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Balancing microglia M1/M2 polarization is an effective therapeutic strategy for

neuroinflammation after subarachnoid hemorrhage (SAH). Pleckstrin homology-like

domain family A member 1 (PHLDA1) has been demonstrated to play a crucial role in

immune response. However, the function roles of PHLDA1 in neuroinflammation and

microglial polarizationafterSAHremainunclear. In this study, SAHmousemodelswere

assigned to treat with scramble or PHLDA1 small interfering RNAs (siRNAs). We

observed that PHLDA1 was significantly increased and mainly distributed in microglia

after SAH. Concomitant with PHLDA1 activation, nod-like receptor pyrin domain-

containingprotein3 (NLRP3) inflammasomeexpression inmicrogliawasalsoevidently

enhanced after SAH. In addition, PHLDA1 siRNA treatment significantly reduced

microglia-mediated neuroinflammation by inhibiting M1 microglia and promoting

M2 microglia polarization. Meanwhile, PHLDA1 deficiency reduced neuronal

apoptosis and improved neurological outcomes after SAH. Further investigation

revealed that PHLDA1 blockade suppressed the NLRP3 inflammasome signaling after

SAH. In contrast,NLRP3 inflammasomeactivatornigericin abated thebeneficial effects

of PHLDA1 deficiency against SAH by promoting microglial polarization to M1

phenotype. In all, we proposed that PHLDA1 blockade might ameliorate SAH-

induced brain injury by balancing microglia M1/M2 polarization via suppression of

NLRP3 inflammasome signaling. Targeting PHLDA1 might be a feasible strategy for

treating SAH.
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1 Introduction

Subarachnoid hemorrhage (SAH), a devastating acute

cerebrovascular event, has a poor prognosis with a high rate of

neurocognitive impairment in patients. Currently, accumulating

evidence has proposed that early brain injury (EBI) may be a

determinant factor for SAH-induced long-term neurocognitive

sequelae (1–3). Unfortunately, no effective pharmaceutical strategy has

been identified to interfere with the development of EBI. Hence,

identifying new drug targets to improve SAH outcomes is

urgently needed.

Neuroinflammation has been verified as a crucial contributor to

EBI progression after SAH (4–6). It is known that microglia, key

innate immune cells of the brain, are rapidly activated to various acute

brain injuries (6–8). After activation, microglia can exhibit different

phenotypes (M1 and M2 phenotypes) and exert distinct functions.

M1 microglia could induce proinflammatory mediators and increase

reactive oxygen species (ROS). By contrast, M2 microglia exhibit anti-

inflammatory effects by secreting anti-inflammatory meditators.

Interestingly, microglia can switch their phenotype under different

microenvironments. In a variety of neurological disorders,

suppression of microglia M1 polarization and promotion of M2

microglia could effectively reduce acute brain injuries and improve

neurological outcomes (9–11). Thus, modulating microglia M1/M2

polarization might be a feasible method to mitigate EBI.

Recently, a substantial number of studies have revealed that

pleckstrin homology-like domain family A member 1 (PHLDA1)

plays a crucial role in oxidative stress and immunological regulation

(12–15). In a model of cerebral ischemia/reperfusion injury, PHLDA1

blockade ameliorated the acute brain injury by switching microglia M1/

M2 polarization via inhibiting nod-like receptor pyrin domain-

containing protein 3 (NLRP3) inflammasome signaling (12). Another

study reported that PHLDA1 deficiency mitigated motor deficits and

microglia-mediated neuroinflammation in Parkinson’s disease models

(13). However, the function roles of PHLDA1 in microglia-mediated

immune response after SAH remain unclear. NLRP3 inflammasome

has been demonstrated to implicate in neuroinflammation after SAH

by modulating microglial polarization (4, 16). Notably, blockade of

NLRP3 inflammasome activation could exert beneficial effects in

different brain injuries (17–19). Herein, we hypothesized that

PHLDA1 inhibition might mitigate neuroinflammation and the

subsequent neurobehavior deficits after SAH through the NLRP3

inflammasome signaling pathway.
2 Material and methods

2.1 Establishment of SAH model

Adult male C57BL/6 mice (8-10 wk old, weighing 20–25 g)

were obtained from the Animal Core Facility of Fujian Medical

University. All experimental procedures were complied with the

rules for animal research by Fujian Medical University. Briefly,

mice were anesthetized with isoflurane. After the common,

external and internal carotid arteries were exposure, a marked

6-0 filament was employed to puncture the origin of the left
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middle cerebral artery through the internal carotid artery (20).

Animals in sham group received similar procedures without the

artery puncture. The SAH severity grading score was recorded

according to previous studies (21). Mice with a SAH grading score

of less than 8 were excluded.
2.2 Study design

In the first experiment, mice were assigned to sham group (n = 6)

and post-SAH (6 h, 12 h, 24 h, 48 h, 72 h) (n = 6 per group). Western

blot and immunofluorescence staining were performed in the

experiment. In the second experiment, mice were assigned to sham

group, vehicle-treated SAH group, Scramble small interfering RNA

(siRNA)-treated SAH group, and PHLDA1 siRNA-treated SAH

group (n = 12 per group). Animals were sacrificed at 24 h or 72 h

after SAH. Post-treatment assessments included neurobehavior tests,

western blot, immunofluorescence staining, TUNEL staining,

enzyme-linked immunosorbent assay (ELISA), and biochemical

estimation. In the third experiment, mice were assigned to sham

group, vehicle-treated SAH group, PHLDA1 siRNA-treated SAH, and

PHLDA1 siRNA plus nigericin -treated SAH group (n = 12 per

group). Post-treatment assessments included neurobehavior tests,

western blot, immunofluorescence staining, TUNEL staining,

ELISA, and biochemical estimation.
2.3 Drug administration

For PHLDA1 knockdown, a volume of 3ml PHLDA1 siRNA (Santa

Cruz Technology) or scramble siRNA was dissolved in transfection

solution and then injected into the lateral ventricles at 48 h before the

construction of SAH model. Nigericin (MedChemExpress, 2 mg), a
potent NLRP3 activator, was prepared in 2 ml ethanol and physiologic

saline. Nigericin or vehicle was intracerebroventricularly administered

at 2 h before SAH operation. The dose of nigericin and administration

route were based on previous studies (22).
2.4 Neurobehavioral tests

The modified Garcia scale test was used to evaluate neurological

deficits as previously reported (23). Six measurements were included in

this score system. The higher score suggested the better neurobehavioral

outcomes. For motor function, the beam-walking score test was

performed according to previous reports (24). The animals’ walking

distance within 1 min were recorded. Neurobehavior tests were

conducted in a blinded manner.
2.5 ELISA

The supernatant of brain samples was collected. The levels of

interleukin (IL)-1b, IL-6, IL-18, and IL-10 were detected by using

commercially available kits (Multi Sciences). The detailed methods

were conducted according to the manufacturer’s instructions.
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2.6 Western blotting

The brain tissue and protein samples were prepared according to

previous studies (25). Briefly, the protein samples were loaded onto SDS-

PAGE gels and transferred to PVDF membranes. The membranes were

blockedwith 5%non-fatmilk.After that, theywere incubatedwithprimary

antibodies: PHLDA1 (1:1000, Abcam), NLRP3 (1:200, Santa Cruz

Biotechnology), ASC (1:200, Santa Cruz Biotechnology), caspase-1

(1:200, Santa Cruz Biotechnology), cleaved caspase-1 (1:200, Santa Cruz

Biotechnology), and b-actin (1:3000, Bioworld Technology) in a 4°C

freezer. Then, membranes were incubated with corresponding secondary

antibodies. ImageJ software was employed to measure relative intensity.

2.7 Immunofluorescence staining

The detailedmethods were performed according to previous studies

(26). In brief, the frozen tissue sections were treated with Triton X-100

(0.3%) and then blocked with 5% goat serum. After that, sections were

incubated with primary antibodies: PHLDA1 (Abcam), CD16/32 (BD

Biosciences), CD206 (Invitrogen), NeuN (EMDMillipore), IL-1b (Santa
Cruz Biotechnology), and Iba-1 (Santa Cruz Biotechnology) in a 4°C

freezer. After that, they were incubated with corresponding secondary

antibodies followed by using DAPI staining. The slices were then

observed under a fluorescence microscope.
2.8 TUNEL staining

TUNEL staining was performed by using a commercially available kit

(Beyotime Biotechnology). Brain sections were incubated with primary

antibody against NeuN in a 4°C freezer. After that, the sections were
Frontiers in Immunology 03
incubatedwithTUNELreactionmixture.The slideswere thenwashedand

counterstained with DAPI. The slices were observed under a

fluorescence microscope.

2.9 Statistical analysis

Data are expressed as mean ± SD. Statistical analysis was

conducted with Graph- Pad Prism 8 software. Statistical evaluation

was performed using one-way ANOVA or two-way ANOVA with

Tukey’s post hoc test. The significant P-value was < 0.05.

3 Results

3.1 Time course and cellular expression of
PHLDA1 and NLRP3 after SAH

Mounting evidence has indicated that PHLDA1 and NLRP3 might

interact with each other. PHLDA1 activation could induce NLRP3

inflammasome signaling. In this experiment, western blot (Figure 1A)

was performed to investigate the protein expression of PHLDA1 and

NLRP3. As shown in Figures 1B, C, the expression of PHLDA1 and

NLRP3markedly increased in the early period after SAH, and peaked at

24 h post-SAH (P < 0.05). In addition, double immunofluorescence

staining indicated that the enhanced PHLDA1 and NLRP3 were mainly

distributed in microglia after SAH (P < 0.05) (Figures 1D–G).

3.2 PHLDA1 deficiency inhibited NLRP3
inflammasome signaling activation after SAH

Previous study has demonstrated that PHLDA1 activation

could induce NLRP3 inflammasome signaling. We applied
B C

D

E

F

G

A

FIGURE 1

Expression levels of PHLDA1 and NLRP3 were increased after SAH. (A) Representative western blots for PHLDA1 and NLRP3 expressions in the early
period after SAH. Western blot analysis of PHLDA1 (B) and NLRP3 (C) expressions after SAH (n = 6 per group). (D, E) Representative immunofluorescence
images of PHLDA1 and NLRP3 co-localized with Iba1 in temporal cortex after SAH. Quantification of PHLDA1 (F) and NLRP3 (G) immunoactivities in
microglia (n = 6 per group). *P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
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PHLDA1 siRNA to inhibit PHLDA1 expression and explore

whether PHLDA1 deficiency could reduce NLRP3 inflammasome

activation. As shown, western blot results (Figure 2A) showed that

PHLDA1 siRNA significantly reduced PHLDA1 expression after

SAH (P < 0.05). Moreover, the activated NLRP3 inflammasome

signaling pathway was markedly suppressed by PHLDA1 siRNA (P

< 0.05) (Figures 2A–F). Consistently, double immunofluorescence

staining confirmed that PHLDA1 siRNA significantly decreased

PHLDA1 and NLRP3 expression in microglia in the brain cortex

after SAH (P < 0.05) (Figures 2G–J).
3.3 PHLDA1 deficiency reduced
inflammatory response

The anti-inflammatory effects of PHLDA1 blockade have been

verified in other diseases models. We further investigated the

influence of PHLDA1 deficiency on inflammatory response after

SAH. By using ELISA kits, we found that SAH insults induced a

significant increase in proinflammatory cytokines release, including

IL-1b, IL-6, and IL-18 (P < 0.05) (Figures 3A–C). All these cytokines

were decreased by PHLDA1 deficiency (P < 0.05). In addition,

PHLDA1 deficiency significantly induced an increase in IL-10

expression after SAH (P < 0.05) (Figure 3D). Simultaneously, IL-1b
immunofluorescence staining verified that PHLDA1 deficiency

significantly decreased the enhanced levels of IL-1b in the brain

cortex after SAH (P < 0.05) (Figures 3E, F).
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3.4 PHLDA1 deficiency promoted M2
microglia polarization and prevented M1
microglia polarization after SAH

Microglial polarization plays a key role in inflammatory response

after SAH. Studies have proved that suppression of microglia M1

polarization and promotion of M2 microglia could effectively reduce

acute brain injuries and improve neurological outcomes. Interestingly,

PHLDA1 has been reported tomodulate microgliaM1/M2 polarization

in other diseases. To determine whether PHLDA1 deficiency affects

microglial polarization after SAH, double immunostaining was

performed to examine the levels of M1 microglia and M2 microglia. It

showed that the number of Iba1+/CD16/32+ cells was significantly

increased after SAH, which could be decreased by PHLDA1 silencing

(P<0.05) (Figures 4A,C). Inaddition,weexamined the expressionofM2

microglia and revealed that the levels of Iba1+/CD206+ cells were

markedly increased after PHLDA1 siRNA treatment (P < 0.05)

(Figures 4B, D). These data suggested that PHLDA1 silencing could

suppress M1 microglia and promote M2 microglia polarization.
3.5 PHLDA1 deficiency reduced neuronal
death and improved neurological outcomes
after SAH

Next, we explored whether PHLDA1 deficiency could exert

cerebroprotective effects after SAH. TUNEL staining revealed that
B C D E
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A

FIGURE 2

PHLDA1 deficiency suppressed NLRP3 inflammasome signaling after SAH. (A) Representative western blots for PHLDA1, NLRP3, ASC, Caspase1, and Cleaved
caspasse1 expressions after SAH. Western blot analysis of PHLDA1 (B), NLRP3 (C), ASC (D), caspase1 (E), and cleaved caspasse1 (F) expressions after SAH (n =
6 per group). Representative immunofluorescence images of PHLDA1 (G) and NLRP3 (H) co-localized with Iba1 in temporal cortex. Quantification of PHLDA1
(I) and NLRP3 (J) immunoactivities in microglia (n = 6 per group). *P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
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FIGURE 3

PHLDA1 deficiency mitigated inflammatory insults after SAH. ELISA analysis of IL-1b (A), IL-6 (B), IL-18 (C), and IL-10 (D) expressions (n = 6 per group).
(E) Representative immunofluorescence images of IL-1b staining in temporal cortex. (F) Quantification of IL-1b immunoactivities (n = 6 per group).
*P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
B
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A

FIGURE 4

PHLDA1 deficiency inhibited M1 microglia polarization and promoted M2 microglia transformation. Representative immunofluorescence images of CD16/
32 (A) and CD206 (B) co-localized with Iba1 in temporal cortex. Quantification of Iba1+/CD16/32+ cells (C) and Iba1+/CD206+ (D) cells in temporal
cortex (n = 6 per group). *P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
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SAH insults significantly induced neuronal apoptosis (P < 0.05)

(Figures 5A, B). Concomitant with the exacerbated neuronal death,

the neurological outcomes of SAH was further aggravated (P < 0.05)

(Figures 5C, D). In contrast, PHLDA1 siRNA treatment evidently

reduced SAH-induced neuronal apoptosis (P < 0.05). Simultaneously,

PHLDA1 deficiency showed better neurological outcomes after SAH

insults (P < 0.05) (Figures 5A–D). These suggested that PHLDA1

deficiency could protect against SAH-induced EBI by its anti-

inflammatory effects.
3.6 Nigericin administration reversed the
inhibitory effects of PHLDA1 deficiency on
NLRP3 inflammasome

NLRP3 inflammasome plays a key role in microglial activation

after SAH. Moreover, NLRP3 inflammasome activation could induce

microglia M1 polarization and inhibit NLRP3 inflammasome could

promote M2 microglia polarization. As mentioned above, PHLDA1

deficiency could markedly inhibit NLRP3 inflammasome activation

after SAH. We further explored whether NLRP3 inflammasome

activation by nigericin could abate the cerebroprotective effects of

PHLDA1 deficiency. As expected, western blot results showed that

nigericin administration eliminated the inhibitory effects of PHLDA1

deficiency on NLRP3 inflammasome activation (P < 0.05)

(Figures 6A–E). Consistently, the immunofluorescence staining
Frontiers in Immunology 06
results verified that NLRP3 inflammasome staining was further

induced after nigericin treatment (P < 0.05) (Figures 6F, G).
3.7 Nigericin abated the effects of PHLDA1
deficiency on microglia M1/M2 polarization
and inflammatory insults

Next, we examined the effects of nigericin administration on

microglial polarization after PHLDA1 siRNA treatment. As expected,

the immunofluorescence staining results showed that NLRP3

inflammasome activation by nigericin abated the effects of PHLDA1

silencing on microglia M1/M2 polarization, as evidenced by the

increased number of Iba1+/CD16/32+ cells and decreased number of

Iba1+/CD206+cells (P<0.05) (Figures 7A–D).Moreover, theELISAdata

indicated that nigericin further exacerbated proinflammatory cytokines

release and decreased anti-inflammatory cytokines after SAH (P < 0.05)

(Figures 7E–H). These suggested that NLRP3 inflammasome activation

contributed to the modulation effects of PHLDA1 on microglial

polarization after SAH.
3.8 Nigericin abrogated the beneficial
effects of PHLDA1 deficiency on neuronal
survival and neurological function

We suspected that NLRP3 inflammasome activation by nigericin

might reverse the beneficial effects of PHLDA1 deficiency on
B

C D

A

FIGURE 5

PHLDA1 deficiency decreased neuronal apoptosis and improved neurological function after SAH. (A) Representative immunofluorescence images of
TUNEL staining in temporal cortex. (B) Quantification of TUNEL+/NeuN+ cells in temporal cortex (n = 6 per group). PHLDA1 deficiency mitigated
neurological deficits (C) and improved motor function (D) after SAH (n = 8 or 9 per group). *P < 0.05. Scale bar=50 mm. Data are expressed as
mean ± S.D.
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neuronal survival and neurological function. Consistent with the

aggravated inflammatory insults, nigericin administration further

significantly increased neuronal apoptosis and exacerbated

neurological deficits and motor dysfunction (P < 0.05) (Figures 8A–

D). Based on the findings above, PHLDA1 blockade could attenuate

EBI after SAH by regulating microglia M1/M2 polarization via

NLRP3 inflammasome signaling.
4 Discussion

In this study, we elucidated the biological function of PHLDA1 in

microglia-mediated neuroinflammation after SAH. We demonstrated

that PHLDA1 was significantly increased and was peaked at 24 h after

SAH. The immunofluorescence studies revealed that the enhanced

PHLDA1 after SAH was mainly distributed in microglia. PHLDA1

siRNA treatment significantly reduced neuroinflammatory response

and the subsequent brain insults after SAH. Notably, PHLDA1

knockdown reduced the number of M1 microglia and promoted M2

microglial polarization. Moreover, PHLDA1 deficiency inhibited NLRP3
Frontiers in Immunology 07
inflammasome signaling after SAH. In contrast, NLRP3 inflammasome

activator nigericin abrogated the protective effects of PHLDA1 deficiency

against SAH and further aggravated neurobehavior deficits. Taken

together, these data suggested that targeting PHLDA1 might be a

potential therapeutic strategy for treating SAH.

PHLDA1, a member of the PHLDA family, is a multifunctional

protein. It has been demonstrated that PHLDA1 participates in

modulation of cell proliferation, energy homeostasis, differentiation

and apoptosis (27–29). Recently, a wealth of evidence indicated that

PHLDA1 also plays an important role in immune response. For

example, Hossain et al. demonstrated that PHLDA1 knockdown

modulated macrophages and endothelial cells phenotypic changes

to reduce atherogenesis-induced oxidative and ER stress (14). In

Parkinson’s disease study, Han et al. reported that PHLDA1 was a

potent modulator of neuroinflammation, and knockdown of

PHLDA1 could markedly inhibited M1 microglia activation (13). A

more direct study indicated that PHLDA1 blockade inhibited

neuroinflammation after ischemic stroke by balancing microglial

M1/M2 polarization (12). However, the potential roles of PHLDA1

in EBI after SAH remain unclear.
B C D
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FIGURE 6

Nigericin administration counteracted the effects of PHLDA1 deficiency on NLRP3 inflammasome. (A) Representative western blots for NLRP3, ASC,
caspase1, and cleaved caspasse1 expressions after SAH. Western blot analysis of NLRP3 (B), ASC (C), Caspase1 (D), and Cleaved caspasse1 (E) expressions
after SAH (n = 6 per group). (F) Representative immunofluorescence images of NLRP3 co-localized with Iba1 in temporal cortex. Quantification of NLRP3
(G) immunoactivity in microglia (n = 6 per group). *P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
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We first investigated the time course of PHLDA1 expression after

SAH. Consistent with previous reports (12), our data indicated that

PHLDA1 was significantly increased, with a peak at 24 h after SAH.

At the cellular level, the enhanced PHLDA1 after SAH was mainly

distributed in microglia. Moreover, we noted that NLRP3

inflammasome was significantly increased in microglia after SAH.

The NLRP3 inflammasome, a cytoplasmic multiprotein complex, has

been demonstrated to exert a pivotal role in neuroinflammation and

intracranial aneurysm rupture (30–32). It showed that NLRP3

inflammasome participated in microglial polarization in a variety of

brain injuries (33–35). Chen et al. demonstrated that NLRP3

deficiency could promote M2 microglia polarization in

experimental models of intracerebral hemorrhage (36). A recent

study in cerebral ischemia/reperfusion injury suggested that

inhibition of TXNIP/NLRP3 promoted the transition of microglia

from M1 to M2 phenotype (37). In SAH area, inhibition NLRP3

inflammasome has also been demonstrated to promote microglial

polarization to M2 phenotype (4). In our experiments, we observed
Frontiers in Immunology 08
that there were similar expression trends and cellular distribution of

PHLDA1 and NLRP3 after SAH. These suggested that PHLDA1 and

NLRP3 might interact with each other. Intriguingly, a recent study by

Zhao et al. revealed that PHLDA1 deficiency suppressed middle

cerebral artery occlusion/reperfusion-induced NLRP3 inflammasome

activation and the subsequent mRNA level and expression of NLRP3

inflammasome-associated proteins (12). Therefore, we speculated that

PHLDA1 might modulate microglial polarization by NLRP3

inflammasome activation.

In our experiments, we employed PHLDA1 siRNA to suppress

PHLDA1 activation. Our data revealed that PHLDA1 siRNA

treatment significantly inhibited the protein expression of

PHLDA1 after SAH. Moreover, the evident neuroinflammation

was markedly suppressed by PHLDA1 blockade. Microglial

polarization plays a critical role in immune response after SAH.

Mounting evidence has shown that inducing microglia toward M2

phenotype or suppression of microglia M1 polarization could

promote neuronal survival, reduce inflammatory insults, and
B
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FIGURE 7

Nigericin administration abated the effects of PHLDA1 deficiency on microglia M1/M2 polarization and inflammatory insults. Representative
immunofluorescence images of CD16/32 (A) and CD206 (B) co-localized with Iba1 in temporal cortex. Quantification of Iba1+/CD16/32+ cells (C) and
Iba1+/CD206+ cells (D) in temporal cortex (n = 6 per group). ELISA analysis of IL-1b (E), IL-6 (F), IL-18 (G), and IL-10 (H) expressions (n = 6 per group).
*P < 0.05. Scale bar=50 mm. Data are expressed as mean ± S.D.
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improve neurological outcomes after SAH (38–40). We further

examined the influence of PHLDA1 blockade on microglial

polarization after SAH. Consistent with previous studies, we found

that PHLDA1 deficiency decreased M1 phenotype microglia and

induced microglia M2 polarization after SAH. Concomitant with the

reduced neuroinflammation, PHLDA1 blockade improved neuronal

survival and neurological function after SAH. However, the

underlying molecular mechanisms of PHLDA1 blockade on

microglial polarization remain unknown. The evidence above

implied that NLRP3 inflammasome might participate in PHLDA1-

mediated microglial polarization. To further clarify the molecular

mechanisms of PHLDA1 blockade on microglial polarization,

nigericin was applied to activate NLRP3 inflammasome signaling.

As expected, nigericin treatment significantly induced NLRP3

inflammasome activation and abrogated the beneficial effects of

PHLDA1 blockade on EBI after SAH. Meanwhile, nigericin further

increased M1 microglia polarization and inhibited M2 phenotype

microglia. These data further supported that PHLDA1 blockade

could inhibit NLRP3 inflammasome activation to balance

microglial polarization from M1 to M2 after SAH.

There are several shortcomings in our study. Firstly, microglia-

specific PHLDA1-knockout mouse should be utilized in the future to

validate the biological function of PHLDA1 in microglial activation

after SAH. Secondly, some authors reported that PHLDA1 exhibited

anti-inflammatory effects through inhibition of toll-Like receptor 4

(TLR4) signaling (15). The reasons for this disagreement are

somewhat obscure. One possible explanation might be that acute

brain injuries have different pathophysiology. Thirdly, in addition to
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modulate NLRP3 inflammasome signaling, PHLDA1 might interfere

with other molecular targets, such as TLR4, nuclear factor-erythroid

2-related factor 2, and TRAF6 (13, 15, 41). Moreover, the long-term

effects of PHLDA1 inhibition in the delayed phase of SAH remains

unclear. Therefore, additional studies are still warranted to clarify

these questions.
5 Conclusions

This study is the first to document that PHLDA1 blockade

attenuated EBI after SAH by regulating microglia M1/M2

polarization via NLRP3 inflammasome signaling. These findings

suggested that PHLDA1 might be a novel therapeutic strategy for

treating SAH.
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