we performed LASSO regression analysis for downscaling

screening based on 669 SDEPGs (Supplementary Figures 6A, B)

and obtained a total of 34 genes. We then calculated the gene

importance scores based on the Gini coefficient method in random

forest, selected genes with scores ≥2 as disease signature genes

(Supplementary Figures 6C, D), obtained 20 genes to enter the

multivariate cox regression analysis, and finally screened 12 APRGs

to construct the anoikis scoring system anoiS. The results of the

multivariate Cox regression analysis for the 12 APRGs are shown in
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Supplementary Table 1. Among them, KDELR2, SMC4, IQGAP2,

WEE1, HOXD13, SLC43A3, CYP27B1, MAP3K1, PIM1, and

APOBEC3C were highly expressed in LGGs (Supplementary

Figure 7A), and their high expression was associated with poor

prognosis (Supplementary Figure 7B). Next, we divided the cohort

samples into high- and low-anioS groups based on the median

anioS. The K-M survival analysis showed that patients in the high

anoiS group had poorer OS and PFS than those in the low anoiS

group (p < 0.001, Figures 5A, D). The ROC curves also showed

strong predictive accuracy of anioS, with AUCs for OS at 1, 3, and 5

years of 0.922, 0.947, and 0.870 for OS, respectively (Figure 5B), and

AUCs of 0.749, 0.705 and 0.726 for PFS at 1, 3 and 5 years,

respectively (Figure 5E). It was discovered that the anoiS has

good accuracy in predicting OS and PFS at 1, 3, and 5 years in

patients with LGG by using the calibration curve to test the

predictive utility of the model (Figures 5C, F, I). We also used the

CGGA dataset to confirm the reliability and stability of the 12-gene

signature prediction model. The prognosis of the high anoiS group

was considerably poorer than that of the low anoiS group, according

to a survival analysis (p < 0.001, Figure 5G). With AUCs of 0.741,

0.735, and 0.724 at 1, 3, and 5 years, respectively, the ROC curve

data showed that anoiS had a significant prognostic prediction

potential (Figure 5H). The anoiS appeared to be a clinically

independent risk prognostic factor for patients with LGG in the

TCGA-LGG cohorts, according to univariate and multivariate Cox
B
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A

FIGURE 3

Screening and enrichment analysis of DEGs between the two anoikis related macrosubtypes. (A) Volcano plot of differential analysis between the
two macrosubtypes to identifity DEGs. (B) The network diagram shows the corresponding relationship between the five KEGG pathways with the
lowest p-value and related genes. (C) KEGG enrichment analysis of DEGs between the two macrosubtypes. (D) GO enrichment analysis of DEGs
between the two macrosubtypes. DEGs, differentially expressed genes; ANOIRGs, anoikis-related genes.
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regression analyses paired with other clinical subgroup features (p <

0.001, Figures 5J, K). Sankey plots revealed a correlation between

the prognosis, anioS, and subtype (Supplementary Figure 6E).

AnoirgclusterB and anoirgclusterD had a higher chance of

matching geneclusterC2, higher anioS, and a worse prognosis in

LGG patients. Boxplots were also used to confirm this conclusion.

(p < 2.22e-16, Supplementary Figures 6F, G).
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3.6 Clinical subgroup analysis based
on the anoiS

Stacked histograms were employed to demonstrate the

percentage of individual clinical characteristics in the high and

low anoiS groups and box plots were plotted to show the variations

in the anoiS between various clinical subgroup features, in order to
B

C
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A

FIGURE 4

Identification of two gene-subtypes and exploration of the clinical and biological features of gene-subtypes. (A) Unsupervised consensus clustering
divides LGG samples into two gene-clusters base on 669 SDEPGs (k=2). (B) OS curves for the two gene-subtypes of patients with LGG.
(C) Expression differences analysis of 18 significative ANOIRGs between the two gene-subtypes. (D) Difference distribution of clinicopathological
features and ANOIRGs expression between the two gene-subtypes. ANOIRGs, anoikis-related genes; SDEPGs, differentially expressed prognostic
genes with strong prognostic significance; *p < 0.05; **p < 0.01; and ***p < 0.001.
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further investigate the relationship between the anoiS and clinical

subgroup characteristics. Patients older than 45 years demonstrated

a higher risk in comparison to those younger than 45 years (p =

6.1e-06, Figure 6A), the anoiS did not show significant differences

between gender (Figure 6B), anoiS was higher in patients graded G3

than in those with G2 (p < 2.22e-16, Figure 6C), and patients with

astrocytomas had higher anoiS than those with oligoastrocytomas

and oligodendeogliomas (p < 0.05, Figure 6D).
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3.7 Mutation correlation analysis of high
and low anoiS populations

We further investigated TMB’s connection to the anoiS because

it is intimately tied to tumor immunity. The findings revealed a

positive correlation between TMB and anoiS (Figure 6F) and that

TMB in the high anoiS group was higher in comparison to that in

the low anoiS group (Figure 6E). Additionally, the samples were
B C
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A

FIGURE 5

Construction and validation of anoiS. (A) OS analysis between the high- and low-anoiS groups in the TCGA-LGG cohort. (B) ROC curves of anoiS in
predicting OS at 1-, 3-, and 5-years in the TCGA-LGG cohort. (C) Calibration curve to verify the predictive value of anoiS regarding the 1-, 3-, and 5-
year OS in the TCGA-LGG cohort. (D) PFS analysis between the high- and low-anoiS groups in the TCGA-LGG cohort. (E) ROC curves of anoiS in
predicting PFS at 1-, 3-, and 5-years in the TCGA-LGG cohort. (F) Calibration curve to verify the predictive value of anoiS regarding the 1-, 3-, and 5-
year PFS in the TCGA-LGG cohort. (G) OS analysis between the high- and low-anoiS groups in the CGGA cohort. (H) ROC curves of anoiS in
predicting OS at 1-, 3-, and 5-years in the CGGA cohort. (I) Calibration curve to verify the predictive value of anoiS regarding the 1-, 3-, and 5-year
OS in the CGGA cohort. (J, K) Verification of the clinical independence of anoiS by univariate Cox regression analysis (J) and multivariate Cox
regression analysis (K). anoiS, anoikis riskscore.
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split into high and low TMB groups using the optimal cutoff value

as the boundary, and it was discovered that the high TMB group’s

prognosis was poorer than the low TMB group’s (Figure 6G).

Patients with high TMB and anoiS demonstrated the poorest

prognosis, whereas those with low TMB and anoiS had the best

prognosis, according to a combined study of the effect of TMB and

anoiS status on patient prognosis (Figure 6H).
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To elucidate the potential genomic mutational mechanisms

associated with anoikis, we used waterfall plots to depict the

mutational landscape in the high and low anoiS populations;

IDH1, TP53 and ATRX had a higher mutation frequency in the

cohort, with mutation rates of 64%, 50%, and 35% in the high anoiS

group (Figure 6I) and 90%, 41%, and 33% in the low-anoiS group,

respectively (Figure 6J). The mutation rates of IDH1 and IDH2 were
B
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FIGURE 6

Clinical subgroup and tumor mutation analysis base on anoiS in the TCGA-LGG cohort. (A–D) Relationship exploration between clinical features and
anoiS by difference comparison and ratio distribution: age (A), gender (B), grade (C) and histological type (D, E) Differential analysis of TMB between
the high- and low- anoiS groups. (F) Spearman correlation analysis between anoiS and TMB. (G) OS analysis of patients with high- and low- TMB.
(H) OS analysis among four groups of patients stratified by the anoiS and TMB. (I, J) Tumor mutation landscape in the high- and low- anoiS groups.
anoiS, anoikis riskscore.
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lower in the high anoiS group than in the low anoiS group, while the

mutation rate of TP53 was higher than that in the low anoiS group.
3.8 Exploring the association between
anoiS and immune infiltration landscape

A correlation matrix (Figure 7A) was constructed for

investigating the association between anoiS and immune cell

infiltration, and we found that there was a substantial positive

correlation between the two (p < 0.05, with the exception of CD56

dim natural killer cells and Eosinophils). In Supplementary

Figure 8A, findings for particular individual cells have been

displayed. With the utilization of ESTIMATE to assess the

infiltration characteristics of the tumor microenvironment in

LGG patients, it was found that the StromalScore, ImmuneScore,

and ESTIMATEScore were substantially higher in the high anoiS

group than in the low anoiS group (p < 0.05, Figure 7B). Thereafter,

the association between anoiS and immunotherapy efficacy was

verified using the IMvigor210 immunotherapy cohort. The

outcome implies that individuals with a high anoiS had a good

prognosis (Figure 7C). We additionally evaluated the correlation

between the level of expression of 12 APRGs and the infiltration

level of 23 immune cells. As shown in Supplementary Figure 8B,

among the 12 APRGs, FAM133A negatively correlated with most

immune cells (except CD56 dim natural killer cells and

Eosinophils), CMYA5 negatively correlated with Eosinophils,

whereas positively correlated with activated CD56 dim natural

killers, CD4+T cells, CD8+T cells, type 1 T helper cells, and type

2 T helper cells, plasmacytoid dendritic cells. CYP27B1 negatively

correlated with CD56 dim natural killer cells, type 1 T helper cells,

Eosinophils, and Monocytes, whereas positively correlated with

CD56 bright natural killers, activated CD4+T cells, and type 2 T

helper cells. The remaining nine APRGs positively correlated with

most immune cells (except CD56 dim natural killer cells, type 1 T

helper cells, Eosinophils, and Monocytes). Next, we evaluated the

correlation between the 12 APRGs and 46 immune checkpoint

genes (ICGs). Most of the 12 APRGs positively correlated with a

number of immune checkpoints, such as PD-1, PD-L1, CTLA-4,

TIM-3, B7-H3, IDO1, and LAG3, while FAM133A negatively

correlated with CTLA-4, TIM -3, PD-1, PD-L1, B7-H3, IDO1, and

LAG3, and anoiS positively associated with most immune

checkpoints, such as CTLA-4, TIM-3, PD-1, PD-L1, B7-H3, IDO1,

and LAG3 (Figure 7D).
3.9 Exploring the association between
treatment modality and genetic status

The baseline data for the CGGA-LGG cohort is presented in

Table 2. The proportion of individual gene status in the high and

low anoiS groups was shown using stacked histograms and boxplots

were plotted to show the difference in the anoiS between gene

statuses. The findings depict that individuals with the IDH

mutation (p<0.001, Figure 8A) and 1p19q co-deletion (p<0.001,
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Figure 8B) had lower anoiS, and patients placed in the high anoiS

group manifested a lower proportion of IDH mutations (p<0.001,

Figure 8A) and 1p19q co-deletion (p<0.001, Figure 8B). Patients

with MGMT non-methylation had higher anoiS than MGMT-

methylated patients, while MGMT methylation status did not

vary substantially between patients in the low and high anoiS

groups (p=0.024, Figure 8C). The comparison of clinical

characteristics showed that the anoiS was the highest and MGMT

promoter methylation was the lowest in AUC values at 1, 3, and 5

years of OS (Figures 8D–F)

In the high anoiS group, the prognosis of patients in the IDH

mutant group was better in comparison to that of patients in the

IDH wildtype group, as shown by the survival analysis (p < 0.001,

Figure 8G); in the low anoiS group, IDH mutant group and the

patients placed in the IDH wildtype group, did not exhibit a

significant difference in terms of the prognosis (Figure 8H). For

1p19q co-deletion, survival analysis demonstrated that the

prognosis of patients in the 1p19q co-deletion group was

improved in comparison to that of patients in the 1p19q co-

deletion negative group, regardless of high or low anoiS

(Figures 8I, J). For MGMT methylation status, regardless of the

high and low anoiS, no significant difference existed in terms of

patients’ prognosis in the MGMT methylation group and MGMT

non-methylation group as depicted by the survival analysis

(Figures 8K, L).

In addition, the prognosis was predicted separately for the

different treatment modalities using the anoikis scoring system,

and survival analysis depicted that patients placed within the high

anoiS group manifested a significantly worse prognosis in

comparison to the ones in the low anoiS group in the

chemotherapy alone (p = 0.001, Figure 9A), radiotherapy alone

(p < 0.001, Figure 9B), and radiochemotherapy (p < 0.001,

Figure 9C) groups. Additionally, we found that for patients

treated with radiotherapy alone or chemotherapy alone, the

prognosis of tended to be better than that of the no-treatment

and radiotherapy populations in both the high anoiS group (p =

0.031, Figure 9D) and the low anoiS group (p = 0.024, Figure 9E).
3.10 Prediction of TMZ sensitivity and
screening of key gene teams

We first predicted the IC50 values of TMZ in LGG samples

using both “pRRophetic” and “oncoPredict” algorithms to reflect

the sensitivity of patients to TMZ. Patients in the high anoiS group

demonstrated lower IC50 values of TMZ (Figures 10A, B) and lower

AUC values of TMZ (Figure 10C), The IC50 values (Figures 10D, F)

and AUC values (Figure 10G) of TMZ were negatively correlated

with the anoiS. We then constructed a correlation matrix of 19

ANOIRGs and 12 APRGs using TMZ IC50 values. CCT5 showed

the strongest negative correlation with TMZ IC50 values among the

19 ANOIRGs (Figure 10E) and was a differential prognostic gene

(Figures 11A, B), which plays a potential cancer-promoting role in

LGGs. Therefore, we regarded CCT5 as the key gene for the study.

We selected CCT5 and 12 APRGs for constructing a gene co-
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expression network and found that CCT5 had a strong positive

correlation with KDELR2, WEE1, SMC4 and MAP3K1 (r > 0.5;

Figure 11C). These four anoikis potential genes also showed

differential prognosis, exerted potential pro-cancer effects

(Figure 11D), and negatively correlated with the TMZ IC50

values. Therefore, we considered CCT5 and these four anoikis

genes as potential gene teams. The key gene CCT5 showed the
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strongest negative correlation with the IC50 value of TMZ

(Figures 10H, I). Additionally, qRT-PCR was used to detect the

expression differences of CCT5 (Figure 11E), KDELR2 (Figure 11F),

SMC4 (Figure 11G),WEE1 (Figure 11H), andMAP3K1 (Figure 11I)

between NHA and LGGs cells (SW1088 and Hs683). In LGGs cells,

the expression of these genes demonstrated a notable up-regulation

in comparison to that in human astrocytes (NHA) (p <0.05).
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FIGURE 7

Immune microenvironment and immunotherapy efficacy analysis based on anoiS. (A) The spearman correlation matrix between anoiS and infiltration
level of 23 immune cells. Yellow means positive correlation, whereas blue means negative correlation. (B) Violin plot for difference comparison of
StromalScore, ImmuneScore, and ESTIMATEScore between the low- and high-anoiS groups. (C) OS analysis based on anoiS grouping in the
IMvigor210 Cohort. (D) The spearman correlation matrix among APRGs, anoiS and 46 ICGs. Red means positive correlation, whereas blue means
negative correlation. APRGs, anoikis-potential related genes; anoiS, anoikis riskscore; ICGs, immune checkpoint genes; *p < 0.05; **p < 0.01; and
***p < 0.001.
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4 Discussion

It is well known that LGGs have a better clinical prognosis than

GBMs. However, after standard treatment, most patients with LGG

develop recurrence and metastasis, and eventually even GBMs (38).

There is still a lack of effective molecular typing and therapeutic

targets to help clinicians differentiate between LGG patients with

different prognostic risks and treatment responsiveness. Anoikis, a

specific type of apoptotic death caused by cell loss or inappropriate

cell adhesion, has a close association with tumor invasion and

metastasis. Nevertheless, tumor cells evade anoikis through multiple

factors that regulate anoikis resistance, leading to uncontrolled

growth of these cancer cells at other sites (20). Resistance to

anoikis has been reported to be associated with the ability of

GBMs to invade, metastasize, and develop drug resistance (39).

Nevertheless, only a few works have focussed on the precise

function of anoikis-associated genes in predicting LGG prognosis

and their effects on LGG aggressive metastatic ability and TMZ

drug resistance.

We selected 19 ANOIRGs as a starting point for our study. Most

of these were anti-anoikis genes, which are highly expressed in

LGGs and are risk prognostic factors. It is suggested that anti-

anoikis can indeed result in poor patient prognosis amongst

individuals suffering from LGG. Based on the expression profiles

of the 19 ANOIRGs, all patients with LGG were classified into four

subtypes and two macrosubtypes. The different macrosubtypes had
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significantly different biological characteristics, and the

anoirgclusterBD subtype had a significantly bad prognosis and a

high immune level of infiltration. After differential and prognostic

analyses, we found a large number of SDEPGs, and subsequent

secondary genotyping also showed good prognostic discrimination.

Ultimately, using machine learning and screening of prognostic

patterns, we constructed a robust and high-power anoikis scoring

system, anoiS. It serves as an independent prediction system to

accurately distinguish between patients with different survival and

recurrence risks. The AUC value for OS prediction in the TCGA

cohort was approximately 0.9, which was better than the existing

common predictors. In contrast, a feature consisting of five LGG

relapse and progression-associated genes had an AUC value of

around 0.8 for OS prediction in the TCGA cohort (40), and another

feature consisting of six TMB-associated genes also had an AUC

value of around 0.8 for OS prediction in the TCGA cohort (41),

which was lower than the AUC value in our study. The high

predictive power of the risk score model is evident from the

ROC, and the results of the calibration curve also suggest that the

risk score model’s predictions corroborate quite well with the actual.

The extent of immune cell infiltration in patients with LGG in

the high anoiS group had a significantly higher proportion than in

the low anoiS group, and the level of immune cell infiltration

manifested a positive correlation with the anoiS, according to our

subsequent assessment of the immune microenvironment

infiltration landscape. Patients having high anoiS levels tended to

be more sensitive to immunotherapy in the immunotherapy cohort

IMvigor210. TMB has been demonstrated to be successful in a

variety of tumor types, such as lung cancer, and is frequently

regarded as a novel biomarker enabling response prediction to

cancer immunotherapy (42). According to Wang et al. (2019),

patients with a greater TMB may have a better prognosis if they

receive immunotherapy for several malignancies (43).. In contrast,

our study’s findings showed that LGG patients with a high TMB

had a poor prognosis. The superimposed effect of TMB and anoiS

gave the worst prognosis to those with a high TMB and anoiS, but

this group might have better immunotherapy efficacy. This also

suggests that the poor efficacy of immunotherapy in LGGs may be

due to the existence of other potential pathways that cause an

irreversible poor prognosis in patients with high levels of

immune infiltration.

Genetic tests for the 1p19q co-deletion, IDH mutation, and

MGMT methylation are required for GBMs because they help

predict a patient’s prognosis and treatment sensitivity. However,

in LGGs, these three genes did not show superior efficacy. Yet, it has

been demonstrated that LGG patients who also had a 1p/19q co-

deletion and an IDH mutation had the best clinical results (44).

Patients with 1p/19q co-deletion in LGGs demonstrated a longer

OS and better treatment response in comparison to patients with

1p/19q intact (45, 46). Studies have suggested the use of MGMT

status assessment as an adjunct to assess prognosis (47), but there

are no clear guidelines or recommendations.

In the CGGA cohort, we explored the association between

different genetic statuses and treatment modalities with the anoiS.

The National Comprehensive Cancer Network (NCCN) guidelines

(48) state, TMZ and radiotherapy as the most important treatment
TABLE 2 Baseline Data Sheet of the CGGA-LGG cohort.

Characteristic Levels N (%)

Age >45 years old 160 (27.0%)

≤45 years old 432 (73.0%)

Gender Male 341 (57.6%)

Female 251 (42.4%)

Grade WHO II 270 (45.6%)

WHO III 322 (54.4%)

histological_type

A 160 (27.0%)

O 106 (17.9%)

OA 9 (1.5%)

AA 206 (34.8%)

AO 91 (15.4%)

AOA 20 (3.4%)

IDH_mutation
Wildtype 138 (25.0%)

Mutant 415 (75.0%)

1p19q_codeletion
Non-codel 372 (67.4%)

Codel 180 (32.6%)

MGMTp_methylation
Un-methylated 200 (41.2%)

Methylated 285 (58.8%)
A, astrocytoma; O, oligodendroglioma; OA, oligoastrocytoma; AA, anaplastic astrocytoma;
AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastroytoma.
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modalities for patients with LGGs. The anoiS significantly predicted

the prognostic risk across treatment modalities in all populations.

By combining the three gene statuses for further analysis, it was

found that patients with low anoiS demonstrated an improved

prognosis, possibly associated with an increased probability of IDH

mutations and 1p19q co-deletions. Similarly, the mutational

landscape of the TCGA cohort demonstrated that individuals in

the low anoiS group exhibited a higher proportion of IDH

mutations. The ROC curves suggest that the predictive efficacy of
Frontiers in Immunology 16
our anoiS exceeds that of grade and the three gene statuses, and is

expected to be a new first-line predictor of LGGs. After patients are

classified into high and low anoiS groups using the anoiS, other

indicators can be analyzed to further differentiate the prognostic

risk. Continued testing for IDH mutations is recommended for

individuals placed within the high anoiS group, while testing for this

is not recommended for patients placed within the low anoiS group.

The testing of 1p19q is required for patients in both high and low

anoiS groups. In contrast, the detection of MGMT promoter
B C

D E F

G H I
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A

FIGURE 8

Validation and exploration of anoiS in the CGGA cohot. (A-C) Relationship exploration between three genetic status and anoiS by difference
comparison and ratio distribution: IDH mutation status (A), 1p19q codeletion status (B), and MGMT methylation status (C). (D-F) ROC curves of anoiS
and other LGG prognostic factors (grade, IDH mutation status, 1p19q codeletion status, and MGMTp methylation status) in predicting OS at 1- (D), 3-
(E), and 5-years (F) in the CGGA cohort. (G-L) OS analysis showing the effects of IDH mutation status (G, H), 1p19q codeletion status (I, J) MGMT
methylation status (K, L) on prognosis of the high- and low- anoiS groups. *p < 0.05, ****p < 0.0001.
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methylation has no significant prognostic prediction for either high

or low anoiS in patients.

The sensitivity of patients to TMZ was predicted by

determining the TMZ IC50 value and AUC value in LGG

samples based on the two algorithms. We found that patients in

the high anoiS group demonstrated a higher TMZ sensitivity,

which positively correlated with the anoiS. In addition, almost all

ANOIRGs and APRGs showed a positive correlation with TMZ

sensitivity. We identified a core team of key genes, which included

CCT5, which exhibited synergistic pro-oncogenic and TMZ-

sensitizing effects in LGGs. CCT5, together with other

homologous subunits (TCP1, CCT2, CCT3, CCT4, CCT6A,

CCT6B, CCT7, and CCT8), forms a large molecular weight

complex, chaperonin containing TCP-1 (TCP (T-complex

protein 1) ring complex (TRiC), CCT/TRiC) (49). CCT5

markedly promotes gastric cancer cell proliferation, anoikis,

invasion, and lymphatic tube formation (23). CCT5 interacts

with cell cycle protein D1 and positively regulates the PI3K/

AKT-induced epithelial–mesenchymal transition (EMT)

pathway to promote the migration and invasion of LUAD cells

(50). The remaining four members were KDELR2, MAP3K1,

SMC4, and WEE1. The KDEL receptor family includes a

transmembrane domain protein called KDEL endoplasmic

reticulum protein retention receptor 2 (KDELR2). KDELR2

accelerates the development of breast cancer, non-small cell

lung cancer, bladder cancer, and GBM (51–54). According to

research, KDELR2 is significantly expressed in GBM tissues and

controls mTOR’s degree of phosphorylation (Ser2448), which

encourages the growth of GBM tumors (52). Invasion and
Frontiers in Immunology 17
metastasis of cells are dependent on KDELR2-regulated Golgi

secretion, and KDELR2 suppression lessens lung cancer

metastasis, according to a new study (51). Serine/threonine

kinase MAP3K1 belonging to the MAP3K family is a

component of multiple signaling cascades and includes the ERK,

JNK, and NF-kB signaling pathways. It is triggered by a multitude

of stimuli, including cellular stress, growth hormones, and

cytokines (55). Research has shown elevated MAP3K1

expression in GBMs, which is related to poor prognosis and

treatment resistance (56). MAP3K1 promotes cell proliferation

and invasion in esophageal cancer, and inhibits anoikis, thus

playing a tumor-promoting role (57). The present work,

therefore, suggests that LGG patients with a high MAP3K1

expression demonstrate a poor prognosis which is consistent

with earlier reports. An SMC family member referred to as

structural maintenance of chromosome 4 (SMC4) encodes the

SMC4 protein, which has an elevated expression in a variety of

malignancies and may play an oncogenic function (58–62). SMC4

increases the migration, proliferation, and invasion of glioma cells

in GBMs via acting downstream of MiR-433-3p (60). WEE1 has

an elevated expression in a number of cancer types, including

adult GBMs, and breast, colon, and stomach cancers. High WEE1

expression is linked to poor prognostic indicators (63–66).

Interestingly, SMC4 and WEE1 were closely associated with the

cell cycle (67, 68), and our results from the GSVA analysis of

macrosubtypes and GO/KEGG enrichment analysis of DEGs also

suggested that the cell cycle is a potentially relevant pathway for

anoikis in LGG. This may provide a theoretical basis for further

exploration of anoikis in LGGs.
B C

D E

A

FIGURE 9

The potential association exploration of anoiS with Standard therapy sin LGGs. (A-C) OS analysis of the high- and low- anoiS groups in the CGGA
chemotherapy cohort (A), the CGGA radiotherapy cohort (B), and the CGGA radiochemotherapy cohort (C). (D, E) OS analysis among four patient
groups stratified by the TMZ and radiotherapy in the high- anoiS group (D) and low- anoiS group (E).
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In summary, we have provided a new molecular typing and

scoring system for patients with LGG based on anoikis. Our anoikis

scoring system illustrates that higher anoiS may cause poorer

prognosis, but at the same time brings the possibility of improved

responsiveness to TMZ and immunotherapy in LGGs. This paradox

may arise from the reduced proportion of IDH mutations and

1p19q co-deletions, because IDH mutations promote immune

escape, leading to poor immunotherapy responsiveness, or from

the influence of other underlying biological mechanisms of anoikis,
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such as regulation of the cell cycle. Nonetheless, it is anticipated that

this new scoring system would result in more precise prognosis

prediction, enhanced clinical diagnosis, and improved therapeutic

approaches for individuals with LGG.

This work has a few limitations. Initially, further cohorts of

TMZ therapy and immunotherapy are required to confirm the

findings and enhance the score system’s prediction ability. Second,

the study should take into account the surgical resection margin, a

significant clinical determinant of LGGs. Lastly, this study applied
B C
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FIGURE 10

TMZ sensitivity analysis in LGGs of anoiS, ANOIRGs and APRGs. (A, B) Comparison of predictive IC50 value of TMZ between the high- and low- anoiS
group by “pRRophetic” R package (A) and “oncopredict” R package (B). (C) Comparison of predictive AUC value of TMZ between the high- and low-
anoiS group by “ oncopredict “ R package. (D, F) Correlation analysis between anoiS and predictive IC50 value of TMZ by “pRRophetic” R package (D)
and “oncopredict” R package (F). (E) The pearson correlation matrix to show the relationship among predictive IC50 value of TMZ, 19 ANOIRGs and 12
APRGs. Red means positive correlation, whereas blue means negative correlation. (G) Correlation analysis between anoiS and predictive AUC value of
TMZ by “oncopredict” R package. (H, I) Pearson correlation analysis between the expression of CCT5 and predictive IC50 value of TMZ by “pRRophetic”
R package (H) and “oncopredict” R package (I). ANOIRGs, anoikis-related genes; APRGs, anoikis-potential related genes. *p < 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1105210
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1105210
lots of correlation analysis to explore the association and closeness

between the variables, but could not exclude the existence of

nonlinear relationship between the variables and could not

determine the causal relationship of the variables.

5 Conclusion

To correctly forecast the prognosis of patients with LGG and

evaluate their responsiveness to temozolomide and immunotherapy, a

new molecular type and scoring system for LGG based on anoikis was

developed in this work. Hence, creating more precise, tailored

treatment strategies for individuals suffering from LGG seems potential.
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SUPPLEMENTARY FIGURE 1

Differential expression and prognostic analysis of 19 ANOIRGs in TCGA-LGG
cohort. (A) Differential expression of 19 ANOIRGs in LGG and normal tissue.

(B) Prognostic correlation network of 19 ANOIRGs. The line represents the

correlation between genes, the sphere represents the univariateCox test of
each gene. (C) K-M survival analysis of 18 ANOIRGs in LGGs (OS, Log-rank

test, p < 0.001). ANOIRGs, anoikis-related genes; * p < 0.05, ** p < 0.01, ***p
< 0.001.

SUPPLEMENTARY FIGURE 2

Genetic variation landscape of 19 ANOIRGs in TCGA-LGG cohort. (A) The
Waterfall chart showing the types and frequencies of genetic variation in 19
ANOIRGs. (B) Frequencies of gain and loss of CNV in 19 ANOIRGs. (C) The
Chromosome localization and the landscape of CNV in 19 ANOIRGs.

ANOIRGs, anoikis-related genes.

SUPPLEMENTARY FIGURE 3

Detailed results of consensus clustering. (A–C) Detailed results of consensus

clustering to identifity anoikis related subtypes based on ANOIRGs:
cumulative distribution curve (A), area under the cumulative distribution

curve (B) and tracking plot (C). (D–F) Detailed Results of consensus

clustering to construct gene-subtypes based on SDEPGs: cumulative
distribution curve (D), area under the cumulative distribution curve (E) and
tracking plot (F). ANOIRGs, anoikis-related genes; SDEPGs, differentially
expressed prognostic genes with strong prognostic significance.

SUPPLEMENTARY FIGURE 4

Difference comparison of enriched pathways of four different anoikis related

subtypes by GSVA. (A–C)Heatmaps comparing GSVA pathway scores for four
anoikis related subtypes from three items: KEGG (A), HALLMARK (B), and
Reactome (C).

SUPPLEMENTARY FIGURE 5

Tumor immune microenvironment analysis of four anoikis related subtypes.

(A) t-SNE analysis of the four subtypes based on ANOIRGs expression (B)
Differential analysis of TME scores between the four anoikis related subtypes.
(C) The infiltration abundance of 23 kinds of immune cells was evaluated by

ssGSEA in the four anoikis related subtypes. ANOIRGs, anoikis-related gene;
*p < 0.05; **p < 0.01; and ***p < 0.001.

SUPPLEMENTARY FIGURE 6

Construction of anoiS and grouping based on anoiS. (A) Screening of optimal

parameter (lambda) and ANOIRGs with non-zero coefficients. When the
number of genes with non-zero coefficients was 34, the Lasso model was

the most stable. (B) Lasso coefficient profiles of the 669 SPDEGs. (C) The
relationship between the number of trees and model error in random forest.

Themodel has the smallest error when the number of trees is 303. (D) The top
30 genes were ranked by gene importance score based on Gini coefficient

method. (E) Sankey diagram to show the correspondence among anoikis

related subtypes, gene-subtypes, anoiS and survival outcomes. (F) Differential
analysis in anoiS levels between the four anoikis related subtypes. (G)
Differential analysis in anoiS levels between the two gene-subtypes. anoiS,
anoikis riskscore; ANOIRGs, anoikis-related genes; SPDEGs, differentially

expressed prognostic genes with strong prognostic significance.

SUPPLEMENTARY FIGURE 7

Gene expression differential analysis and survival analysis of 12 APRGs in

LGGs. (A) Gene expression differential analysis of 12 APRGs between LGG and

normal tissue. (B) K-M survival analysis of 12 APRGs in LGGs (OS, Log-rank
test, p < 0.001). APRGs, anoikis-potential related genes.

SUPPLEMENTARY FIGURE 8

Spearman Correlation analysis among TME, anoiS and 12 APRGs. (A)
Correlation scatter plot between anoiS and infiltration level of 21

significative immune cells. (B) Correlation matrix between expression level
of 12 APRGs and infiltration level of 23 immune cells. anoiS, anoikis riskscore;

APRGs, anoikis-potential related genes; *p < 0.05; **p < 0.01; and ***p
< 0.001.
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AKGs anoikis, key, genes

ANOIRGs anoikis-related, genes

anoiS anoikis, riskscore

APRGs anoikis, potentially, relevant, genes

AUC area, under, the, curve

CCT5 chaperonin, containing, TCP1, subunit, 5

CGGA China, Glioma, Genome, Atlas

CNVs copy, number, variants

COX-2 cyclooxygenase-2

DEGs differentially, expressed, genes

ECM cell-extracellular, matrix

FPKM fragments, per, kilobase, million

GBMs glioblastomas

GSEA gene, set, enrichment, analysis

GSVA Gene, Set, Variation, Analysis

GTEx Genotype-Tissue, Expression, Project

HPA Human, Protein, Atlas

ICGs immune, checkpoint, genes

IDH isocitrate, dehydrogenase

IHC immunohistochemical

KDELR2 KDEL, endoplasmic, reticulum, protein, retention, receptor, 2

KEGG Kyoto, Encyclopedia, of, Genes, and, Genomes

K-M Kaplan–Meier

LASSO Least, Absolute, Shrinkage, and, Selection, Operator

LGGs low-grade, gliomas

MAF mutation, annotation, format

MDSCs myeloid-derived, suppressor, cells

MGMT O6-methylguanine-DNA, methyltransferase

OS overall, survival

PFS progression-free, survival

qRT-PCR quantitative, reverse, transcription, polymerase, chain, reaction

ROC receiver, operating, characteristic

SDEPGs differentially, expressed, prognostic, genes, with, strong, prognostic,
significance

SMC4 Structural, maintenance, of, chromosome, 4

ssGSEA single-sample, gene, set, enrichment, analysis

TCGA The, Cancer, Genome, Atlas

TIME The, tumor, immune, microenvironment

TMB tumor, mutation, burden
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TMZ temozolomide

TPM transcripts, per, kilobase, million

t-SNE t-Distributed, Stochastic, Neighbor, Embedding
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